Background Modeling via Incremental Maximum Margin Criterion
Marghes Cristina, Thierry Bouwmans

To cite this version:
Marghes Cristina, Thierry Bouwmans. Background Modeling via Incremental Maximum Margin Criterion. ACCV 2010 Workshops, Nov 2010, New Zealand. Springer Verlag, LNCS 6469 (Part II.), pp.394-403, 2010. <hal-00644743>

HAL Id: hal-00644743
https://hal.archives-ouvertes.fr/hal-00644743
Submitted on 25 Nov 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Background Modeling via Incremental Maximum Margin Criterion

C. Marghes, T. Bouwmans
Laboratoire MIA, University of La Rochelle, 17000 La Rochelle, France

Abstract. Subspace learning methods are widely used in background modeling to tackle illumination changes. Their main advantage is that it doesn’t need to label data during the training and running phase. Recently, White et al. [1] have shown that a supervised approach can improved significantly the robustness in background modeling. Following this idea, we propose to model the background via a supervised subspace learning called Incremental Maximum Margin Criterion (IMMC). The proposed scheme enables to initialize robustly the background and to update incrementally the eigenvectors and eigenvalues. Experimental results made on the Wallflower datasets show the pertinence of the proposed approach.

1 Introduction

Many background subtraction methods have been developed in video-surveillance to detect moving objects [2][3][4]. These methods have different common steps: background modeling, background initialization, background maintenance and foreground detection. The background modeling describes the kind of model used to represents the background. Once the model has been chosen, the background model is initialized during a learning step by using N frames. Then, a first foreground detection is made and consists in the classification of the pixel as a background or as a foreground pixel. Thus, the foreground mask is applied on the current frame to obtain the moving objects. After this, the background is adapted over time following the changes which have occurred in the scene and so on. The last decade witnessed very significant contributions in background modeling via unsupervised subspace learning [5] due to their robustness to illumination changes. The first approach developed by Oliver et al. [6] consists in applying Principal Component Analysis (PCA) on N images to construct a background model, which is represented by the mean image and the projection matrix comprising the first p significant eigenvectors of PCA. In this way, foreground segmentation is accomplished by computing the difference between the input image and its reconstruction. The main limitation of this method appears for the background maintenance because it is computationally intensive to perform model updating using the batch mode PCA. Moreover without a mechanism of robust analysis, the outliers or foreground objects may be absorbed into the background model. In this context, some authors proposed different algorithms
of incremental PCA. The incremental PCA proposed by Rymel et al. [7] need less computation but the background image is contaminated by the foreground object. To solve this, Li et al. [8] proposed an incremental PCA which is robust in presence of outliers. However, when keeping the background model updated incrementally, it assigned the same weights to the different frames. Thus, clean frames and frames which contain foreground objects have the same contribution. The consequence is a relative pollution of the background model. To solve this, Skocaj et al. [9] used a weighted incremental and robust. The weights are different following the frame and this method achieved a better background model. However, the weights were applied to the whole frame without considering the contribution of different image parts to building the background model. To achieve a pixel-wise precision for the weights, Zhang and Zhuang [10] proposed an adaptive weighted selection for an incremental PCA. This method performs a better model by assigning a weight to each pixel at each new frame during the update. Wang et al. [11] used a similar approach using the sequential Karhunen-Loeve algorithm. Recently, Zhang et al. [12] improved this approach with an adaptive scheme. All these incremental methods avoid the eigen-decomposition of the high dimensional covariance matrix using approximation of it and so a low decomposition is allowed at the maintenance step with less computational load. However, these incremental methods maintain the whole eigenstructure including both the eigenvalues and the exact matrix. To solve it, Li et al. [13] proposed a fast recursive and robust eigenbackground maintenance avoiding eigen-decomposition. This method achieves similar results than the incremental PCA [8] at better frames rates. In another way, Yamazaki et al. [14] and Tsai et al. [15] proposed to use the Independent Component Analysis (ICA) which is a variant of PCA in which the components are assumed to be mutually statistically independent instead of merely uncorrelated. This stronger condition allows remove the rotational invariance of PCA, i.e. ICA provides a meaningful unique bilinear decomposition of two-way data that can be considered as a linear mixture of a number of independent source signals. The ICA model was tested on traffic scenes [14] and show robustness in changing background like illumination changes. Recently, Chu et al. [16] used a Non-negative Matrix Factorization algorithm to model dynamic backgrounds and Bucak et al. [17] preferred an Incremental version of the Non-negative Matrix Factorization (INMF) which presents similar performance than the incremental PCA [8]. In order to take into account the spatial information, Li et al. [18] used an Incremental Rank-(R1,R2,R3) Tensor (IRT). Results [18] show better robustness to noise. The Table 1 shows an overview of the background modeling based on subspace learning.

