
Randomized truthful algorithms for scheduling

selfish tasks on parallel machines

Eric Angel∗ Evripidis Bampis∗ Nicolas Thibault∗∗

∗ IBISC - Université d’Évry ∗∗ ERMES EAC 4441
523 place des Terrasses Université Paris 2

91000 Évry, France 75005 Paris, France
E-mails: firstname.name@ibisc.fr E-mail: nicolasthibault@free.fr

Abstract. We study the problem of designing truthful algorithms for
scheduling a set of tasks, each one owned by a selfish agent, to a set
of parallel (identical or unrelated) machines in order to minimize the
makespan. We consider the following process: at first the agents declare
the length of their tasks, then given these bids the protocol schedules
the tasks on the machines. The aim of the protocol is to minimize the
makespan, i.e. the maximal completion time of the tasks, while the objec-
tive of each agent is to minimize the completion time of its task and thus
an agent may lie if by doing so, his task may finish earlier. In this paper,
we show the existence of randomized truthful (non-polynomial-time) al-
gorithms with expected approximation ratio equal to 3/2 for different
scheduling settings (identical machines with and without release dates
and unrelated machines) and models of execution (strong or weak). Our
result improves the best previously known result [1] for the problem
with identical machines (P ∣∣Cmax) in the strong model of execution and
reaches, asymptotically, the lower bound of [5]. In addition, this result
can be transformed to a polynomial-time truthful randomized algorithm
with expected approximation ratio 3/2+ � (resp. 11

6
− 1

3m
) for Pm∣∣Cmax

(resp. P ∣∣Cmax).

1 Introduction

Nowadays, there are many systems involving autonomous entities (agents). These
systems are organized by protocols, trying to maximize the social welfare in the
presence of private information held by the agents. In some settings the agents
may try to manipulate the protocol by reporting false information in order to
maximize their own profit. With false information, even the most efficient pro-
tocol may lead to unreasonable solutions if it is not designed to cope with the
selfish behavior of the agents. In such a context, it is natural to study the ef-
ficiency of truthful protocols, i.e. protocols that are able to guarantee that no
agent has incentive to lie. This approach has been considered in many papers
these last few years (see [4] for a recent survey).

In this paper, we study the problem of designing truthful algorithms for
scheduling a set of tasks, each one owned by a selfish agent, to a set of parallel



(identical or unrelated) machines in order to minimize the makespan. We con-
sider the following process: before the start of the execution, the agents declare
the length of their tasks, then given these bids the protocol schedules the tasks
on the machines. The aim of the protocol is to minimize the makespan, i.e. the
maximal completion time of the tasks, while the objective of each agent is to
minimize the completion time of its task and thus an agent may lie if by doing
so, his task may finish earlier. We focus on protocols without side payments that
simultaneously offer a guarantee on the quality of the schedule (its makespan is
not arbitrarily far from the optimum) and guarantee that the solution is truthful
(no agent can lie and improve his own completion time).

1.1 Formal definition

There are n agents, represented by the set {1, 2, ⋅ ⋅ ⋅ , n} and m parallel machines.

Variants of the problem. Depending on the type of the machines and the
jobs characteristics, we consider three different variants of the problem:

- Identical parallel machines (P ∣∣Cmax). All the machines are identical
and every task i has a private value ti that represents its length. We assume
that an agent cannot shrink the length of her task (otherwise he will not get
his result), but if he can decrease his completion time by bidding a value
larger than the real one (bi ≥ ti), then he will do so.

- Identical parallel machines with release dates (P ∣ri∣Cmax). All the
machines are identical and every task i has now a private pair (ti, ri), where
ti is the length of task i and ri its release date. Every task i may bid any pair
(bi, r

b
i ) such that bi ≥ ti and rbi ≥ ri. A task i may not bid a release date

smaller than its real release date i.e. rbi < ri, because otherwise, the task
may be scheduled before ri and thus the final schedule may be infeasible.

- Unrelated parallel machines (R∣∣Cmax). The machines are here unre-
lated. Every task i has a private vector (t1i , . . . , t

m
i ), where tji , 1 ≤ j ≤ m,

is the processing time of task i if it is executed on machine j. Every task i
bids any vector (b1i , . . . , b

m
i ) with b1i ≥ t1i , . . . , b

m
i ≥ tmi .

