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Abstra
t: Program errors are hard to dete
t and to prove absent. Contra
t
he
king allows us to (a) stati
ally verify that a fun
tion satis�es its 
ontra
t; (b)pre
isely blame fun
tions at fault both stati
ally and dynami
ally when thereis a 
ontra
t violation. Stati
 
ontra
t 
he
king 
at
hes all bugs but 
an only
he
k restri
ted properties while dynami
 
he
king 
an 
he
k more expressiveproperties, but is not 
omplete. In this paper, we integrate stati
 and dynami

ontra
t 
he
king for a subset of OCaml. We exploit a stati
 
he
ker as mu
h aspossible and leave the residual 
ontra
t satisfa
tion 
he
ks to run-time. Thus,no (potential) bugs 
an es
ape and yet expressive properties 
an be expressed.Key-words: 
ontra
t semanti
s, stati
, dynami
, hybrid, 
ontra
t 
he
king,fun
tional language, veri�
ation, debugging



Véri�
ation de 
ontrats hybride parsimpli�
ation symboliqueRésumé : Il est di�
ile de déte
ter des erreurs dans des programmes, ou dedémontrer leur absen
e. Permettre aux programmeurs d'é
rire des spé
i�
ationsformelles et pré
ises, en parti
ulier sous la forme de 
ontrats, est une appro
he
ommune pour véri�er des programmes et trouver des erreurs. Nous formalisonset proposons une implémentation d'un véri�
ateur hybride de 
ontrats pour unsous-ensemble d'OCaml. La te
hnique prin
ipale que nous mettons en ÷uvre estla simpli�
ation symbolique, qui permet de 
ombiner fa
ilement les véri�
ationsstatiques et dynamiques de 
ontrats. La te
hnique que nous proposons 
onsisteà véri�er qu'une fon
tion satisfait son 
ontrat ou indique quelle est la fon
tionà l'origine de sa violation. Quand la satisfa
tion d'un 
ontrat n'est pas dé
id-able statiquement, du 
ode de test est ajouté au programme a�n d'e�e
tuer lesvéri�
ations à l'exé
ution.Mots-
lés : la sémantique du 
ontrat, statique, dynamique, hybride, langagefon
tionnel, véri�
ation, débogage
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Hybrid Contra
t Che
king 41 Introdu
tionConstru
ting reliable software is di�
ult even with fun
tional languages. For-mulating and 
he
king (stati
ally or dynami
ally) logi
al assertions [18, 15, 2,5, 35℄, espe
ially in the form of 
ontra
ts [28, 13, 7, 14, 39℄, is one popularapproa
h to error dis
overy. Stati
 
ontra
t 
he
king 
an 
at
h all 
ontra
tviolations but may give false alarm and 
an only 
he
k restri
ted properties;dynami
 
he
king 
an 
he
k more expressive properties but 
onsumes run-time
y
les and only 
he
ks the a
tual exe
uted paths, thus is not 
omplete. Stati
and dynami
 
he
king 
an be 
omplementary. In this paper, we formalize hy-brid (i.e. stati
 followed by dynami
) 
ontra
t 
he
king for a subset of OCaml.Thus, no (potential) 
ontra
t violations 
an es
ape and yet expressive properties
an be expressed.Consider an OCaml program augmented with a 
ontra
t de
laration:(* val f1 : int -> int -> int *)
ontra
t f1 = ({x | x >= 0} -> {y | y >= 0})-> {z | z >= 0}let f1 g = (g 1) - 1let f2 = f1 (fun x -> x - 1)The 
ontra
t of f1 says that if f1 takes a fun
tion that returns a non-negativenumber when given a non-negative number, the fun
tion f1 itself returns anon-negative number. Both a stati
 
he
ker and a dynami
 
he
ker are ableto report that f1 fails its post
ondition: the stati
 
he
ker relies on the in-validity of ∀g : int → int, (g 1) ≥ 0 ⇒ (g 1) − 1 ≥ 0 while the dynami

he
ker evaluates (((fun x -> x - 1) 1) - 1) to -1, whi
h violates the 
on-tra
t {z | z >= 0}. However, a dynami
 
he
ker 
annot tell that the argument(fun x -> x - 1) fails f1's pre
ondition be
ause there is no witness at run-time, while a stati
 
he
ker 
an report this 
ontra
t violation be
ause x− 1 ≥ 0does not hold for all x of int to satisfy the post
ondition {y | y ≥ 0}. Onthe other hand, a stati
 
he
ker usually gives three out
omes: (a) de�nitely nobug; (b) de�nitely a bug; (
) possibly a bug. Here, a bug refers to a 
ontra
tviolation. If we get many alarms (
), it may take us a lot of time to 
he
k whi
hone is a real bug and whi
h one is a false alarm. We may want to invoke adynami
 
he
ker when the out
ome is (
).Following the formalization in [39℄, but this time for a stri
t language. We�rst give a denotational semanti
s to 
ontra
t satisfa
tion. That is to de�newhat it means by an expression e satis�es its 
ontra
t t (written e ∈ t) withoutknowing its implementation. Next, we de�ne a wrapper ⊲ that takes an expres-sion e and its 
ontra
t t and produ
es a term e ⊲ t su
h that 
ontra
t 
he
ksare inserted at appropriate pla
es in e. If a 
ontra
t 
he
k is violated, a spe
ial
onstru
tor BADl signals the violation. As the term e ⊲ t is a term in the samelanguage as e, all we have to do is to 
he
k the rea
hability of BADl. If a BADis rea
hable, we know a 
ontra
t is violated and the label l pre
isely 
apturesthe fun
tion at fault. We symboli
ally simplify the term e ⊲ t aiming to simplifyBADs away. In 
ase there is any BAD left, we either report it as a 
ompile-timeerror or leave the residual 
ode for dynami
 
he
king. We make the following
ontributions:� We 
larify the relationship between stati
 
ontra
t 
he
king and dynami

ontra
t 
he
king (�2). A new observation is that, after stati
 
he
king,RR n° 7794



Hybrid Contra
t Che
king 5we should prune away some more unrea
hable 
ode before go on dynami

he
king. Su
h unrea
hable 
ode however is essential during stati
 
he
k-ing. We prove the 
orre
tness of this pruning (�6) with the teles
opingproperty studied (but not used for su
h purpose) in [7, 39℄.� We de�ne e ∈ t and e⊲t and prove a theorem �e⊲t is 
rash-free ⇐⇒ e ∈ t�(�4). The �
rash-free� means �BAD is not rea
hable under all 
ontexts�.Su
h a formalization is tri
ky and its 
orre
tness proof is non-trivial. Were-do the kind of proofs in [40℄ for a stri
t language.� We design a novel SL ma
hine that augments symboli
 simpli�
ation with
ontextual information synthesis for 
he
king the rea
hability of BAD stat-i
ally (�5). The di�
ulty lies in the reasoning about non-total terms. The
he
king is automati
 and modular and we prove is soundness. Moreover,the SL ma
hine produ
es residual 
ode for dynami
 
he
king. We 
ompareour framework with other approa
hes in �7.� We design a logi
ization te
hnique that transforms expressions to logi
alformulae, inspired by [20, 19℄ and axiomatization of fun
tions that inter-a
tive theorem provers perform before 
alling SMT sovlers. However, wehave to deal with non-total terms and that is the key 
ontribution of thelogi
ization (�5).2 OverviewAssertions [18℄ state logi
al properties of an exe
ution state at arbitrary points ina program; 
ontra
ts spe
ify agreements 
on
erning the values that �ow a
ross aboundary between distin
t parts of a program (modules, pro
edures, fun
tions,
lasses). If an agreement is violated, 
ontra
t 
he
king is supposed to pre
iselyblame the fun
tion at fault. Contra
ts were �rst introdu
ed to be 
he
ked atrun-time [28, 13℄. To perform dynami
 
ontra
t 
he
king (DCC), a fun
tionmust be 
alled to be 
he
ked. For example:
ontra
t in
 = {x | x > 0} -> {y | y > 0}let in
 = fun v -> v + 1let t1 = in
 0A dynami
 
he
ker wraps the in
 in t1 with its 
ontra
t tin
:let t1 = (in
 BADl
⊲⊳BADl′ tin
) 0where l is (2, 5, “in
”) indi
ating the sour
e lo
ation where in
 is de�ned(row:2,
ol:5) and l′ is (3, 10, “t1”) indi
ating the lo
ation of the 
all site with
aller's name. This wrapped t1 expands to:

(λx1. let y = in
 (let x = x1 inif x > 0 then x else BAD(3,10,“t1”))in if y > 0 then y else BAD(2,5,“in
”) ) 0In the upper box, the argument of in
 is guarded by the 
he
k x > 0; in the lowerbox, the result of in
 is guarded by the 
he
k y > 0. If a 
he
k su

eeds, theRR n° 7794



Hybrid Contra
t Che
king 6original term is returned; otherwise, the spe
ial 
onstru
tor BAD is rea
hed and ablame is raised. In this 
ase, t1 
alls in
 with 0, whi
h fails in
's pre
ondition.Running the above wrapped 
ode, we get BAD(3,10,“t1”), whi
h pre
isely blamest1. The DCC algorithm is like this. Given a fun
tion f and a 
ontra
t t, to
he
k that the 
allee f and its 
aller agree on the 
ontra
t t dynami
ally, a
he
ker wraps ea
h 
all to f with its 
ontra
t:
f

BADf
⊲⊳BAD? twhi
h behaves the same as f ex
ept that (a) if f disobeys t, it blames f , signaledby BADf ; (b) if the 
ontext uses f in a way not permitted by t, it blames the
aller of f , signaled by BAD? where �?� is �lled with a 
aller name and the 
allsite lo
ation.Later, [7, 39℄ give formal de
larative semanti
s for 
ontra
t satisfa
tion thatnot only allow us to prove the 
orre
tness of DCC w.r.t. this semanti
s, butalso to 
he
k 
ontra
ts stati
ally.The essen
e of stati
 
ontra
t 
he
king (SCC) is:splitting BADf

⊲⊳BAD? into half: e ⊲ t = e
BADf
⊲⊳UNR? t and e ⊳ t = e

UNRf
⊲⊳BAD? t.The ⊲ (�ensures�) and the ⊳ (�requires�) are dual to ea
h other. The spe
ial
onstru
tor UNR (pronoun
ed �unrea
hable�), does not raise a blame, but stopsan exe
ution. (One, who is familiar with assert and assume, 
an think of(if p then e else BAD) as (assert p; e) and (if p then e else UNR) as(assume p; e).)SCC is modular and performed at de�nition site of ea
h fun
tion. For ex-ample, (λv.v + 1) ⊲ tin
 expands to:

λx1. let y = (λv.v + 1)
(let x = x1 in if x > 0 then x else UNR?) inif y > 0 then y else BAD(2,5,“in
”)At the de�nition site of a fun
tion, f = e, we assume f 's pre
ondition holdsand assert its post
ondition. If all BADs in e ⊲ t are not rea
hable, we know fsatis�es its 
ontra
t t. One way to 
he
k rea
hability of BAD is to symboli
allysimplify the fragment. In the above 
ase, inlining x, we get:

λx1. let y =(λv.v + 1) (if x1 > 0 then x1 else UNR?) inif y > 0 then y else BAD(2,5,“in
”)Unlike [37℄ in a lazy setting, we 
annot apply beta-redu
tion in a stri
t lan-guage if an argument is not a value as it may not preserve the semanti
s. Inthis paper, besides symboli
 simpli�
ation, we 
olle
t 
ontextual information inlogi
al formula form and 
onsult an SMT solver to 
he
k the rea
hability of BAD.An SMT solver usually deals with formulae in �rst order logi
 (FOL), �5 givesthe details of the generation of formulae in FOL. As an overview, we presentformulae in higher order logi
 (HOL). For the two subexpressions of the RHSof y, we have:RR n° 7794



Hybrid Contra
t Che
king 7
λv.v + 1 ∃x2, (∀v, x2(v) = v + 1)if x1 > 0 then x1 else UNR? ∃x3, (x1 > 0 ⇒ x3 = x1)∨

(not(x1 > 0) ⇒ false)One 
an think of the existentially quanti�ed x2 (and x3) denoting the expressionitself. For the RHS of y, we have logi
al formula:
∀y, ∃x2, (∀v, x2(v) = v + 1) ∧ (∃x3, (x1 > 0 ⇒ x3 = x1)
∧(not(x1 > 0) ⇒ false) ∧ y = x2(x3)) [Q1℄We 
he
k the validity of ∀x1,Q1 ⇒ y > 0 by 
onsulting an SMT solver. As

∀x1,Q1 ⇒ y > 0 is valid, we know the BAD(2,5,“in
”) is not rea
hable, thus in
satis�es its 
ontra
t.Consider the fun
tion f1 and its 
ontra
t tf1 in �1. So f1⊲tf1 is (λg.(g 1)−
1) ⊲ ({x | x ≥ 0} → {y | y ≥ 0}) → {z | z ≥ 0}, whi
h expands to:

λx1. let z = (λg.(g 1)− 1)
(λx2. let y = x1 ( let x = x2 inif x ≥ 0 then xelse BAD(4,5,“f1”)) inif y ≥ 0 then y else UNR?) inif z ≥ 0 then z else BAD(4,5,“f1”)After applying some 
onventional simpli�
ation rules, we have:R1 : λx1. let z = let y = x1 1 inif y ≥ 0 then y − 1 else UNR?if z ≥ 0 then z else BAD(4,5,“f1”)We see that the inner BAD(4,5,“f1”) has been simpli�ed away, be
ause x = x2 = 1and (if 1 ≥ 0 then 1 else BAD(4,5,“f1”)) is simpli�ed to 1. As we 
annot prove

∀x1, ∀z, (∃y, y = x1 1 ∧ (y ≥ 0 ⇒ z = y − 1)) ⇒ z ≥ 0 to be valid, the otherBAD(4,5,“f1”) remains. We 
an either report this potential 
ontra
t violation at
ompile-time or leave this residual 
ode R1 for DCC to a
hieve hybrid 
he
king.Hybrid 
ontra
t 
he
king (HCC) performs SCC �rst and runs the residual
ode as in DCC. In SCC, f1 ⊲ tf1 
he
ks whether f1 satis�es its post
onditionby assuming its pre
ondition holds. At ea
h 
all site of f1, we wrap the fun
tionwith ⊳. For example:
ontra
t f3 = {v | v >= 0}let f3 = f1 zutwhere zut is a di�
ult fun
tion for an SMT solver and zut's 
ontra
t is {x |true}. Say zut ⊳ {x | true} = zut, we then have the term f3 ⊲ tf3 to be:
((f1 ⊳ tf1) zut) ⊲ {v | v > 0}whi
h requires f3 to satisfy f1's pre
ondition and assumes f1 satis�es its post-
ondition be
ause f1 ⊲ tf1 has been 
he
ked. During SCC, a top-level fun
tionis never inlined. We do not have to know its detailed implementation at its 
all

RR n° 7794



Hybrid Contra
t Che
king 8site as it has been guarded by its 
ontra
t with f ⊳ t. The f3 ⊲ tf3 expands to:let v = let z = f1
(λx2.let y = zut (let x = x2 inif x ≥ 0 then xelse UNR(7,10,“f1”)) inif y ≥ 0 then y else BAD(7,10,“f3”)) inif z ≥ 0 then z else UNR(7,10,“f1”)if v ≥ 0 then v else BAD(7,10,“f3”)As ⊳ is dual to ⊲, the RHS of v is a
tually a 
opy of the earlier f1 ⊲ tf1 butswapping the BAD and UNR and substituting x1 with zut. We now know thesour
e lo
ation of the 
all site of f1 and its 
aller's name, the UNR? be
omesBAD(7,10,“f3”) and the BAD(4,5,“f1”) be
omes UNR(7,10,“f1”). At de�nition site wherethe 
aller is unknown, we use the lo
ation of f1, i.e. (4, 5, “f1”). On
e its 
alleris known, we use (7, 10, “f1”). It is easy to get sour
e lo
ation, whi
h is forthe sake of error message reporting. So we do not elaborate the sour
e lo
ationfurther.As an SMT solver says valid for ∀v.(∃z.z ≥ 0∧ v = z) ⇒ v ≥ 0, the f3 ⊲ tf3
an be simpli�ed to (say R2):let z = f1

(λx2. let y = zut (let x = x2 inif x > 0 then xelse UNR(7,10,“f1”)) inif y ≥ 0 then y else BAD(7,10,“f3”)) inif z ≥ 0 then z else UNR(7,10,“f1”)One BAD remains. We 
an either report this potential 
ontra
t violation at
ompile-time or 
ontinue a DCC. For SCC, we have 
he
ked f1 ⊲ tf1, but forDCC, to invoke f1 ⊲ tf1, we must use the residual 
ode R1. However, the UNR
lauses are useful for SCC, but redundant for DCC. We 
an remove UNRs witha simpli�
ation rule:
(if e0 then e1 else UNR) =⇒ e1 [rmUNR](We shall explain why it is valid to apply this rule even if e0 may diverge or 
rashin �6. Intuitively, UNR is indeed unrea
hable and e0 has been 
he
ked before thisprogram point.) Applying the rule [rmUNR℄ to R1 and R2 and simplify a bit,we get: f1♯ = λx1. let z = (let y = (x1 1) in y − 1) inif z ≥ 0 then z else BAD(4,5,“f1”)f2♯ = f1♯ (λx2.let y = zut x2 inif y ≥ 0 then y else BAD(7,10,“f3”))respe
tively, whi
h is the residual 
ode being run. We show in �6 that HCCblames a fun
tion fi i� DCC blames fi.Summary Given a de�nition f = e and a 
ontra
t t, to 
he
k e satis�es t(written e ∈ t), we perform these steps. (1) Constru
t e ⊲ t. (2) Simplify e ⊲ tas mu
h as possible to e′, 
onsulting an SMT solver when ne
essary. (3) If noRR n° 7794



Hybrid Contra
t Che
king 9BAD is in e′, then there is no 
ontra
t violation; if there is a BAD in e′ but nofun
tion 
all in e′, then it is de�nitely a bug and report it at 
ompile-time; ifthere is a BAD and fun
tion 
all(s) in e′, then it is a potential bug. (4) For ea
hfun
tion f , 
reate its residual 
ode f♯ by simplifying e′ with the rule [rmUNR℄,and run the program with ea
h f being repla
ed by f♯.3 The languageThe language presented in this paper, named M, is pure and stri
t, a subset ofOCaml, in
luding parametri
 polymorphism.3.1 Syntax
x, f ∈ Variables

T ∈ Type constructors

K ∈ Data constructors

pgm ::= def1 , . . . , defn Program

τ ::= −→τ T | τ1 → τ2 Types

t ∈ Contracts

t ::= {x | p} predi
ate 
ontra
t
| x : t1 → t2 dependent fun
tion 
ontra
t
| (x : t1, t2) dependent tuple 
ontra
t
| Any polymorphi
 Any
ontra
t

def ∈ Definitions

def ::= type −→
′α T =

−−−−−→
K of −→τ

| 
ontra
t f = t
| let f −→x = e top-level fun
tion
| let re
 f −→x = e top-level re
ursive fun
tion

a, e, p ∈ Exp Expressions

a, e, p ::= n integers
| r blame
| x | λ(xτ ).e | e1 e2

| mat
h e0 with−→alt pattern-mat
hing
| K −→e 
onstru
tor

r ::= BADl | UNRl Blames

l ::= (n1, n2, String) Label

alt ::= K (xτ1
1 , . . . , xτn

n ) → e Alternatives

val ::= n | x | r | K −→v | λ(xτ ).e ValuesFigure 1: Syntax of the language MRR n° 7794



Hybrid Contra
t Che
king 10Figure 1 gives the syntax of language M. A program 
ontains a set of datatype de
larations, 
ontra
t de
larations and fun
tion de�nitions. Expressionsin
lude variables, lambda abstra
tions, appli
ations, 
onstru
tors and mat
h-expressions. Base types su
h as int and bool are data types with no parameter.Pairs are a spe
ial 
ase of 
onstru
ted terms, i.e. (e1, e2) is Pair (e1, e2) withtype ('a,'b) produ
t = Pair of 'a * 'b. We have top-level let re
, butfor the ease of presentation, we omit lo
al let re
. (It is possible to allowlo
al let re
 by either assuming that a lo
al re
ursive fun
tion is given a
ontra
t or using 
ontra
t inferen
e [21℄ to infer its 
ontra
t. Even if [21℄ isnot modular, it is good enough to infer a 
ontra
t for a lo
al fun
tion.) Alo
al let-expression let x = e1 in e2 is a synta
ti
 sugar for (λx.e2) e1. Anif-expression if e0 then e1 else e2 is synta
ti
 sugar for mat
h e0 with {true
→ e1; false→ e2}.We assume all top-level fun
tions are given a 
ontra
t. Contra
t 
he
king isdone after the type 
he
king phase in a 
ompiler so we assume all expressions,
ontexts and 
ontra
ts are well-typed and use its type information (presentedas supers
ript, e.g. eτ or tτ ) whenever ne
essary.The two 
ontra
t ex
eptions (also 
alled blames) BADl and UNRl are adaptedfrom [39℄. They are for internal usage, not visible to programmers. The label
l 
ontains information su
h as fun
tion name and sour
e 
ode lo
ation, whi
his useful for error reporting as well as for examination of the 
orre
tness ofblaming. But we may omit the label l when it is not the fo
us of the dis
ussion.It is possible for programmers to write:let head xs = mat
h xs with| [℄ -> raise Emptylist| x::l -> xwhere raise : ∀α. Ex
eption → α. The Ex
eption is a built-in data type forex
eptions and Emptylist has type Ex
eption. As we do not have try-with inlanguageM (leaving it as future work), a prepro
essing 
onverts raise Emptylistto BADhead.We have four forms of 
ontra
ts. The p in a predi
ate 
ontra
t {x | p} refersto a boolean expression in the same language M. Dependent fun
tion 
ontra
tsallow us to des
ribe dependen
y between input and output of a fun
tion. Forexample, x : {y | y > 0} → {z | z > x} says that, the input is greater than 0 andthe output is greater than the input. We 
an use a shorthand {x | x > 0} → {z |
z > x} by assuming x s
opes over the RHS of →. The → is right asso
iative.Similarly, dependent tuple 
ontra
ts allow us to des
ribe dependen
y betweentwo 
omponents of a tuple. For example, (x : {y | y > 0}, {z | z > x}) whoseshort hand is ({x | x > 0}, {z | z > x}). Contra
t Any is a universal 
ontra
tthat any expression satis�es. We support higher order 
ontra
ts, e.g. k : ({x |
x > 0} → {y | y > x}) → {z | k 5 > −1} for a fun
tion let f g = g 2.3.2 Type 
he
king rules for expressionThe language M is stati
ally typed in the 
onventional way. Figure 2 gives type
he
king rules. A type judgement has the form