However, these different approaches are unsupervised subspace learning methods. Indeed, it doesn’t need to label data. Recently, White et al. [1] proved that the Gaussian Mixture Model (GMM) [19] gives better results when some coefficients are determined in a supervised way. Following this idea, we propose to use a supervised subspace learning for background modeling. Thus, the Maximum Margin Criterion (MMC) offers a nice framework. It was proposed by Li et al. [20] and it can outperform PCA and Linear Discriminant Analysis (LDA) on
many classification tasks [21]. MMC search for the projection axes on which the data points of different classes are far from each other meanwhile where data points of the same class are close to each other. As the original PCA and LDA, MMC is a batch algorithm and so it requires that the data must be known in advance and be given once altogether. Recently, Yan et al. [22] have proposed incremental version of MMC which is suitable to update online the background model.

The rest of this paper is organized as follows: In the Section 2, we firstly remind the Incremental Maximum Margin Criterion (IMMC). In the Section 3, we present our method using subspace learning via IMMC for background modeling. Then, a comparative evaluation is provided in the Section 4. Finally, the conclusion is given in Section 5.

<table>
<thead>
<tr>
<th>Subspace Learning - Methods</th>
<th>Authors - Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Components Analysis</td>
<td></td>
</tr>
<tr>
<td>Batch PCA</td>
<td>Oliver et al. (1999) [6]</td>
</tr>
<tr>
<td>Incremental PCA</td>
<td>Rymel et al. (2004) [7]</td>
</tr>
<tr>
<td>Incremental and Robust PCA</td>
<td>Li et al. (2003) [8]</td>
</tr>
<tr>
<td>Weighted Incremental and Robust PCA</td>
<td>Skocaj et al. (2003) [9]</td>
</tr>
<tr>
<td>Adaptive Weighted Incremental and Robust PCA</td>
<td>Zhang and Zhuang (2007) [10]</td>
</tr>
<tr>
<td>Independent Component Analysis</td>
<td></td>
</tr>
<tr>
<td>Batch ICA</td>
<td>Yamazaki et al. (2006) [14]</td>
</tr>
<tr>
<td>Incremental ICA</td>
<td>Tsai and Lai (2009) [15]</td>
</tr>
<tr>
<td>Independent Component Analysis</td>
<td></td>
</tr>
<tr>
<td>Batch NMF</td>
<td>Chu et al. (2010) [16]</td>
</tr>
<tr>
<td>Incremental NMF</td>
<td>Bucak et al. (2007) [17]</td>
</tr>
<tr>
<td>Independent Component Analysis</td>
<td></td>
</tr>
<tr>
<td>Incremental Rank-(R1,R2,R3) Tensor</td>
<td>Li et al. (2008) [18]</td>
</tr>
</tbody>
</table>

Table 1. Subspace Learning for background modeling: An Overview

2 Incremental Maximum Margin Criterion (IMMC)

This section reminds briefly the principle of IMMC developed in [22]. Suppose the data sample points \(u(1), u(2), ..., u(N)\) are \(d\)-dimensional vectors, and \(U\) is the sample matrix with \(u(i)\) as its \(i^{th}\) column. MMC [20] projects the data onto a lower-dimensional vector space such that the ratio of the inter-class distance to the intra-class distance is maximized. The goal is to achieve maximum discrimination and the new low-dimensional vector can be computed as \(y = W^T u\) where \(W \in \mathbb{R}^{d \times p}\) is the projection matrix from the original space of dimension \(d\) to the low dimensional space of dimension \(p\). So, MMC [20] aims to maximize the criterion:

\[
J(W) = W^T(S_b - S_w)W
\]