Models of execution. We consider two models of execution:

– The strong model of execution: task i bids any value bi ≥ ti and its execution
time is ti (i.e. task i is completed ti units of time after it starts even if i bids
bi ∕= ti).

– The weak model of execution: i bids any value bi ≥ ti and its execution time
is bi (i.e. task i is completed bi units of time after it starts).

Notation. By Ci, we denote the completion time of task i. The objective of
the protocol is to determine a schedule of the tasks minimizing the maximal
completion time of the tasks or makespan, denoted in what follows by Cmax.
We say that an algorithm is truthful, if and only if, for every task i, 1 ≤ i ≤ n



and for every bid bj, j ∕= i, the completion time of task i is minimum when i
bids bi = ti. In other, words, an algorithm is truthful if truth-telling is the best
strategy for a player i regardless of the strategy adopted by the other players.

1.2 Related works

The works that are more closely related to our are those of [2], [1], [3] and
[5]. In the paper by Auletta et al. [3], the authors consider the variant of the
problem of m related machines in which the individual function of each task is
the completion time of the machine on which it is executed, while the global
objective function is the makespan. They consider the strong model of execution
by assuming that each task may declare an arbitrary length (smaller or greater
than its real length) while the load of each machine is the sum of the true
lengths of the tasks assigned to it. They provide equilibria-truthful mechanisms
that use payments in order to retain truthfulness. In [1], the authors consider
a different variant with m identical machines in which the individual objective
function of each task is its completion time and they consider the strong model
of execution (but here the tasks may only report values that are greater than
or equal to their real lengths). Given that for this variant the SPT (Shortest
Processing Time) algorithm1 is truthful, they focus on the design of algorithms
with better approximation ratio than that of the SPT algorithm. The rough
idea of their approach is a randomized algorithm in which they combine the
LPT (Longest Processing Time) algorithm2, which has a better approximation
ratio than SPT but is not truthful, with a schedule (DSPT) based on the SPT
algorithmwhere some “unnecessary” idle times are introduced between the tasks.
These unnecessary idle times are introduced in the SPT schedule in order to
penalize more the tasks that report false information. Indeed, in the DSPT
schedule such a task is doubly penalized, since not only is its execution delayed
by the other tasks but also by the introduced idle times. In such a way, it is
possible to find a probability distribution over the deterministic algorithms, LPT
and DSPT which produces a randomized algorithm that is proved to be truthful
and with an (expected) approximation ratio of 2 − 1

m+1
(5
3
+ 1

3m
), i.e. better

than the one of SPT which is equal to 2 − 1

m
. An optimal truthful randomized

algorithm and a truthful randomized PTAS for identical parallel machines in
the weak model of execution appeared in [2]. The idea of these algorithms is
to introduce fake tasks in order to have the same completion time in all the
machines and then to use a random order in each machine for scheduling the
tasks allocated to it (including the eventual fake one). These results have been
also generalized in the case of related machines and the on-line case with release
dates. Another related work, presented in [5], gives some new lower and upper
bounds. More precisely, the authors proved that there is no truthful deterministic

1 where the tasks are scheduled greedily following the increasing order of their lengths
(its approximation ratio is 2− 1/m)

2 where the tasks are scheduled greedily following the decreasing order of their lengths
(its approximation ratio is 4/3− 1/(3m))



(resp. randomized) algorithm with an approximation ratio smaller than 2− 1/m
(resp. 3/2− 1/2m) for the strong model of execution. They also provide a lower
bound of 1.1 for the deterministic case in the weak model (for m ≥ 3) and a
deterministic 4

3
− 1

3m
truthful algorithm based the idea of bloc schedule where

after inserting fake tasks in order to have the same completion time in all the
machines, instead of using a random order on the tasks of each machine, the
authors proposed to take the mirror of the LPT schedule.