Γ ⊢ eτRR n° 7794



Hybrid Contra
t Che
king 11whi
h states that given Γ (whi
h is a mapping from variable to its type), e hastype τ assuming that any free variable in it has type given by Γ. If Γ = ∅, weomit the Γ, and write ⊢ eτ .
Γ ⊢ BAD :: τ [T-BAD] Γ ⊢ UNR :: τ [T-UNR]

v :: τ ∈ Γ
Γ ⊢ v :: τ

[T-Var] Γ, x :: τ1 ⊢ e :: τ2
Γ ⊢ (λ(xτ1).e) :: τ1 → τ2

[T-Lam]
Γ ⊢ e1 :: τ1 → τ2 Γ ⊢ e2 :: τ1

Γ ⊢ (e1 e2) :: τ2
[T-App]

K :: −→τ → T ∈ Γ Γ ⊢ −→e :: −→τ
Γ ⊢ K −→e :: T −→α

[T-Con]
Γ ⊢ e0 :: T −→τ Γ, {v :: T −→τ }, {

−−−−−−−−−→
Ki

−→xi :: T
−→τ } ⊢ ei :: τ

Γ ⊢ (
ase e0 of (vT
−→τ ) {Ki

−→xi → ei}) :: τ
[T-Mat
h]Figure 2: Type Che
king RulesAs we do type 
he
king before 
ontra
t 
he
king, we assume all expressionsare well-typed (i.e. no type error) in the rest of this paper. Note that nothingsubstantial in the paper depends deli
ately on the type system. The reasonwe ask that programs are well-typed is to avoid the te
hni
al in
onvenien
ein designing the semanti
s of 
ontra
ts if, say, evaluation �nds an ill-typedexpression (3 True).3.3 Operational semanti
sThe semanti
s of our language is given by redu
tion rules in Figure 3. For a top-level fun
tion, we fet
h its de�nition from the evaluation envrionment ∆. Weadapt some basi
 de�nitions from [39℄. De�nition 1 de�nes the usual 
ontextualequivalen
e. Two expressions are said to be semanti
ally equivalent, if under all(
losing) 
ontexts, if one evaluates to a blame r, the other also evaluates to thesame r.De�nition 1 (Semanti
ally Equivalent). Two expressions e1 and e2 are seman-ti
ally equivalent, namely e1 ≡s e2, i� for all 
losing C, for all r, C[[e1]] →∗

r ⇐⇒ C[[e2]] →∗ rOur framework only guarantees partial 
orre
tness. A diverging programdoes not 
rash.De�nition 2 (Diverges). A 
losed expression e diverges, written e↑, i� either
e →∗ UNR, or there is no value val su
h that e →∗ val.
RR n° 7794



Hybrid Contra
t Che
king 12let (re
) f = e ∈ ∆
f → e

[E-top℄
(λx.e) val → e[val/x] [E-beta℄mat
h K

−→
val with −−−−−−→

K −→x → e → e[
−−−→
val/x] [E-mat
h℄

e1 → e2
C[[e1]] → C[[e2]]

[E-
tx℄ C[[r]] → r [E-exn℄Contexts C ::= [[•]] | C e | val C | K
−→
val C −→e

| mat
h C with −→
altFigure 3: Semanti
s of the language M3.4 CrashingWe use BAD to signal that something has gone wrong in the program, whi
h 
anbe a program failure or a 
ontra
t violation.De�nition 3 (Crash). A 
losed term e 
rashes i� e →∗ BAD.At 
ompile-time, one de
idable way to 
he
k the safety of a program is tosee whether the program is synta
ti
ally safe.De�nition 4 (Synta
ti
 safety). A (possibly-open) expression e is synta
ti
allysafe i� BAD /∈s e. Similarly, a 
ontext C is synta
ti
ally safe i� BAD /∈s C.The notation BAD /∈s e means BAD does not synta
ti
ally appear anywherein e, similarly for BAD /∈s C. For example, λx.x is synta
ti
ally safe while

λx. (BAD, x) is not.De�nition 5 (Crash-free expression). A (possibly-open) expression e is 
rash-free i� : for all C su
h that BAD /∈s C and ⊢ C[[e]] :: bool, C[[e]] 6→∗ BAD.The notation ⊢ C[[e]] :: bool means C[[e]] is 
losed and well-typed. Thequanti�ed 
ontext C serves the usual role of a probe that tries to provoke e into
rashing. Note that a 
rash-free expression may not be synta
ti
ally safe, e.g.
λx.if x ∗ x ≥ 0 then x+ 1 else BAD.Lemma 1 (Synta
ti
ally safe expression is 
rash-free).

e is synta
ti
ally safe ⇒ e is 
rash-freeProof. Sin
e there is no BAD synta
ti
ally in e, for all 
ontext C, su
h thatthere is no BAD syntati
ally in C, then C[[e]] 6→∗ BAD. By de�nition 5 (Crash-freeexpression), e is 
rash-free.For ease of presentation, when we do not give label l to BAD or UNR, we meanBAD or UNR for any l. Moreover, expressions BADl and UNRl are 
losed expressionseven if l is not expli
itly bound.Lemma 2 (Neutering). If e is 
rash-free, then ⌊e⌋ ≡s e.RR n° 7794



Hybrid Contra
t Che
king 13Proof. Sin
e e is 
rash-free, all BADs in e are not rea
hable so by 
onverting allBADs in e to UNR by ⌊.⌋ does not 
hange the semanti
s of e. Formally, we provethis by indu
tion on redu
tion rules.Lemma 3 (Crash-free Preservation). Given e1 → e2,
e1 is 
rash-free ⇐⇒ e2 is 
rash-freeProof. We prove two dire
tions by 
ontradi
tion.(⇒)Suppose e2 is not 
rash-free. By De�nition 5p12 (Crash-free Expression), thereexists a C su
h that BAD /∈s C and C[[e2]] →∗ BAD. By [E-
tx℄ and e1 → e2 and

C[[e2]] →
∗ BAD, we have: C[[e1]] →

∗ C[[e2]] →
∗ BAD. As we know e1 is 
rash-free,we rea
h 
ontradi
tion. Thus, we are done.(⇐)Suppose e1 is not 
rash-free. By De�nition 5p12 (Crash-free Expression), thereexists a C su
h that BAD /∈s C and C[[e1]] →∗ BAD. By [E-
tx℄ and e1 → e2 and
on�uen
e of the language, we have C[[e2]] →∗ BAD. With the assumption that

e2 is 
rash-free, we rea
h 
ontradi
tion. Thus, we are done.Lemma 4 (Crash-free fun
tion). For all (possibly-open) terms λx.e,
λx.e is 
rash-free

⇐⇒for all (possibly-open) 
rash-free e′, e[e′/x] is 
rash-free.Proof. We prove two dire
tions separately.(⇒)
λx.e is 
rash-free

⇒ (By Lemma 2p12, e′ is 
rash-free ⇒ ⌊e′⌋ ≡s e
′and by the de�nition of 
rash-free expression)for all 
rash-free e′, e[e′/x] is 
rash-free(⇐) We have the following proof.for all cf e′, e[e′/x] is 
rash-free

⇐⇒ (By Lemma 3p13)for all cf e′, (λx.e) e′ is 
rash-free
⇐⇒ (By De�nition 5p12 (Crash-free Expression))for all cf e′, ∀C, BAD /∈s C, C[[(λx.e) e′]] 6→∗ BAD
⇒ (By Lemma 2p12, e′ is 
rash-free ⇒ ⌊e′⌋ ≡s e

′)
∀C, BAD /∈s C, C[[(λx.e) ⌊e′⌋]] 6→∗ BAD

⇒ (By BAD /∈s ⌊e′⌋)
∀C, BAD /∈s C, C[[(λx.e)]] 6→∗ BAD

⇐⇒ (By De�nition 5p12 (Crash-free Expression))
λx.e is 
rash-free

RR n° 7794



Hybrid Contra
t Che
king 143.5 Behaves-the-sameWe de�ne an ordering, named Behaves-the-same, whi
h is useful in later se
-tions.De�nition 6 (Behaves the same). Expression e1 behaves the same as e2 w.r.t.a set of ex
eptions R, written e1 ≪R e2, i� for all 
ontexts C, su
h that ∀i ∈
{1, 2}. ⊢ C[[ei]] :: bool

C[[e2]] →
∗ r ∈ R ⇒ C[[e1]] →

∗ rDe�nition 6p14 says that e1 either behaves the same as e2 or throws an ex-
eption from R. (The de�nition does not look as strong as that, but as everytheorist knows, it is. For example, 
ould e1 produ
e true while e2 produ
esfalse? No, be
ause we 
ould �nd a 
ontext C that would make C[[e2]] throw anex
eption while C[[e1]] does not.) In our framework, there are only two ex
ep-tional values in R: BAD and UNR. Certainly, if e2 itself throws an ex
eption, then
e1 must throw the same ex
eption.As we only have two ex
eptional values BAD, UNR (whi
h are dual to ea
hother) in R, this yields Lemma 5p14. We omit {} if there is only one element in
R.Lemma 5 (Properties of Behaves-the-same). For all 
losed e1 and e2,

e1 ≪UNR e2 ⇐⇒ e2 ≪BAD e1Proof. We prove two dire
tions separately.(⇒) We have the following proof:
e1 ≪UNR e2

⇐⇒ (By defn of ≪UNR)
∀C. C[[e2]] →∗ UNR ⇒ C[[e1]] →∗ UNR

⇐⇒ (By logi
)
∀C. C[[e1]] 6→∗ UNR ⇒ C[[e2]] 6→∗ UNRWe want to show that ∀D. D[[e1]] →