(1)
where
\[S_b = \sum_{i=1}^{c} p_i (m_i - m)(m_i - m)^T \] (2)
\[S_w = \sum_{i=1}^{c} p_i E(u_i - m_i)(u_i - m_i)^T \] (3)
are called respectively the inter-class scatter matrix and the intra-class scatter matrix and \(c \) is the number of classes, \(m \) is the mean of all samples, \(m_i \) is the mean of the samples belonging to class \(i \) and \(p_i \) is the prior probability for a sample belonging to class \(i \). The projection matrix \(W \) can be obtained by solving:
\[(S_b - S_w)w = \lambda w \] (4)
To incrementally maximize the MMC criterion, Yan et al.,[22] constraint \(W \) to unit vectors, i.e. \(W = [w_1, w_2, ..., w_p] \) and \(w_k^T w_k = 1 \). Thus the optimization problem of \(J(W) \) is transformed to:
\[\text{max} \sum_{k=1}^{p} w_k^T (S_b - S_w)w_k \] (5)
subject to \(w_k^T w_k = 1 \) with \(k = 1, 2, ..., p \). \(W \) is the first \(k \) leading eigenvectors of the matrix \(S_b - S_w \) and the column vectors of \(W \) are orthogonal to each other. Thus, the problem is learning the \(p \) leading eigenvector of \(S_b - S_w \) incrementally.

2.1 Updating incrementally leading eigenvectors
Let \(C = S_b + S_w \) be the covariance matrix, then we have \(J(W) = W^T (2S_b - C)W \), \(W \in \mathbb{R}^{d \times p} \). Then maximizing \(J(W) \) means to find the \(p \) leading eigenvectors of \(2S_b - C \).

The inter-class scatter matrix of step \(n \) after learning from the first \(n \) samples can be written as below,
\[S_b(n) = \sum_{j=1}^{c} p_j(n)(m_j - m(n))(m_j - m(n))^T \] (6)
and
\[S_b = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} S_b(i) \] (7)
On the other hand,
\[C = E(u(n) - m)(u(n) - m)^T \] (8)
\[= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (u(n) - m(n))(u(n) - m(n))^T \] (9)
$2S_b - C$ should have the same eigenvectors as $2S_b - C + \theta I$ where θ is a positive real number and $I \in R^{d \times d}$. From (7) and (9) we have the following equation:

$$2S_b - C + \theta I = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} A(i) = A \quad (10)$$

where $A(i) = 2S_b(i) - (u(i) - m(i))(u(i) - m(i))^T + \theta I$, $A = 2S_b - C + \theta I$.

The general eigenvector form is $Ax = \lambda x$, where x is the eigenvector of matrix A corresponding to the eigenvalue λ. By replacing matrix A with the MMC matrix at step n, an approximate iterative eigenvector computation formulation is obtained with $\nu = \lambda x$.

$$\nu(n) = \frac{1}{n} \sum_{i=1}^{n} (2 \sum_{j=1}^{c} p_j(i)\Phi_j(i)\Phi_j(i)^T - (u(i) - m(i))(u(i) - m(i))^T + \theta I)x(i) \quad (11)$$

where $\Phi_j(i) = m_j(i) - m(i)$, $\nu(n)$ is the n step estimation of ν and $x(n)$ is the n step estimation of x. Once the estimation of ν is obtained, eigenvector x can be directly computed as $x = \nu/||\nu||$. Let $x(i) = \nu(i - 1)/||\nu(i - 1)||$, then the incremental formulation is the following:

$$\nu(n) = \frac{n - 1}{n} \nu(n-1) + \frac{1}{n} (2\sum_{j=1}^{c} p_j(n)\alpha_j(n)\Phi_j(n) - \beta(u(n) - m(n)) + \theta \nu(n - 1))/||\nu(n - 1)|| \quad (12)$$

where $\alpha_j(n) = \phi_j(n)^T \nu(n-1)$ and $\beta(n) = (u(n) - m(n))^T \nu(n-1)$, $j = 1, 2, ..., c$. For initialization, $\nu(0)$ is equal to the first data sample.