1.3 Our contribution

In the first part of the paper we consider the strong model of execution. Our
contribution is a new truthful randomized non-polynomial algorithm that we call
Starting Time Equalizer (STE), presented in Section 2, whose approximation
ratio for the makespan is 3

2
for P ∣∣Cmax. This new upper bound asymptotically

closes the gap between the lower bound 3

2
− 1

2m
of [5] and the previously best

known upper bound of 2− 1

m+1

(

5

3
+ 1

3m

)

for this problem [1]. We also give two
polynomial-time variants of Algorithm STE, respectively with approximation
ratio 3

2
+ � for Pm∣∣Cmax and 11

6
+ 1

3m
for P ∣∣Cmax (we underline that both 3

2
+ �

and 11

6
+ 1

3m
are better than the previous upper bound of 2 − 1

m+1

(

5

3
+ 1

3m

)

).
In the second part of the paper, we consider the weak model of execution. We
give in Section 3.1, a new truthful randomized non-polynomial algorithm, called
Mid-Time Equalizer (MTE) for the off-line problem with release dates, where
the private information of each task is not only each length, but also its release
date (P ∣ri∣Cmax). Finally, we consider the case of scheduling a set of selfish
tasks on a set of unrelated parallel machines (R∣∣Cmax) for the weak model
of execution (Section 3.2) where we propose a new truthful randomized non-
polynomial algorithm that we call Completion Time Equalizer (CTE). Table 1
gives a summary of the upper and lower bounds on the approximation ratio
of truthful algorithms for the considered problems (with † we give the results
obtained in this paper).

Deterministic Randomized
Lower bound Upper bound Lower bound Upper bound

P ∣∣Cmax

strong model
2− 1

m
[5] 2− 1

m
[6] 3

2
− 1

2m
[5] 3

2
†

P ∣∣Cmax

weak model if m = 2 then

1 +
√

105−9

12
> 1.1

if m ≥ 3 then
7

6
> 1.16 [5]

4

3
− 1

3m
[5] 1 [2] 1 [2]

R∣∣Cmax

weak model
unknown

unknown

3

2
†

P ∣ri∣Cmax

weak model
2− 1

m
[7] 3

2
†

Table 1. Bounds for m parallel machines.



The lower bounds for truthful deterministic algorithms in the weak model for
P ∣ri∣Cmax and R∣∣Cmax are simple implications of the lower bound for truthful
deterministic algorithms solving P ∣∣Cmax. Up to our knowledge, there is no inter-
esting lower bounds for truthful randomized algorithms (resp. upper bound for
truthful deterministic algorithms) for R∣∣Cmax and P ∣ri∣Cmax (resp. R∣∣Cmax).
The upper bound 2− 1

m
for P ∣ri∣Cmax in the weak model holds only if we con-

sider that each task can identified by an identification number (ID). With this
assumption, we just have to consider the on-line algorithm which schedules the
tasks when they become available with (for instance) the smallest ID first. This
algorithm is then trivially truthful, because task i will not have incentive of bid-
ding (bi > ti, r

b
i > ri) (bi has no effect on the way in which tasks are scheduled

and bidding rbi > ri can only increase Ci). Moreover, as this algorithm is a par-
ticular case of Graham’s list scheduling (LS) algorithm with release dates, it is
(2− 1

m
)-competitive (because Graham’s LS algorithm is (2− 1

m
)-competitive for

P ∣on-line-list ∣Cmax, [7]).

2 Strong model of execution

Identical machines

2.1 Algorithm STE

We consider in this section the problem with identical machines (P ∣∣Cmax) in
the strong model. Every task i has a private value ti that represents its length
and it has to bid any value bi ≥ ti.

Algorithm STARTING TIME EQUALIZER (STE)

1. Let COPT
max be the makespan of an optimal schedule OPT for P ∣∣Cmax.

Let OPTj be the sub-schedule of OPT on machine j.
Let bj1 ≤ ⋅ ⋅ ⋅ ≤ bjk be the bids (sorted by increasing order)
of the k tasks in OPTj .

2. Construct schedule S1 as follows: for every machine j (1 ≤ j ≤ m),
every task i (j1 ≤ i ≤ jk) in OPTj is executed on machine j by

starting at time
∑k

l=i+1
bjl .