∗ BAD⇒ D[[e2]] →
∗ BAD.Assume D[[e1]] →∗ BAD.Let C = mat
h (D[[•]]) with {DEFAULT→ UNR}Now we have C[[e1]] →∗ BAD⇒ C[[e2]] 6→∗ UNR.Sin
e C[[e2]] = 
ase D[[e2]] with {DEFAULT→ UNR}, we have D[[e2]] →∗ BAD.So we have

∀D. D[[e1]] →
∗ BAD ⇒ D[[e2]] →

∗ BAD(⇐) By repla
ing BAD by UNR and UNR by BAD in the above proof for thedire
tion (⇒), we get the proof for the dire
tion (⇐).3.6 Crashes-more-oftenWe study a spe
ialized ordering 
rashes-more-often, whi
h plays a 
ru
ial rolein proving our main theorems.De�nition 7 (Crashes-more-often). An expression e1 
rashes more often than
e2, written e1 � e2, i� e1 ≪BAD e2.RR n° 7794



Hybrid Contra
t Che
king 15Informally, e1 
rashes more often than e2 if they behave in exa
tly the sameway ex
ept that e1 may 
rash when e2 does not. By De�nition 7p14, Lemma 5p14also says that:
e1 ≪UNR e2 ⇐⇒ e2 � e1Theorem 1 (Crashes-more-often is AntiSymmetri
). For all expressions e1 and

e2, e1 � e2 and e2 � e1 i� e1 ≡s e2.Proof. It follows immediately from the de�nition of ≡s (De�nition 1p11) and thede�nition of �.The 
rashes-more-often operator has many properties. Lemma 6p15 says thatBAD 
rashes-more-often then all expressions; all expressions 
rash more oftenthen a diverging expression. Lemma 7p15 gives more intuitive properties.Lemma 6 (Properties of Crashes-more-often - I).
(a) BAD � e2
(b) e1 � e2 if e2 ↑Proof. We prove ea
h property separately (all by 
ontradi
tion) and we assumetype soundness.(a) Assume there exists a 
ontext C su
h that C[[e2]] →∗ BAD and C[[BAD]] 6→∗BAD. There are two possibilities for C[[e2]] →∗ BAD: (1) the BAD is from the
ontext C; (2) the BAD is from the hole e2. For 
ase (1), we must have

C[[BAD]] →∗ BAD sin
e we use the same 
ontext C. For 
ase (2), if the holeis evaluated, we rea
h BAD immediately. So we rea
h a 
ontradi
tion andwe are done.(b) Given e2 ↑, assume there exists a 
ontext C su
h that C[[e2]] →∗ BAD and
C[[e1]] 6→∗ BAD. Sin
e e2 ↑ and C[[e2]] →∗ BAD, we know the BAD is fromthe 
ontext C. So no matter what e1 is, we have C[[e1]] →∗ BAD. Thus, weagain rea
h a 
ontradi
tion and we are done.Lemma 7 (Properties of Crashes-more-often - II). If e1 � e2

(a) e1 →∗ K f1 ⇒ e2 →∗ K f2 or e2 ↑
(b) e1 ↑ ⇒ e2 ↑
(c) e1 is 
rash-free ⇒ e2 is 
rash-free
(d) e1 →∗ λx.e′1 ⇒ e2 →∗ λx.e′2 or e2 ↑Proof. We prove ea
h property separately (all by 
ontradi
tion):(a) Given e1 →∗ K f1, assume neither e2 →∗ K f2 nor e2 ↑. Then we musthave e2 →∗ BAD. By the de�nition of � and the fa
t that e1 � e2, if

e2 →∗ BAD, then e1 →∗ BAD. Sin
e e1 →∗ K f1, we rea
h a 
ontradi
tionand we are done.(b) Given e1 ↑, assume e2 6 ↑. Then e2 →∗ val and there exists a synta
ti
allysafe 
ontext C su
h that C[[e2]] →∗ BAD. But C[[e1]] always diverges as e1diverges if BAD /∈s C. By the fa
t that e1 � e2 and by the de�nition of �,we rea
h a 
ontradi
tion and we are done.RR n° 7794
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t Che
king 16(
) Given e1 is 
rash-free, assume e2 is not 
rash-free. By De�nition 5p12(Crash-free Expression), there exists a synta
ti
ally safe 
ontext C su
hthat C[[e2]] →∗ BAD. By the fa
t that e1 � e2 and by the de�nition of �,we have C[[e1]] →∗ BAD. This 
ontradi
ts with another assumption that e1is 
rash-free. Sin
e we rea
h a 
ontradi
tion, we are done.(d) The proof is similar to that in (a).4 Contra
tsFindler and Felleisen (FF) �rst introdu
ed an algorithm for dynami
 higherorder 
ontra
t 
he
king [13℄. Blume and M
Allester [7℄ then de�ne a semanti
sfor 
ontra
t satisfa
tion and show its sound-and-
ompleteness with respe
t tothe FF-algorithm. As the algorithm and the 
ontra
t semanti
s are de�nedby two groups of people, there are some mismat
hes addressed in [12℄. Later,[39℄ de�nes both a 
ontra
t semanti
s and a (stati
) 
he
king algorithm fora lazy language. In this paper, we follow the style in [39℄, design 
ontra
tsatisfa
tion and 
he
king algorithm for a stri
t language. As diverging 
ontra
tsmake dynami
 
ontra
t 
he
king unsound (explained in Se
tion 4.5) and we dohybrid 
he
king, we fo
us on total 
ontra
ts.De�nition 8 (Total 
ontra
t). A 
ontra
t t is total i�
t is {x | p} and λx.p is total (i.e. 
rash-free, terminating)or t is x : t1 → t2 and t1 is total andfor all val1 ∈ t1, t2[val1/x] is totalor t is (x : t1, t2) and t1 is total andfor all val1 ∈ t1, t2[val1/x] is totalor t is AnyOur de�nition of total 
ontra
t is di�erent from that in [7℄, but 
lose to the
rash-free 
ontra
t in [39℄ with an additional 
ondition that λx.p is a terminatingfun
tion. For example, 
ontra
t {x | x 6= [℄} → {y | head x > y} is total inour framework be
ause head x does not 
rash for all x satisfying {x | x 6= [℄}.Su
h a 
ontra
t is not total in [7℄ be
ause a 
rashing fun
tion head is 
alled ina predi
ate 
ontra
t.4.1 Type 
he
king for 
ontra
tsA 
ontra
t type judgement has the form

Γ ⊢c t ∈ τwhi
h states that given Γ (a mapping from program variable to its type, andfrom type variable α to its kind k), e has type τ assuming that any free variablein it has type given by Γ. Contra
t type 
he
king rules are shown in Figure 4.
RR n° 7794



Hybrid Contra
t Che
king 17
Γ, α :: k ⊢c t :: τ

Γ ⊢c (∀α :: k. t) :: τ
[C-Forall]

Γ ⊢c Any :: τ [C-Any] Γ, x :: τ ⊢c e :: Bool
Γ ⊢c {x | e} :: τ

[C-One]
Γ ⊢c t1 :: τ1 Γ, x :: τ1 ⊢c t2 :: τ2

Γ ⊢c x : t1 → t2 :: τ1 → τ2
[C-Fun]

Γ ⊢c t1 :: τi Γ, x :: τ1 ⊢c t2 :: τ2
Γ ⊢c (x : t1, t2) :: (τ1, τ2)

[C-Tuple]Figure 4: Type Che
king Rules for Contra
tFor a well-typed expression e, de�ne e ∈ t thus:
e ∈ {x | p} ⇐⇒ e↑ or (e is 
rash-free and [A1℄

p[e/x] →∗ true)
e ∈ x : t1 → t2 ⇐⇒ e↑ or (e →∗ λx.e2 and [A2℄

∀val1 ∈ t1. (e val1) ∈ t2[val1/x])

e ∈ (x : t1, t2) ⇐⇒ e↑ or (e →∗ (val1, val2) and [A3℄
val1 ∈ t1 and val2[val1/x] ∈ t2[val1/x])

e ∈ Any ⇐⇒ true [A4℄Figure 5: Contra
t Satisfa
tion4.2 A semanti
s for 
ontra
t satisfa
tionWe give the semanti
s of 
ontra
ts by de�ning �e satis�es t" (written e ∈ t)in Figure 5 inspired by [7, 39℄. Here are some 
onsequen
es: (1) a divergentexpression satis�es any 
ontra
t, hen
e all 
ontra
ts are inhabited; (2) only
rash-free expression satis�es a predi
ate 
ontra
t; (3) any expression satis�es
ontra
t Any; (4) BAD only satis�es 
ontra
t Any.One di�eren
e from [39℄ is that, we do not allow p[e/x] in [A1℄ to divergewhile [39℄ allows be
ause they only do stati
 
he
king. We support dependenttuple 
ontra
ts, that are not in [7, 39℄. One di�eren
e from [7℄ is that, theysay that a 
rashing expression does not satisifay any 
ontra
t; we say that a
rashing expression satisfy the universal 
ontra
t Any. Having a top ordering
ontra
t is debated in [12℄ where a sub
ontra
t ordering is de�ned below. It isobvious that Any is useful in a lazy language [39℄ as we may want to ignore somesub
omponents of a 
onstru
tor. We explain why Any is also useful for a stri
tlanguage in Se
tion 4.6.De�nition 9 (Sub
ontra
t). For all 
losed 
ontra
ts t1 and t2, t1 is a sub
on-tra
t of t2, written t1 ≦ t2, i� ∀e. e ∈ t1 ⇒ e ∈ t2RR n° 7794
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t Che
king 184.3 The wrappers
e ⊲ t = e

BADl1
⊲⊳UNRl2 t e ⊳ t = e

UNRl2
⊲⊳BADl1 t

e
r1
⊲⊳
r2

{x | p} = let x = e in if p then x else r1 [P1]

e
r1
⊲⊳
r2

x : t1 → t2 = let y = e in
λx1.((y (x1

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x]) [P2]

e
r1
⊲⊳
r2

(x : t1, t2) = mat
h e with
(x1, x2) → (x1

r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x]) [P3]

e
r1
⊲⊳
r2

Any = r2 [P4]Figure 6: Contra
t 
he
king with the wrappersAs mentioned in Se
tion 2, the essen
e of 
ontra
t 
he
king is the two wrap-pers ⊲ and ⊳, whi
h are dual to ea
h other (de�ned in Figure 6). We omit thelabels for ⊲ and ⊳ whose full versions are ⊲l1l2 and ⊳l1l2 respe
tively. The wrappedexpression e
r1
⊲⊳
r2

t expands to a parti
ular expression, whi
h behaves the same as
e ex
ept that it raises blame r1 if e does not obey t and raise r2 if the wrappedterm is used in a way disobeying t.From [P1℄ to [P3℄, if e 
rashes, the wrapped term 
rashes; if e diverges, thewrapped term diverges. Whenever an ri is rea
hed, we know the property pdoes not evaluate to true (as in [P1℄). The wrappers are de�ned su
h thatTheorem 2 holds.Theorem 2 (Sound-and-
ompleteness of 
ontra
t 
he
king). For all 
losed ex-pression eτ , 
losed and total 
ontra
t tτ ,