2.2 Updating incrementally the other eigenvectors

To compute the $(j + 1)^{th}$ eigenvector, its projection is subtracted on the estimated j^{th} eigenvector from the data,

$$u_{j-1}^{n+1}(n) = u_{j-1}^{n}(n) - (u_{j-1}^{n}(n)^T \nu_j(n))\nu_j(n) \quad (13)$$

where $u_{j-1}^{1}(n) = u_{j-1}(n)$. The same method is used to update $m_j(n)$ and $m^j(n)$, $i = 1, 2, ..., c$. Since $m_j(n)$ and $m^j(n)$ are linear combinations of $x_{i}^{l}(i)$, where $i = 1, 2, ..., k$, and $l_i \in 1, 2, ..., C$. Φ_i are linear combination of m_i and m, for convenience, only Φ is updated at each iteration step by:

$$\Phi_{l_i}^{j+1}(n) = \Phi_{l_i}^{j}(n) - (\Phi_{l_i}^{j}(n)^T \nu_j(n))\nu_j(n) \quad (14)$$

In this way, the time-consuming orthonormalization is avoided and the orthogonal is always enforced when the convergence is reached.
3 Application to background modeling

The Figure 1 shows an overview of the proposed approach. The background modeling framework based on IMMC includes the following stages: (1) Background initialization via MMC using N frames ($N = 30$ practically) (2) Foreground detection (3) Background maintenance using IMMC. The steps (2) and (3) are executed repeatedly as time progresses.

![Fig. 1. Overview of the proposed approach](image)

Denote the training video sequences $S = \{I_1, ..., I_N\}$ where I_t is the frame at time t. Let each pixel (x, y) be characterized by its intensity in the grey scale and assume that we have the ground truth corresponding to this training video sequences, i.e we know for each pixel its class label which can be foreground or background. Thus, we have:

$$S_b = \sum_{i=1}^{c} p_i (m_i - m)(m_i - m)^T \tag{15}$$

$$S_w = \sum_{i=1}^{c} p_i E(u_i - m_i)(u_i - m_i)^T \tag{16}$$

where $c = 2$, m is the mean of the intensity of the pixel x,y over the training video and m_i is the mean of samples belonging to class i and p_i is the prior probability for a sample belonging to class i with $i \in \{\text{Background, Foreground}\}$. Then, we can apply the batch MMC to obtain the first leading eigenvectors which correspond to the background. The corresponding eigenvalues are contained in the matrix L_M and the leading eigenvectors in the matrix Φ_M. Once the leading eigenbackground images stored in the matrix Φ_M are obtained and the mean μ_B too, the input image I_t can be approximated by the mean background and weighted sum of the leading eigenbackgrounds Φ_M.

So, the coordinate in leading eigenbackground space of input image I_t can be computed as follows:

$$w_t = (I_t - \mu_B)^T \Phi_M \tag{17}$$

When w_t is back projected onto the image space, a reconstructed background image is created as follows:

$$B_t = \Phi_M w_t^T + \mu_B \tag{18}$$
Then, the foreground object detection is made as follows:

$$|I_t - B_t| > T$$ \hfill (19) \]

where T is a constant threshold.

Once the first foreground detection is made, we apply the IMMC to update the background model using (12) and (14). The class label for each pixel is obtained using the foreground mask.

Remark: Note that the IMMC can be applied directly at time $t=1$ but it is less robust than to use firstly the batch algorithm on N frames and then to apply the IMMC to update the background.