3. Construct schedule S2 as follows: for every machine j (1 ≤ j ≤ m),
every task i (j1 ≤ i ≤ jk) in OPTj is executed on machine j by

starting at time COPT
max −

∑k

l=i+1
bjl .

4. Choose schedule S1 or S2 each with probability 1/2.

Figure 1 illustrates the construction of schedules S1 and S2 in algorithm STE
on machine machine j.
The main idea of the algorithm STE is to make equal the expected starting
times of all the tasks. More precisely, we prove below that the expected starting



�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�������������������� �� �� �� ���
�
�
�

�
�
�
� ������

�
�
�
�
�

�
�
�
�
�
Schedule S1

Schedule S2

4

4

3

3

2

2

1

1

b2 b3 b4

0

0

COPT
max

COPT
max

Fig. 1. An illustration of execution of Algorithm STE on machine j. We give an ex-
ample of schedules S1 and S2 with four tasks in OPTj such that bj1 = 1, bj2 = 1.5,
bj3 = 3, bj4 = 4 and COPT

max = 11.

time of every task in the final schedule constructed by STE, which is the average

between its starting time in S1 and its starting time in S2, will be equal to
COPT

max

2

(i.e. the same value for every task). This property will be used in the proof of
Theorem 1 to show that STE is truthful. In the example given in Figure 1, the

expected starting time of the four tasks is
COPT

max

2
and it is equal to 5.5.

Theorem 1. STE is a randomized, truthful and 3

2
-approximate algorithm in the

strong model of execution for P ∣∣Cmax.

Proof. As STE is a randomized algorithm, to prove it is truthful, we have to
show that the expected completion time of each task is minimum when it tells
the truth. By definition of STE, the expected completion time Ci of any task
i is the average between its completion time in schedule S1 and its completion
time in schedule S2. In the strong model of execution, every task i is completed
ti units of time after its starting time. Thus,

Ci =
1

2

((

ti +
k
∑

l=i+1

bjl

)

+

(

ti + COPT
max −

k
∑

l=i+1

bjl

))

= ti +
COPT

max

2

For every task i, the completion time of task i is Ci = ti +
COPT

max

2
and it reaches

its minimum value when i tells the truth because ti does not depend on the bid
bi and because COPT

max obviously does not decrease if i bids bi > ti instead of
bi = ti. Thus, STE is truthful in the strong model of execution. Given that STE
is truthful, we may consider in the following that for every i, we have bi = ti.
Given also that STE is a randomized algorithm choosing with probability 1/2
schedule S1 and with probability 1/2 schedule S2, its approximation ratio will
be the average between the approximation ratios of schedules S1 and S2. In S1,
all tasks end before or at time COPT

max . Thus, as for every i, bi = ti, C
OPT
max is the

makespan of an optimal solution computed with the true types of the agents,
S1 is optimal. In S2, on every machine j, all tasks end before or at time COPT

max

except task jk, which finishes at time COPT
max + tjk . Given that tjk ≤ COPT

max , all



tasks in S2 end before or at time 2COPT
max . Thus, S2 is 2-approximate. Hence, the

expected approximation ratio of STE is 1

2
(1 + 2) = 3

2
. ⊓⊔

2.2 Polynomial-time variants of Algorithm STE

Given that Algorithm STE requires the computation of an optimal solution for
P ∣∣Cmax and as this problem is NP-hard, it is clear that STE cannot be exe-
cuted in polynomial time. Nevertheless, it is interesting for two reasons. First, it
asymptotically closes the gap between the lower bound 3

2
− 1

2m
of any truthful

algorithm and the previously best known upper bound of 2 − 1

m+1

(

5

3
+ 1

3m

)

.
Secondly, by using approximated solutions instead of the optimal one, we can
obtain polynomial-time variants of STE. To precise these variants, we first need
to define what we call an increasing algorithm.

Definition (Increasing algorithm). Let H and H ′ be two sets of tasks
{T1, T2, . . . , Tn} and {T ′

1, T
′
2, . . . , T

′
n} respectively. We denote by H ≤ H ′ the

fact that for every 1 ≤ i ≤ n, we have l(Ti) ≤ l(T ′
i ) (where l(T ) is the length of

task T ). An algorithm A is increasing if for every pair of sets of tasks H and
H ′ such that H ≤ H ′, it constructs schedules such that Cmax(H) ≤ Cmax(H

′)
(where Cmax(X) is the makespan of the solution constructed by Algorithm A for
the set of tasks X).