(e ⊲ t) is 
rash-free ⇐⇒ e ∈ tThe supers
ript τ says both e and t are well-typed and have the same type
τ . The full proof of Theorem 2 is in Appendix A, whi
h is similar to that in [40℄.In pra
ti
e, we only need Thereom 3, i.e. one dire
tion of Thereom 2.Theorem 3 (Soundness of 
ontra
t 
he
king). For all 
losed expression eτ ,
losed and terminating 
ontra
t tτ ,

(e ⊲ t) is 
rash-free ⇒ e ∈ tNote that, if t is terminating and e⊲t is 
rash-free, then t is total. Unlike [13℄,whi
h assumes there is no ex
eption from a 
ontra
t itself, our 
ontra
t 
he
kingalgorithm helps programmers to ensure it by dete
ting ex
eptions in 
ontra
tsthemselves. The term t2[(v
r2
⊲⊳
r1

t1/x] in [P2℄ and [P3℄ says that, we wrap ea
h(fun
tion) 
all in a 
ontra
t with its 
ontra
t so that if there is any 
ontra
tviolation in a 
ontra
t, we report this error. For example:RR n° 7794
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ontra
t f = k:({x | x > 0 } -> {y | y > 0 })-> {z | k 0 > -1}let f g = g 2let t2 = f (fun x -> x)a 
ontra
t violation o

urs in {z | k 0 > -1} be
ause the 
all k 0 fails k'spre
ondition {x | x > 0}. As addressed in [10℄, we should blame the 
ontra
t.We omit passing around the name of the 
ontra
t in this paper as our fo
us isto 
he
k the rea
hability of BAD. Instead, we use r1 to indi
ate that the label of
r1 is repla
ed by the name of the 
ontra
t.4.4 Open expressions and 
ontra
tsFor open expressions, we use the same idea in [39℄. Suppose the de
lared 
on-tra
ts for f and g are tf , tg respe
tively, and the de�nition of g is g = eg wheref is 
alled in eg. Then, instead of 
he
king that eg ∈ tg, we 
he
k that

(λf. eg) ∈ tf → tgThat means we simply lambda-abstra
t over any variables free in eg. The sameidea applies for the re
ursive fun
tions. If the programmer spe
i�es the 
ontra
t
tf for a de�nition f = e, then it su�
es to 
he
k that

λf.e ∈ tf → tfwhi
h is easier be
ause λf.e does not 
all f re
ursively. There is nothing newhere � it is just the standard te
hnique of loop invariants in another guise � butit is pa
kaged very 
onveniently.In other words, imagine we have a 
ontra
t judgement:
∆ ⊢ e ∈ twhi
h states that given∆, whi
h is a mapping from variable to its type, 
ontra
tand de�nition.De�nition 10 (Contra
t judgement). We write ∆ ⊢ e ∈ t to mean that ehas 
ontra
t t assuming that any free variable in e has 
ontra
t given by ∆and any free variable in t has de�nition given by ∆. Suppose ∆ = {f1 7→

(τ1, t1, e1), . . . , fn 7→ (τn, tn, en)}, we de�ne:
∆ ⊢ e ∈ t ⇐⇒ λf1. . . . .fn.e ∈ t1 → · · · → tn → tThis means, in theory (i.e. in the formalization of the veri�
ation), we onlyneed to deal with 
losed expressions; in pra
ti
e (i.e. in the implementation),we may refer to the environment ∆ when ne
essary. We 
an simply 
he
k 
rash-freeness of e[(g ⊳ tg)/g]⊲ tf [(g ⊳ tg)/g] where a 
all to g is repla
ed by g ⊳ tg. Thisidea holds for re
ursive 
alls of f in e as well, we 
he
k e[f ⊳ tf/f ] ⊲ tf . (Notethat f is not allowed to be used in tf .)4.5 Terminating 
ontra
tsWe want p in {x | p} to be terminating be
ause a divergent 
ontra
t hides
rashes. For example:RR n° 7794



Hybrid Contra
t Che
king 20let re
 loop x = loop x
ontra
t fb = {x | loop x} -> {y | true}let fb x = head [℄fb ⊲ tfb is λx1.((λx.head [ ]) (if loop x1 then x1 else BAD)), whi
h divergeswhenever applied be
ause of the loop. However, the fun
tion fb is not 
rash-free.Consider the higher order fun
tion f in Se
tion 4.3, one might wonderwhether we have to 
he
k the argument of the higher order fun
tion f to beterminating be
ause k is 
alled in the 
ontra
t. The answer is no. By inspe
t-ing [P1℄ and [P2℄, we 
an see that an argument is always evaluated earlier thanthe x in t2. So we will not en
ounter the situation that a divergent 
ontra
thides a 
rash.We only have to prove termination of fun
tions used in 
ontra
ts, not all thefun
tions in a program. We 
an adapt ideas in [26, 34, 4℄ to build an e�
ientautomati
 termination 
he
ker.4.6 Contra
t AnyThere is a debate in [12℄ on whether it is useful to have a top ordering 
ontra
tAny. We want Any be
ause we want to give a fun
tion, that always fails, a
ontra
t to satisfy, so that we do not blame it at its de�nition site during SCCbe
ause ∀e, e⊲Any = UNR, whi
h is 
rash-free. Consider a popular OCaml libraryfun
tion:
ontra
t failwith = {x | true} -> Anylet failwith str = raise (Failure str)where Failure has type Ex
eption. A 
aller of failwith always violates the
ontra
t Any be
ause ∀e, e ⊳ Any = BAD. For example:let get a i = if i >= 0 and i < Array.length a - 1then a.(i) else failwith "Out of bound"Whenever the else-bran
h is rea
hed (either in SCC or DCC), the 
aller get isblamed be
ause a safe program is meant not to invoke a fun
tion that fails. Itis not useful to blame the failwith itself. Certainly, programmers' intention isnot to have an index out of bound so they may give get a 
ontra
t:
{a | true} → {i | i ≥ 0 ∧ i < Array.length a− 1} → {z | true}so that a 
aller of get will be blamed if it fails get's pre
ondition.The example under debate in [12℄ is something like:
ontra
t id = ({x | x /= 0} -> {y | true}) -> Anylet id x = xlet t3 = let invert y = 1/y in (id invert) 0If programmers' intention is not to de�ne a fun
tion that always fails, theyshould repla
e Any by {z | true}, whi
h never assigns blame be
ause ∀e, e⊲{z |true} = e ⊳ {z | true} = e. With this new 
ontra
t, id is blamed in eitherSCC or DCC for violating its 
ontra
t be
ause id 
annot guarantee a 
rash-freeRR n° 7794
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t Che
king 21result (required by {z | true}) when taking a non-
rash-free fun
tion as itsargument.With the de
larative semanti
s for 
ontra
t satisfa
tion, 
ontra
ts 
an be ex-ported for separate 
ompilation. An implementation of a fun
tion may 
hangeover time (e.g. having a more e�
ient implementation), but its exported 
on-tra
t may not 
hange. In our framework, we respe
t a fun
tion's 
ontra
t morethan its implementation. This is di�erent from the original purpose in [13℄,whi
h only uses 
ontra
ts for dynami
 blaming.We have a simple lemma for 
ontra
t Any.Lemma 8 (Contra
t Any). (a) If BAD ∈ t, then t = Any.(b) If BAD ⊲ t is 
rash-free, then t = Any.Proof. (a) By inspe
ting the de�nition of ∈, the only 
ontra
t that BAD satis-�es is Any.(b) By inspe
ting the de�nition of ⊲, for all t su
h that t 6= Any, BAD⊲t →∗ BADwhi
h is not 
rash-free. And we have BAD ⊲ Any = UNR whi
h is 
rash-free,so we are done.4.7 Contra
t orderingthe sub
ontra
t relation 
an be illustrated in rule-form shown in Figure 7. Ea
hrule in Figure 7 is a theorem. The relation p ⇒e q in rule [C-Pred℄ is de�nedin De�nition 11. Rule [C-Any℄ follows dire
tly from the de�nition of ≦. Wenow study the rules [C-Pred℄, [C-DepFun℄ and [C-DepTup℄. We assume thestatement above the line is true, and prove the statement below the line is true.We leave the proof of other dire
tion as a open problem.
p ⇒e q

{x | p} ≦ {x | q}
[C-Pred] t ≦ Any [C-Any]

t1 ≦ t3 ∀e ∈ t1, t2[e/x] ≦ t4[e/x]
(x : t1, t2) ≦ (x : t3, t4)

[C-DepTup]
t3 ≦ t1 ∀e ∈ t3, t2[e/x] ≦ t4[e/x]

x : t1 → t2 ≦ x : t3 → t4
[C-DepFun]Figure 7: Sub
ontra
t RelationDe�nition 11 (Boolean Expression Impli
ation). For all boolean expressions pand q, we say p implies q (written p ⇒e q) i� ( if q then ()else BAD )

�

( if p then ()else BAD )From De�nition 11p21, for example, we know {x | x < 10} ⇒e {x | x < 12}.The substitution for 
ontra
ts is de�ned in Figure 8. Here, we assume ea
hbound variable has a unique name.RR n° 7794



Hybrid Contra
t Che
king 22
{x | p}[e/y] = {x | p[e/y]}
(x : t1 → t2)[e/y] = x : t1[e/y] → t2[e/y]
(t1, t2)[e/y] = (t1[e/y], e2[e/y])Any[e/y] = AnyFigure 8: Substitution for Contra
ts4.7.1 Predi
ate Contra
t OrderingWe prove that the rule [C-Pred℄ is sound; that is we prove Theorem 4p22.Theorem 4 (Predi
ate Contra
t Ordering). For all expressions p, q, if p ⇒ qthen {x | p} ≦ {x | q}.Proof. We have the following proof for all t1, t2, t3, t4:

p ⇒e q

⇐⇒ (By De�nition 11p21 (Boolean Expression Impli
ation), let
e1 =






ase p ofTrue→ ()False→ BAD 

 and e2 =






ase q ofTrue → ()False→ BAD 

)

e2 � e1

⇐⇒ (By De�nition 7p14 (Crashes-more-often))
∀C. C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD

⇒ (By (*) below)
∀e. e is 
rash-free and (e1[e/x] 6→∗ {BAD, False} ⇒ e2[e/x] 6→∗ {BAD, False})

⇐⇒ (By logi
 and de�nition of ∈ in Figure 5)
∀e. e ∈ {x | e1} ⇒ e ∈ {x | e2}

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
{x | e1} ≦ {x | e2}(*) We know ∀e, a, x. e[a/x] ≡s let x = a in e.Assuming for all 
rash-free e:

(1) ∀C. C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD
(2) (let x = e in e1) 6→

∗ {BAD, False})we want to show (let x = e in e2) 6→∗ {BAD, False}Suppose (let x = e in e2) →∗ BADBy (1), let C be let x = e in •, we have C[[e1]] →∗ BAD.That means (let x = e in e1) →∗ BAD.This 
ontradi
ts with (2) so our assumption is wrong and we are done.Suppose (let x = e in e2) →
∗ FalseBy (1), let C be 
ase (let x = e in •) of {False→ BAD}, we have C[[e1]] →∗ BAD.That means (
ase (let x = e in e1) of {False→ BAD}) →∗ BAD.That means (let x = e in e1) →∗ {BAD, False}.This 
ontradi
ts with (2) so our assumption is wrong and we are done.End of proof.RR n° 7794
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king 234.7.2 Dependent Fun
tion Contra
t OrderingWe prove that the rule [C-DepFun℄ is sound; that is we prove Theorem 5p23.Theorem 5 (Dependent Fun
tion Contra
t Ordering). For all t1, t2, t3, t4.if t3 ≦ t1 and ∀e ∈ t3. t2[e/x] ≦ t4[e/x], then x : t1 → t2 ≦ x : t3 → t4Proof. We have the following proof for all t1, t2, t3, t4:
t3 ≦ t1 and ∀e3 ∈ t3. t2[e3/x] ≦ t4[e3/x]

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
(†1) ∀e1. e1 ∈ t3 ⇒ e1 ∈ t1 and ∀e3 ∈ t3.∀e2. e2 ∈ t2[e3/x] ⇒ e2 ∈ t4[e3/x]

⇒ (By the (*) below)
(†2) ∀e. ∀e1 ∈ t1. (e e1) ∈ t2[e1/x] ⇒ ∀e3 ∈ t3. (e e3) ∈ t4[e3/x]

⇐⇒ (By de�nition of ∈ in Figure 5)
∀e. e ∈ x : t1 → t2 ⇒ e ∈ x : t3 → t4

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
x : t1 → t2 ≦ x : t3 → t4

(∗) For all e, assuming:
(1) ∀e1. e1 ∈ t3 ⇒ e1 ∈ t1 (�rst 
lause of the line †1)
(2) ∀e3 ∈ t3, ∀e2. e2 ∈ t2[e3/x] ⇒ e2 ∈ t4[e3/x] (se
ond 
lause of the line †1)
(3) ∀e1 ∈ t1.(e e1) ∈ t2[e1/x] (LHS of the line †2)we show ∀e3. e3 ∈ t3 ⇒ (e e3) ∈ t4[e3/x]as follows.

e3 ∈ t3

⇐⇒ (By (1))
e3 ∈ t1

⇐⇒ (By (3))
(e e3) ∈ t2[e3/x]

⇐⇒ (By (2))
(e e3) ∈ t4[e3/x]We are done.4.7.3 Dependent tuple 
ontra
t orderingWe prove the rule [C-DepTup℄ is sound by showing:For all t1, t2, t3, t4. if t1 ≦ t3 and t2 ≦ t4, then (t1, t2) ≦ (t3, t4)Proof. For all e, if e diverges, then for all t1, t2, t3, t4, e ∈ (t1, t2) and e ∈ (t3, t4)be
ause a divergent expression satis�es all 
ontra
ts. By the de�nition of ≦,we have the desired result (t1, t2) ≦ (t3, t4). Now, we prove the 
ase when
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e →∗ (e1, e2) as follows.

t1 ≦ t3 and t2 ≦ t4

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
∀e1. e1 ∈ t1 ⇒ e1 ∈ t3 and ∀e2. e2 ∈ t2 ⇒ e2 ∈ t4

⇐⇒ (By logi
 (∀x.A) ∧ (∀y.B) ≡ ∀x, y. A ∧B if y /∈ fv(A) and x 6∈ fv(B))
∀e1, e2. e1 ∈ t1 ⇒ e1 ∈ t3 and e2 ∈ t2 ⇒ e2 ∈ t4

⇒ (By logi
 ((A ⇒ B) ∧ (C ⇒ D)) ⇒ ((A ∧C) ⇒ (B ∧D)))
∀e. e →∗ (e1, e2) and ((e1 ∈ t1 and e2 ∈ t2) ⇒ (e1 ∈ t3 and e2 ∈ t4))

⇒ (By logi
 (A ∧ (B ⇒ C)) ⇒ ((A ∧B) ⇒ (A ∧ C)))
∀e. (e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2)
⇒ (e →∗ (e1, e2) and e1 ∈ t3 and e2 ∈ t4)

⇐⇒ (By de�nition of ∈ in Figure 5)
∀e. e ∈ (t1, t2) ⇒ e ∈ (t3, t4)

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
(t1, t2) ≦ (t3, t4)Note that some tuple 
ontra
ts are not 
omparable by ≦, for example:

(Ok, Any) 6≦ (Any, Ok) and (Any, Ok) 6≦ (Ok, Any).4.8 Contra
t equivalen
eIn this se
tion we give formal de�nition of the equivalen
e of two 
ontra
ts.De�nition 12 (Contra
t Equivalen
e). Two 
losed 
ontra
ts t1 and t2 areequivalent, namely t1 ≡t t2, i�
∀e. e ∈ t1 ⇐⇒ e ∈ t2Contra
t equivalen
e ≡t refers to semanti
 equivalen
e, not equality. Forexample, {x | false} → {x | true} ≦ {x | false} → {x | false} and {x |false} → {x | false} ≦ {x | false} → {x | true}, and {x | false} → {x |true} ≡t {x | false} → {x | false}, but {x | false} → {x | true} 6= {x |false} → {x | false}.Theorem 6 (Sub
ontra
t is antisymmetri
). For all 
losed 
ontra
ts t1 and t2,

t1 ≦ t2 and t2 ≦ t1 i� t1 ≡t t2.Proof.
t1 ≦ t2 and t2 ≦ t1

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
∀e. e ∈ t1 ⇒ e ∈ t2 and ∀e. e ∈ t2 ⇒ e ∈ t1

⇐⇒ (By logi
 (∀x. A(x) ⇒ B(x)) ∧ (∀x. B(x) ⇒ A(x)) ≡ ∀x. A(x) ⇐⇒ B(x))
∀e. e ∈ t1 ⇐⇒ e ∈ t2

⇐⇒ (By De�nition 12p24 (Contra
t Equivalen
e))
t1 ≡t t2End of proof.RR n° 7794
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king 25For open 
ontra
ts t, we assume impli
itly that there is an environment
∆, whi
h is a mapping from variable to its type, 
ontra
t and de�nition (SeeDe�nition 10p19 in Se
tion 4.4).Lemma 9 (Predi
ate Contra
t Equivalen
e). For all expressions e1 and e2, if
e1 ≡s e2, then {x | e1} ≡t {x | e2}.Proof. We have the following proof:

e1 ≡s e2

⇐⇒ (By Theorem 1p15 (Crashes-more-often is antisymmetri
))
e1 � e2 and e2 � e1

⇐⇒ (By Theorem 4p22 (Predi
ate 
ontra
t ordering))
{x | e1} ≦ {x | e2} and {x | e2} ≦ {x | e1}

⇐⇒ (By Theorem 6p24 (Sub
ontra
t is antisymmetri
))
{x | e1} ≡t {x | e2}Lemma 10 (Dependent Fun
tion Contra
t Equivalen
e). For all 
ontra
ts

t1, t2, t3, t4, if t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x], then x : t1 → t2 ≡t

x : t3 → t4.Proof. We have the following proof.
t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x]

⇐⇒ (By Theorem 6p24 (Sub
ontra
t is Antisymmetri
))
t1 ≦ t3 and t3 ≦ t1 and
(∀e ∈ t1. t2[e/x] ≦ t4[e/x] and ∀e ∈ t1. t4[e/x] ≦ t2[e/x])

⇐⇒ (Sin
e t1 ≡t t3, e ∈ t1 ⇐⇒ e ∈ t3.)
t3 ≦ t1 and ∀e ∈ t1. t2[e/x] ≦ t4[e/x] and
t1 ≦ t3 and ∀e ∈ t1. t4[e/x] ≦ t2[e/x]

⇒ (By [C-DepFun℄ in Figure 7)
x : t1 → t2 ≦ x : t3 → t4 and x : t3 → t4 ≦ x : t1 → t2

⇐⇒ (By Theorem 6p24 (Sub
ontra
t is Antisymmetri
))
x : t1 → t2 ≡t x : t3 → t4We are done.Lemma 11 (Dependent Tuple Contra
t Equivalen
e). For all 
ontra
ts t1, t2, t3, t4,if t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x], then (x : t1, t2) ≡t (x : t3, t4).
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king 26Proof. We have the following proof.
t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x]

⇐⇒ (By Theorem 6p24 (Sub
ontra
t is Antisymmetri
))
t1 ≦ t3 and t3 ≦ t1 and
(∀e ∈ t1. t2[e/x] ≦ t4[e/x] and ∀e ∈ t1. t4[e/x] ≦ t2[e/x])

⇐⇒ (Sin
e t1 ≡t t3, e ∈ t1 ⇐⇒ e ∈ t3.)
t3 ≦ t1 and ∀e ∈ t1. t2[e/x] ≦ t4[e/x] and
t1 ≦ t3 and ∀e ∈ t1. t4[e/x] ≦ t2[e/x]

⇒ (By [C-DepFun℄ in Figure 7)
(x : t1, t2) ≦ (x : t3, t4) and (x : t3, t4) ≦ (x : t1, t2)

⇐⇒ (By Theorem 6p24 (Sub
ontra
t is Antisymmetri
))
(x : t1, t2) ≡t (x : t3, t4)We are done.Theorem 7 (Sub
ontra
t and Crashes-more-often Ordering). For all t1 and

t2,
∀e. e ⊲ t1 � e ⊲ t2 ⇒ t1 ≦ t2Proof. We have the following proof:

∀e. e ⊲ t1 � e ⊲ t2

⇒ (By Lemma 7p15 (
) (Properties of Crashes-more-often - II))
∀e. e ⊲ t1 is 
rash-free⇒ e ⊲ t2 is 
rash-free