4 Experimental Results

For the performance evaluation, we have compared our supervised approach with the unsupervised subspace learning methods PCA, INMF and IRT using the Wallflower dataset provided by Toyama et al. [23]. This dataset consists in a set of images sequences where each sequence presents a different type of difficulty that a practical task may meet: Moved Object (MO), Time of Day (TD), Light Switch (LS), Waving Trees (WT), Camouflage (C), Bootstrapping (B) and Foreground Aperture (F). The performance is evaluated against hand-segmented ground truth. Three terms are used in evaluation: False Positive (FP) is the number of background pixels that are wrongly marked as foreground; False Negative (FN) is the number of foreground pixels that are wrongly marked as background; Total Error (TE) is the sum of FP and FN. The Table 2 shows the performance in term of FP, FN and TE for each algorithm. The corresponding results are shown in Table 3. As we can see, the IMMC gives the lowest TE followed by the IRT, the INMF and the PCA. Secondly, we have compared our supervised approach with the state of the art algorithms: SG[24], MOG[25] and KDE[26]. As we can see on the Table 2 and Table 3, our algorithm gives better results particularly in the case of illumination changes. The results for SG, MOG and PCA comes from [27]. The results for the INMF was provided by their authors [17]. The KDE was implemented in Microsoft Visual C++ and the IRT and IMMC was implemented in Matlab.

5 Conclusion

In this paper, we have proposed to model the background using a supervised subspace learning called Incremental Maximum Margin Criterion. This approach allows to initialize robustly the background and to update incrementally the eigenvectors and eigenvalues. Experimental results made on the Wallflower datasets show the pertinence of the proposed approach. Indeed, IMMC outperforms the supervised PCA, INMF and IRT. For future investigations, supervised subspace learning methods such as Linear Discriminant Analysis (LDA) and Canonical Correlation Analysis (CCA) seem to be very interesting approaches. For example, LDA exists...
in several incremental versions as incremental LDA using fixed point method
[28] or sufficient spanning set approximations [29]. In the same way, Partial
Least Squares (PLS) methods [30] give a nice perspective to model robustly the
background.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Problem Type</th>
<th>Error Type</th>
<th>MO</th>
<th>TD</th>
<th>LS</th>
<th>WT</th>
<th>C</th>
<th>B</th>
<th>FA</th>
<th>Total Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wren et al. [24]</td>
<td></td>
<td>False neg</td>
<td>0</td>
<td>949</td>
<td>1857</td>
<td>3110</td>
<td>4101</td>
<td>2215</td>
<td>3464</td>
<td>35133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>False pos</td>
<td>0</td>
<td>535</td>
<td>15123</td>
<td>357</td>
<td>2040</td>
<td>92</td>
<td>1290</td>
<td>5133</td>
</tr>
<tr>
<td>MOG</td>
<td></td>
<td>False neg</td>
<td>0</td>
<td>1008</td>
<td>1633</td>
<td>1323</td>
<td>748</td>
<td>1874</td>
<td>2442</td>
<td>3110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>False pos</td>
<td>0</td>
<td>29</td>
<td>14169</td>
<td>341</td>
<td>3098</td>
<td>217</td>
<td>278</td>
<td>27053</td>
</tr>
<tr>
<td>Stauffer et al. [25]</td>
<td></td>
<td>False neg</td>
<td>0</td>
<td>1298</td>
<td>760</td>
<td>170</td>
<td>283</td>
<td>1755</td>
<td>2413</td>
<td>32140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>False pos</td>
<td>0</td>
<td>125</td>
<td>14153</td>
<td>589</td>
<td>8392</td>
<td>933</td>
<td>624</td>
<td>26450</td>
</tr>
<tr>
<td>KDE</td>
<td></td>
<td>False neg</td>
<td>0</td>
<td>1298</td>
<td>760</td>
<td>170</td>
<td>283</td>
<td>1755</td>
<td>2413</td>
<td>32140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>False pos</td>
<td>0</td>
<td>125</td>
<td>14153</td>
<td>589</td>
<td>8392</td>
<td>933</td>
<td>624</td>
<td>26450</td>
</tr>
<tr>
<td>Elgammal et al. [26]</td>
<td></td>
<td>False neg</td>
<td>0</td>
<td>1298</td>
<td>760</td>
<td>170</td>
<td>283</td>
<td>1755</td>
<td>2413</td>
<td>32140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>False pos</td>
<td>0</td>
<td>125</td>
<td>14153</td>
<td>589</td>
<td>8392</td>
<td>933</td>
<td>624</td>
<td>26450</td>
</tr>
<tr>
<td>PCA</td>
<td></td>
<td>False neg</td>
<td>0</td>
<td>879</td>
<td>962</td>
<td>1027</td>
<td>550</td>
<td>304</td>
<td>2441</td>
<td>32140</td>
</tr>
<tr>
<td>Oliver et al. [6]</td>
<td></td>
<td>False pos</td>
<td>0</td>
<td>1065</td>
<td>16</td>
<td>362</td>
<td>2057</td>
<td>1548</td>
<td>537</td>
<td>17677</td>
</tr>
<tr>
<td>INMF</td>
<td></td>
<td>False neg</td>
<td>0</td>
<td>724</td>
<td>1593</td>
<td>3317</td>
<td>6626</td>
<td>1401</td>
<td>3412</td>
<td>32140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>False pos</td>
<td>0</td>
<td>481</td>
<td>303</td>
<td>652</td>
<td>234</td>
<td>190</td>
<td>165</td>
<td>19098</td>
</tr>
<tr>
<td>Bucak et al. [17]</td>
<td></td>
<td>False neg</td>
<td>0</td>
<td>1282</td>
<td>2822</td>
<td>4525</td>
<td>1491</td>
<td>1734</td>
<td>2438</td>
<td>32140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>False pos</td>
<td>0</td>
<td>159</td>
<td>389</td>
<td>7</td>
<td>114</td>
<td>2080</td>
<td>12</td>
<td>17053</td>
</tr>
<tr>
<td>IRT</td>
<td></td>
<td>False neg</td>
<td>0</td>
<td>1336</td>
<td>2707</td>
<td>4307</td>
<td>1169</td>
<td>2677</td>
<td>240</td>
<td>3412</td>
</tr>
<tr>
<td>Li et al. [18]</td>
<td></td>
<td>False pos</td>
<td>0</td>
<td>11</td>
<td>16</td>
<td>6</td>
<td>136</td>
<td>506</td>
<td>203</td>
<td>15714</td>
</tr>
<tr>
<td>IMMC</td>
<td></td>
<td>False neg</td>
<td>0</td>
<td>11</td>
<td>16</td>
<td>6</td>
<td>136</td>
<td>506</td>
<td>203</td>
<td>15714</td>
</tr>
<tr>
<td>Proposed method</td>
<td></td>
<td>False pos</td>
<td>0</td>
<td>11</td>
<td>16</td>
<td>6</td>
<td>136</td>
<td>506</td>
<td>203</td>
<td>15714</td>
</tr>
</tbody>
</table>