As LPT (Longest Processing Time) is an increasing algorithm (See [2]) and as
there exists an increasing PTAS for Pm∣∣Cmax (See [2]), we get the following
two theorems.

Theorem 2. By using LPT instead of an optimal algorithm, we obtain a
polynomial-time, randomized, truthful and (11

6
− 1

3m
)-approximate variant of STE

in the strong model of execution for P ∣∣Cmax.

Theorem 3. By using the increasing PTAS in [2] instead of an optimal algo-
rithm, we obtain a polynomial-time, randomized, truthful and (3

2
+�)-approximate

variant of STE in the strong model of execution for Pm∣∣Cmax.

Theorem 2 (resp. Theorem 3) can be proved in a similar way as in Theorem 1.

Indeed, as the completion time of each task will be Ci = ti +
CLPT

max

2
(resp.

Ci = ti +
CPTAS

max

2
) instead of Ci = ti +

COPT

max

2
and as LPT (resp. the PTAS

in [2]) is increasing, the variant of STE in Theorem 2 (resp. Theorem 3) is
truthful. Moreover, as LPT is (4

3
− 1

3m
)-approximate for P ∣∣Cmax (resp. the

PTAS in [2] is (1 + �)-approximate for Pm∣∣Cmax), we obtain that the expected
approximation ratio of the variant of STE in Theorem 2 (resp. Theorem 3) is
1

2
(4
3
− 1

3m
+ 4

3
− 1

3m
+ 1) = 11

6
− 1

3m
(resp. 1

2
(1 + � + 1 + �+ 1) = 3

2
+ �).



3 Weak model of execution

3.1 Identical machines with release dates

We consider in this section P ∣ri∣Cmax in the weak model. Every task i has now
a private pair (ti, ri) (its type), where ti is the length of task i and ri its release
date. Each task i may bid any pair (bi, r

b
i ) such that bi ≥ ti and rbi ≥ ri. Notice

here that we consider that task i may not bid a release date smaller than its real
release date i.e. rbi < ri, because otherwise, the task may be scheduled before ri
in the final schedule and thus, the final schedule may be infeasible.

Algorithm MID-TIME EQUALIZER (MTE)

1. Let COPT
max be the makespan of an optimal schedule OPT for P ∣ri∣Cmax.

Let mi be the machine where Task i is executed in OPT .
Let Ci(OPT ) be the completion time of Task i in OPT .

2. Construct Schedule OPTmirror in which every task i is executed on
machine mi and start at Time max1≤j≤n{r

b
j}+ COPT

max − Ci(OPT ).

3. Choose Schedule OPT or OPTmirror each with probability 1/2.

Figure 2 illustrates the construction of Schedules OPT and OPTmirror in algo-
rithm MTE on any machine mi.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������������������� �� �� ���
�
�
�

�
�
�
�

�� �� �� �� ���
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Schedule OPT

Schedule OPTmirror

4

4

3

3

2

2

1

1

r1=0 r2=5 r3=7r4=2

0

COPT
max

COPT
max max1≤j≤n{r

b
j}+ COPT

max

Fig. 2. An illustration of execution of algorithm MTE on machine mi. We give an
example of schedules OPT and OPTmirror with four tasks on machine mi such that
(b1 = 1, r1 = 0), (b2 = 1.5, r2 = 5), (b3 = 3, r3 = 7), (b4 = 4, r4 = 2), max1≤j≤n{r

b
j} =

8 and COPT
max = 11.

The main idea of algorithm Mid-Time Equalizer (MTE) is make equal the ex-
pected time at which every task has executed half of its total length. More
precisely, we prove below that the expected mid-time of every task in the final
schedule constructed by MTE is the average between its mid-time in OPT and in
OPTmirror and it is equal to 1

2

(

max1≤j≤n{r
b
j}+ COPT

max

)

(i.e. the same value for
every task). This property will be used in the proof of Theorem 4 in order to show



that MTE is truthful in the weak model of execution. In the example given in
Figure 2, the expected mid-time of the four tasks is 1

2

(

max1≤j≤n{r
b
j}+ COPT

max

)

and it is equal to 8+11

2
= 9.5.