⇒ (By Theorem 2p18 (grand theorem))
∀e. e ∈ t1 ⇒ e ∈ t2

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
t1 ≦ t2

5 Stati
 
ontra
t 
he
king and residualizationThanks to the ground-breaking higher order 
ontra
t wrappers ⊲⊳ (�rst intro-du
ed in [13℄), whi
h makes the analysis of higher order program mu
h easier.From Theorem 3, all we need is to show that e ⊲ t is 
rash-free. That is to
he
k the rea
hability of BAD as ea
h BAD signals a 
ontra
t violation. We 
ansymboli
ally simplify e ⊲ t as mu
h as possible to e′ and 
he
k for o

urren
e ofBAD in e′.We introdu
e an SL ma
hine (Figure 10) whi
h 
ombines symboli
 simpli�
a-tion and 
ontextual information (
tx-info) synthesis with logi
al formulae. Thenovelty of our work is to 
ombine them in a way to a
hieve veri�
ation, blamingand residualization in one-go. The SL ma
hine takes an expression e and pro-du
es its semanti
ally equivalent and simpli�ed version. A 4-tuple 〈H || e || S || L〉is pronoun
ed simplify and a 4-tuple 〈〈H || e || S || L〉〉 is pronoun
ed rebuild where� H is an environment mapping variables to trivial values;RR n° 7794
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〈H || n || S || L〉 〈〈H || n || S || L〉〉 [S-
onst℄
〈H || r || S || L〉 〈〈H || r || S || L〉〉 [S-exn℄
〈H[x 7→ tval] || x || S || L〉 〈〈H[x 7→ tval] || tval || S || L〉〉 [S-var1℄if x /∈ H, 〈H || x || S || L〉 〈〈H || x || S || L〉〉 [S-var2℄
〈H || λxτ .e || S || L〉 〈H || e || (λx.•) :: S || L, ∀x : [[τ ]]〉 [S-lam℄
〈H || e1 e2 || S || L〉 〈H || e1 || (• e2) :: S || L〉 [S-app℄
〈H || mat
h e0 with alts || S || L〉
 〈H || e0 || (mat
h • with alts) :: S || L〉 [S-mat
h℄
〈H || K (a1, . . . , ei, . . . , en) || S || L〉
 〈H || ei || (K (a1, . . . , •, . . . , en)]) :: S || L〉 [S-K℄if x 6∈ fv(e),
〈H || let x = e1 in e2 || (• e) :: S || L〉
 〈H || let x = e1 in e2 e || S || L〉 [S-letL℄if fv (e) ∩ −→xi = ∅,

〈H || (mat
h e0 with −−−−−−−→
K −→x → ei) || (• e) :: S || L〉

 〈H || mat
h e0 with −−−−−−−−→
K −→x → ei e || S || L〉 [S-mat
hL℄if x 6∈ fv(a),

〈H || val || (• (let x = e1 in e2)) :: S || L〉
 〈H || let x = e1 in val e2 || S || L〉 [S-letR℄if fv(val) ∩−→x = ∅,

〈H || val || (• (mat
h e0 with −−−−−−→
K −→x → e)) :: S || L〉

 〈H || mat
h e0 with −−−−−−−−−−→
K −→x → val e || S || L〉 [S-mat
hR℄if fv (alts) ∩ −→x = ∅,

〈H ||
mat
h e0 with
−−−−−−→
K −→x → e

|| (mat
h • with alts) :: S || L〉

 〈H ||
mat
h e0 with
−−−−−−−−−−−−−−−−−−−−→
K −→x → mat
h e with alts

|| S || L〉 [S-mat
h-mat
h℄if x 6∈ fv(alts),
〈H || let x = e1 in e2 || (mat
h • with alts) :: S || L〉
 〈H || let x = e1 in mat
h e2 with alts || S || L〉 [S-mat
h-let℄Figure 9: SL ma
hine part (a)RR n° 7794
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〈〈H || a || [ ] || L〉〉 a [R-done℄if (s 6= mat
h e with K −→x → (•,S,L)),
〈〈H || r || s :: S || L〉〉 〈〈H || r || S || L〉〉 [R-r℄
〈〈H || a || (λx.•) :: S || L〉〉 〈〈H || λx.a || S || L〉〉 [R-lam℄Rules below: a /∈ {BADl, UNRl}
〈〈H || a || (• e2) :: S || L〉〉 〈H || e2 || (a •) :: S || L〉 [R-fun℄
〈〈H || val || ((λx.a1) •) :: S || L〉〉 〈〈H[x 7→ val] || a1 || S || L〉〉 [R-beta℄if a1 6= λx.a′ or a 6= val,
〈〈H || a || (a1 •) :: S || L〉〉 〈〈H || a1 a || S || L〉〉 [R-app℄
〈〈H || an || (K a1 . . . •) :: S || L〉〉 〈〈H || K −→a || S || L〉〉 [R-K℄
〈〈H || K −→a || (mat
h • with {. . . ;K −→x → e; . . . }) :: S || L〉〉
 〈H || let −−−→x = a in e || S || L〉 [R-K-mat
h℄if exists (K −→

xτ ) su
h that L ⇒ (∃
−−−−→
x : [[τ ]], [[a]](K −→x )),

〈〈H || a || (mat
h • with −−−−−−−→
K

−→
xτ → e) :: S || L〉〉

 〈H || e || S || L, ∃
−−−−→
x : [[τ ]], [[a]](K −→x )〉 [R-s-mat
h℄if for all (K −→

xτ ) su
h that L 6⇒ (∃
−−−−→
x : [[τ ]], [[a]](K −→x )),

〈〈H || a || (mat
h • with −−−−−−−→
K

−→
xτ → e) :: S || L〉〉

 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈H || e ||
(mat
h a with K

−→
xτ

→ (•,S,L)) :: [ ]
|| L, ∃

−−−−→
x : [[τ ]],

[[a]](K −→x )

〉 [R-s-save℄
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
〈〈H || a || (mat
h a0 with K −→x → (•,S,L)) :: S ′ || L′〉〉

 〈〈H || mat
h a0 with −−−−−−−→
K −→x → a || S || L〉〉 for some S ′ and L′ [R-mat
h℄

〈〈H || a || (let xτ = • in e2) :: S || L〉〉
 〈H || e2 || (let x = a in •) :: S || L, ∃x : [[τ ]], [[a]]x〉 [R-let-save℄Figure 10: SL ma
hine part (b)� e is the expression under simpli�
ation (or being rebuilt);� S is a sta
k whi
h embodies the simpli�
ation 
ontext, or 
ontinuationthat will 
onsume a simpli�ed expression;
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(let x = e1 in e2) e =⇒ let x = e1 in e2 e [letL]if fv (e) ∩ −→x = ∅,

(mat
h e0 with −−−−−−−→
K −→x → ei) e

=⇒ mat
h e0 with −−−−−−−−−−→
K −→x → (ei e) [mat
hL]if x 6∈ fv (e),

tval (let x = e1 in e2) =⇒ let x = e1 in tval e2 [letR]if fv (tval) /∈ −→x ,

val (mat
h e0 with −−−−−−→
K −→x → e)

=⇒ mat
h e0 with −−−−−−−−−→
K −→x → val e [mat
hR]if fv (alts) ∩ −→x = ∅,mat
h (mat
h e0 with −−−−−−→

K −→x → e) with alts

=⇒ mat
h eo with −−−−−−−−−−−−−−−−−−−−→
K −→x → mat
h e with alts [mat
h-mat
h]if x /∈ fv (alts),mat
h (let x = e1 in e2) with alts

=⇒ let x = e1 in mat
h e2 with alts [mat
h-let]mat
h K a1 . . . an with {. . . ;K x1 . . . xn → e; . . . }
=⇒ let x1 = a1 in . . . let xn = an in e [s
rut-mat
h]Figure 11: Simpli�
ation Rules� L is a logi
al store whi
h 
ontains the 
tx-info in logi
al formula form; itssyntax is

L ::= ∅ | ∀x : τ,L | φ,Lwhere φ is a predi
ate in Figure 12.The job of SL ma
hine is to simplify an expression as mu
h as possible, 
on-sulting the logi
al store when ne
essary; when it 
annot simplify the expressionfurther, rebuilds the expression.5.1 The SL ma
hineIn Figure 10, the 
onstant n and blame r 
annot be simpli�ed further, thusbeing rebuilt as shown in [S-
onst℄ and [S-exn℄ respe
tively. One might ask whywe rebuild rather than return a blame. There are two reasons: (a) it givesmore information for stati
 error reporting, i.e. we know 
onditions leading toa rea
hable BAD; (b) as we do hybrid 
ontra
t 
he
king, we want to send theresidual 
ode with undis
harged blames to a dynami
 
he
ker.As we perform symboli
 simpli�
ation rather than evaluation (as in CEKma
hine [16℄), we only put a variable in the environment H if it denotes atrivial value. A variable denoting a top-level fun
tion is not put in H. Variablesin H are inlined by [S-var1℄ while variables not in H are rebuilt by [S-var2℄.RR n° 7794
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king 30Ea
h element on the sta
k is 
alled a sta
k frame where the hole • in a sta
kframe refers to the expression under simpli�
ation or being rebuilt. We use ato represent an expression that has been simpli�ed. the syntax of a sta
k frame
s in S is

s ::= [ ] | (• e) :: s | (e •) :: s | (λx.•) :: s | let x = • in e
| (mat
h • with alt) :: s | let x = e in •

| (mat
h e0 with −−−−−−−−−−−−→
K −→x → (•,S,L)) :: sThe transitions [S-app℄, [S-mat
h℄ and [S-K℄ implement the 
ontext redu
tion inFigure 3. The transitions [S-letL℄, [S-mat
hL℄, [S-letR℄, [S-mat
hR℄, [S-mat
h-mat
h℄, [S-mat
h-let℄ implement the 
onventional simpli�
ation rules in Fig-ure 11. Here, −→x abbreviates a sequen
e of x1, . . . , xn. We use let instead oflambda for easy reading. Rules [letL℄ and [mat
hL℄ push the argument into thelet-body and mat
h-body respe
tively. Rules [letR℄ and [mat
hR℄ push the fun
-tion into the let-body and mat
h-body. The rules [mat
h-mat
h℄ and [mat
h-let℄are to make an expression less nested. Rule [K-mat
h℄ allows us to simplifymat
h Some e with {Some x → 5; None → BAD}(where e is a 
rash-free expression, not a value) to let x = e in 5 whi
h is
rash-free.What does rebuild do? If the sta
k is empty ([R-done℄), whi
h indi
ates theend of the whole simpli�
ation pro
ess, we return the expression. Otherwise,we examine the sta
kframe. By [E-exn℄, the transitions [R-r-mat
h℄, [R-r-let℄,[R-r-fun℄ and [R-r-arg℄ rebuild UNR (or BAD) with the rest of the sta
k. After we�nish simplifying one subexpression, we start to simplify another subexpression(e.g. [R-fun℄). When all subexpressions are simpli�ed, we rebuild the expression(e.g. [R-lam℄ and [R-app℄). If 
urrent simpli�ed expression is a value andwe have sta
k frame lambda on S, we use [R-beta℄; together with [S-var1℄,they implement a beta-redu
tion [E-beta℄. Bound variables are renamed whenne
essary.The logi
al store L 
aptures all the 
tx-info up to the program point beingsimpli�ed. (We use if-expression to save spa
e, but refer to mat
h-transitions.)Consider:

〈H ||
(λx. if x > 0 then (if x+ 1 > 0then 5 else BAD)else UNR) || [ ] || ∅〉The [S-lam℄ puts ∀x : int in L, whi
h is initially empty:

〈H ||

(if x > 0then (if x+ 1 > 0then 5 else BAD)else UNR) || (λx.•) :: [ ] || ∀x : int〉The [S-mat
h℄ starts to simplify the s
rutinee x > 0, whi
h is being rebuilt aftera few trivial steps.
〈〈H || x > 0 ||

(if • then (if x+ 1 > 0then 5 else BAD)else UNR) :: (λx.•) :: [ ] || ∀x : int〉〉RR n° 7794
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king 31Before applying the transition [R-s-save℄, we 
he
k whether x > 0 or not(x >
0) is implied by L to see whether the transition [R-s-mat
h℄ 
an be applied.The transition [R-s-mat
h℄ implements [E-mat
h℄, where the side 
ondition�if ∃(K −→x ), L ⇒ [[a]](K −→x )" 
he
ks if there is any bran
hK −→x that mat
hes thes
rutinee. But the 
urrent information in L is not enough to show the validityof either x > 0 or not(x > 0). By [R-s-save℄, we 
onvert this s
rutinee to log-i
al formula with [[a]](K −→x ) (explained later) and put it in L and simplify bothbran
hes. Note that, we put x > 0 in L for the true bran
h while not(x > 0)for the false bran
h.