Table 2. Performance Evaluation on Wallflower dataset [23]

References

2. Elhabian, S., El-Sayed, K., Ahmed, S.: Moving object detection in spatial domain
 using background removal techniques - state-of-art. RPCS 1 (Jan. 2008) 32–54
3. Bouwmans, T., Baf, F.E., Vachon, B.: Statistical background modeling for fore-
 ground detection: A survey. Handbook of Pattern Recognition and Computer
4. Bouwmans, T., Baf, F.E., Vachon, B.: Background modeling using mixture of
 (Nov. 2009) 223–234
6. Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision system for
 modeling human interactions. ICVS 1999 (Jan. 1999)
7. Rymel, J., Renno, J., Greenhill, D., Orwell, J., Jones, G.: Adaptive eigen-
 and robust pca. ICIP 2003 (Sept. 2003) 245–248
<table>
<thead>
<tr>
<th>Sequence</th>
<th>MO</th>
<th>TD</th>
<th>LS</th>
<th>WT</th>
<th>C</th>
<th>B</th>
<th>FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>Frame 985</td>
<td>Frame 1850</td>
<td>Frame 1865</td>
<td>Frame 247</td>
<td>Frame 251</td>
<td>Frame 299</td>
<td>449</td>
</tr>
<tr>
<td>Test Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Truth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG [24]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOG [25]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KDE [26]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCA [6]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INMF [17]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRT [18]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Results on Wallflower dataset[23]