Note that as we consider that for every i, we have rbi ≥ ri, we get max1≤j≤n{r
b
i } ≥

max1≤j≤n{rj}. Moreover, as Ci(OPT ) ≤ COPT
max , every task i starts in schedule

OPTmirror at time max1≤j≤n{r
b
j} + COPT

max − Ci(OPT ) ≥ max1≤j≤n{rj} ≥ ri.

Thus, schedule OPTmirror respects all the constraints of the release dates.

Theorem 4. MTE is a randomized, truthful and 3

2
-approximate algorithm in

the weak model of execution for P ∣ri∣Cmax.

Proof. Let us prove that the expected completion time of every task is minimum
when it tells the truth. By definition of MTE, the expected completion time Ci

of any task i is the average between its completion time Ci(OPT ) in schedule
OPT and its completion time Ci(OPTmirror) in schedule OPTmirror. In the
weak model of execution, every task i is completed bi units of time after its
starting time. Thus, we have

Ci =
1

2

(

Ci(OPT ) + max1≤j≤n{r
b
j}+ COPT

max − Ci(OPT ) + bi
)

=
1

2

(

max1≤j≤n{r
b
j}+ COPT

max + bi
)

For every task i, its completion time Ci = 1

2

(

max1≤j≤n{r
b
j}+ COPT

max + bi
)

reaches its minimum value when i tells the truth (i.e. when i bids simultane-
ously bi = ti and rbi = ri), because

– for every rbi ≥ ri, both COPT
max and bi obviously do not decrease if i bids

(bi > ti, r
b
i ) instead of (bi = ti, r

b
i ), and

– for every bi ≥ ti, both max1≤j≤n{r
b
j} and COPT

max obviously do not decrease

if i bids (bi, r
b
i > ri) instead of (bi, r

b
i = ri).

It is then clear that MTE is truthful and thus we may consider in what follow
that for every i, we have bi = ti and rbi = ri. The expected approximation
ratio of MTE will be the average between the approximation ratios of OPT
and OPTmirror. In OPT , all tasks end before or at time COPT

max . Thus, as for
every i, bi = ti, C

OPT
max is the makespan of an optimal solution computed with

the types of the agents, and thus, OPT is optimal. In OPTmirror, all tasks
end before or at time max1≤j≤n{rj} + COPT

max (because for every i, rbi = ri by
definition of MTE). Given that max1≤j≤n{rj} ≤ COPT

max , all tasks in OPTmirror

terminate before or at time 2COPT
max . Thus, OPTmirror is 2-approximate. Hence

the expected approximation ratio of Algorithm MTE is 1

2
(1 + 2) = 3

2
. ⊓⊔

3.2 Unrelated machines

We consider in this section the case with unrelated machines (R∣∣Cmax) in the
weak model of execution. Here, every task i has a private vector (t1i , . . . , t

m
i )

(his type), where tji (1 ≤ j ≤ m) is the processing time of i if it is executed on
machine j. Every task i bids any vector (b1i , . . . , b

m
i ) with b1i ≥ t1i , . . . , b

m
i ≥ tmi .



Algorithm COMPLETION TIME EQUALIZER (CTE)

1. Let COPT
max be the makespan of an optimal schedule OPT for R∣∣Cmax.

Let OPTj be the sub-schedule of OPT on Machine j.

Let bjj1 ≤ ⋅ ⋅ ⋅ ≤ bjjk be the bids (sorted by increasing order)

of the k tasks in OPTj .

2. Construct schedule S1 as follows: for every machine j (i ≤ j ≤ m),
every task i (j1 ≤ i ≤ jk) in OPTj is executed on machine j by

starting at time COPT
max −

∑k

l=i b
j
jl
.

3. Construct schedule S2 as follows: for every machine j (i ≤ j ≤ m),
every task i (j1 ≤ i ≤ jk) in OPTj is executed on machine j by

starting at time COPT
max − bji +

∑k

l=i+1
bjjl .

4. Choose schedule S1 or S2 each one with probability 1/2.

Figure 3 illustrates the construction of schedules S1 and S2 in algorithm CTE
on machine j.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������������������� �� �� ���
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� �� �� ��

�� �� �� �� ��

Schedule S1

Schedule S2

4

4

3

3

2

2

1

1

bj
2

bj
3

bj
4

0

0

COPT
max

COPT
max

Fig. 3. An illustration of execution of algorithm CTE on machine j. An example of
schedules S1 and S2 is given with four tasks in OPTj such that bjj1 = 1, bjj2 = 1.5,

bjj3 = 3, bjj4 = 4 and COPT
max = 11.

The intuitive idea of algorithm Completion Time Equalizer is to make equal the
expected completion times of the tasks. More precisely, the expected comple-
tion time of every task in the final schedule constructed by CTE is the average
between its starting time in S1 and its starting time in S2 and it is equal to
COPT

max (i.e. the same for all the tasks). This property will be used in the proof
of Theorem 1 to show that CTE is truthful in the weak model of execution. For
instance, in the example given in Figure 1, the expected completion time of the
four tasks is COPT

max and it is equal to 11.

Theorem 5. CTE is a randomized, truthful and 3

2
-approximate algorithm in

the weak model of execution for R∣∣Cmax.

Proof. We first show that the expected completion time of each task is minimum
when it tells the truth. By definition of CTE, the expected completion time Ci



of any task i is the average between its completion time in Schedule S1 and its
completion time in Schedule S2. In the weak model of execution, each task i is
completed bi units of time after its starting time on machine j. Thus, we have

Ci =
1

2

((

bji + COPT
max −

k
∑

l=i

bjjl

)

+

(

bji + COPT
max − bji +

k
∑

l=i+1

bjjl

))

= COPT
max

For every task i, Ci = COPT
max reaches its minimum value when i tells the truth

because COPT
max obviously does not decrease if for any i, j, task i bids bji > tji

instead of bji = tji . Hence, CTE is truthful and so we can consider in the following

that for every i, j, we have bji = tji . In schedule S1, all tasks finish before or at

time COPT
max . Thus, as for every i, j, bji = tji , C

OPT
max is the makespan of an optimal

solution computed with the types of the agents, S1 is optimal. In S2, on each
machine j, all tasks end before or at time COPT

max +
∑k

l=2
bjjl . As

∑k

l=2
bjjl ≤ COPT

max ,

all tasks in S2 end before or at time 2COPT
max . Thus, S2 is 2-approximate. Finally,

the expected approximation ratio of algorithm CTE is 1

2
(1 + 2) = 3

2
. ⊓⊔

References

1. E. Angel, E. Bampis, and F. Pascual. Truthful algorithms for scheduling selfish
tasks on parallel machines. Theoretical Computer Science (short version in WINE
2005), 369:157–168, 2006.

2. E. Angel, E. Bampis, F. Pascual, and A. Tchetgnia. On truthfulness and approx-
imation for scheduling selfish tasks. Journal Of Scheduling, 2009, 10.2007/s10951-
009-0118-8.

3. V. Auletta, R. De Prisco, P. Penna, and P. Persiano. How to route and tax selfish
unsplittable traffic. In 16th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 196–204, 6 2004.

4. R. Mueller B. Heydenreich and M. Uetz. Games and mechanism design in machine
scheduling - an introduction. Research Memoranda 022, Maastricht : METEOR,
Maastricht Research School of Economics of Technology and Organization, 2006.

5. G. Christodoulou, L. Gourvès, and F. Pascual. Scheduling selfish tasks: About the
performance of truthful algorithms. In 13th International Computing and Com-
binatorics Conference, volume 4598 of Lecture Notes in Computer Science, pages
187–197. Springer, 2007.

6. G. Christodoulou, E. Koutsoupias, and A. Nanavati. Coordination mechanisms.
In Proceedings of the 31st International Colloquium on Automata, Languages, and
Programming (ICALP), volume 3142 of LNCS, pages 345–357. Springer, 2004.

7. R.L. Graham. Bounds for certain multiprocessing anomalies. bell system tech. 45
(1966), p. 1563.