[〈H ||
if x+ 1 > 0then 5 else BAD ||

(if x > 0 then •)
:: (λx.•) :: [ ]

||
∀x : int,
x > 0

〉;

〈H || UNR || (if x > 0 else •) :: S || ∀x : int, not(x > 0)〉]In the true bran
h, after a few steps, we rebuild the s
rutinee x + 1 > 0.In this 
ase, ∀x : int, x > 0 ⇒ x+ 1 > 0 is valid. By [R-s-mat
h℄, we take thetrue bran
h, whi
h is a 
onstant 5. As both 5 and UNR 
annot be simpli�edfurther, we rebuild them by [S-
onst℄ and [S-unr℄ respe
tively and obtain:
[〈〈H || 5 ||

(if x > 0 then •})
:: (λx.•) :: [ ]

||
∀x : int, x > 0,
(x+ 1 > 0)

〉〉;

〈〈H || UNR ||
(if x > 0 else •})
:: (λx.•) :: [ ]

||
∀x : int,
not(x > 0)

〉〉]By [R-mat
h℄, we 
ombine both simpli�ed bran
hes to rebuild the mat
h-expression:
〈〈H || if x > 0 then 5 else UNR || (λx.•) :: [ ] || ∀x : int〉〉We 
ontinue to rebuild the expression by [R-lam℄:

〈〈H || λx. if x > 0 then 5 else UNR || [ ] || ∀x : int〉〉and terminate (by [R-done℄) with a synta
ti
ally safe expression:
λx. if x > 0 then 5 else UNR.Besides [R-s-save℄, another transition that saves 
tx-info to L is [R-let-save℄.Consider an example:

λv. let y = v + 1 in if y > v then y else BADAfter a few simpli�
ation steps, we have:
〈〈H || v + 1 || (let y = • in if y > vthen y else BAD) :: (λv.•) :: [ ] || ∀v : int〉〉The rule [R-let-save℄ saves the information y = v + 1 to L, whi
h allows us to
he
k the validity of the s
rutinee y > v later.
〈H ||

if y > vthen yelse BAD ||
(let y = v + 1 in •)
:: (λx.•) :: [ ]

||
∀v : int,
∃y : int,
y = v + 1

〉RR n° 7794
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king 32Sin
e ∀v : int, ∃y : int, y = v + 1 ⇒ y > v is valid, by [R-s-mat
h℄, we onlyneed to simplify the true bran
h:
〈H || y ||

(let y = v + 1 in •)
:: (λv.•) :: [ ]

||
∀v : int, ∃y : int,
y = v + 1, y > v

〉whi
h leads to the �nal result λv. let y = v + 1 in y, whi
h is synta
ti
allysafe.Theorem 8 (SL ma
hine terminates). For all expression e, there exists anexpression a su
h that 〈∅ || e || [ ] || ∅〉 ∗ a.Proof. See Appendix B.2.Intuitively, SL ma
hine behaves like CEK ma
hine [16℄, but does not inlinetop-level fun
tions and we do not have lo
al let re
 in our language. Wealso 
all SMT solver Alt-ergo with an option �-stop <time-bound>� or �-steps<bound>� to make sure the SMT solver terminates. So there is no element
ausing non-termination.Theorem 9 (Corre
tness of SL ma
hine). For all expression e, if 〈∅ || e || [ ] || ∅〉 ∗

a, then e ≡s a.Proof. See Appendix B.2.The SL is designed in a way su
h that the simpli�ed a preserves the semanti
sof the original expression e. The proof of Therem 9 (in Appendix B.2) uses thefa
t that, if there exists e3 su
h that 〈H || e1 || S || L〉  ∗ 〈H || e3 || S || L〉 and
〈H || e2 || S || L〉 ∗ 〈H || e3 || S || L〉, then e1 ≡s e2.Theorem 10 (Soundness of stati
 
ontra
t 
he
king). For all 
losed expression
e, and 
losed and terminating 
ontra
t t,

〈∅ || e ⊲ t || [ ] || ∅〉 ∗ e′ and BAD /∈s e
′ ⇒ e ∈ tProof. By Theorem 9, Lemma 1 and Theorem 3.5.2 Logi
izationWe now explain the mysterious 
onvertion [[.]]f , whi
h we 
all logi
ization. Fig-ure 12 gives the abstra
t syntax of the logi
al formula supported by an SMTsolver named Alt-ergo [8℄, whi
h is an automati
 theorem prover for polymor-phi
 �rst order logi
 modulo theories. It uses 
lassi
al logi
 and assumes alltypes are inhabited. First, data type de
laration in language M, e.g.type 'a list = Nil | Cons of 'a * ('a list)is 
onverted to Alt-ergo 
ode with type and logi
 de
larations:type 'a listlogi
 nil : 'a listlogi
 
ons : 'a , 'a list -> 'a listRR n° 7794
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x, s, i, f ∈ Identifier

file ::= decl1, . . . , decln

bty ::= int | bool | i | 'i | −→bty i Base type

lty ::= bty | ~ty -> bty Logic type

ty ::= α | (ty1, . . . , tyn) s Types

decl ::= type ~'i s
| logi
~i : lty | axiom i : φ | goal i : φ

⊕ ::= + | - | * | /
⊙t ::= = | <> | < | <= | > | >=
⊙p ::= -> | <-> | or | and
m ::= n | x | m1 ⊕ m2 | - m | f −→m Term

φ ::= true | false | f −→m Predicate

| m1 ⊙t m2 | φ1 ⊙p φ2 | not(φ)
| forall ~x : ty.φ | exists ~x : ty.φFigure 12: Syntax of logi
 de
larationData type in language M:type −→'a s = K1 of −→

t1 | · · · | Kn of −→
tnCorresponding alt-ergo 
ode: type −→'a slogi
K1 :
−→
t1 -> −→'a s

:logi
Kn :
−→
tn -> −→'a sFigure 13: Converting data type to Alt-ergo 
odeAs Alt-ergo supports only �rst order logi
 (FOL), arguments of a logi
al fun
tionare a tuple, e.g. 'a , 'a list. The type variable 'a is assumed universallyquanti�ed at top-level. The 
onvertion algorithm for an arbitrary user-de�neddata type is in Figure 13.Moreover, we introdu
e a �rst order fun
tion type:type ('a, 'b) arrowwhi
h allows us to en
ode the fun
tion type in the langugage M to Alt-ergo's�rst order type where the 'a and 'b refer to a fun
tion's input type and outputtype respe
tively. We also introdu
e a logi
al fun
tion apply:logi
 apply : ('a, 'b) arrow , 'a -> 'bwhere en
oding with apply is 
onventional [22℄. Converting types in the lan-guage M is straight forward (Figure 14).

[[τ1 . . . τn T ]] = [[τ1]] . . . [[τn]] T
[[τ1 → τ2]] = ([[τ1]], [[τ2]]) arrowFigure 14: Converting higher order type to �rst order typeRR n° 7794
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king 34We now give an example showing that the SL ma
hine is better than theunrolling approa
h in [37, 40℄1.(* val len : 'a list -> int *)
ontra
t len = {x | true} -> {y | y >= 0}let len s = mat
h s with | [℄ -> 0| x::u -> 1 + len u(* val append : 'a list -> 'a list -> 'a list *)
ontra
t append = {xs | true} -> {ys | true}-> {len rs = len xs + len ys}let append xs ys = mat
h xs with| [℄ -> ys| x::u -> x :: append u ysThe fun
tion len 
omputes the length of a list and the fun
tion append appendstwo lists. Let ea and ta stand for the de�nition and 
ontra
t of append respe
-tively. Applying only simpli�
ation rules (in
luding redu
tion rules) to ea ⊲ ta,we get (R3):
λv1.λv2.mat
h v1 with
| [ ] → if len v2 = len v1 + len v2 then v2 else BADl1
| x :: u → if (len (x ::

(if len (append u v2) = len u+ len v2then append u v2 else UNR))
= len v1 + len v2)then x :: append u v2 else BADl2The simpli�
ation approa
h in [37℄ and the model 
he
king approa
h in [32℄involve inlining top-level fun
tions, while we do not. Instead, we axiomatize top-level fun
tion de�nitions 
alled in 
ontra
ts and lift expressions under 
he
kingto logi
 level and 
onsult an SMT solver. The 
hanllenge is to deal with non-total expressions (e.g. BAD) in our sour
e 
ode. In the literature of 
onvertingfun
tional 
ode (in an intera
tive theorem prover) to SMT formula [1, 9, 27, 6℄,they 
onvert expression to a logi
al form dire
tly. In [1℄, given a non-re
ursivefun
tion de�nition f = e, they �rst η-expand e to get f = λx1 . . . xn.e

′ where
e′ does not 
ontain λ; if it is a re
ursive fun
tion, they assume e is in a par-ti
ular form su
h that all lambdas are at top-level and the fun
tion perform-ing an immediate 
ase-analysis over one of its arguments. Then, they form
∀−→x , f(x1, . . . , xn) = [[e′]] where [[.]] 
onverts an expression to logi
al form. (Onthe other hand, [6℄ uses λ-lifting method: λ-abstra
tions are translated frominside out, ea
h λ-abstra
tion is repla
ed by a 
all to a newly de�ned fun
-tions. That is to form ∀−→x , fn(x1, . . . , xn) = [[e′]]; . . . ; ∀x1, f = f1(x1) .) Thisis �ne for 
onverting total terms, e.g. [[5]] = 5 and [[x]] = x, et
., but what are
[[BAD]] and [[UNR]]? Our key idea is not to 
onvert an expression dire
tly to a
orresponding logi
al term, but form equality with [[.]]f re
ursively (de�ned inFigure 15). The subs
ript f in [[e]]f denotes the expression e. Moreover, weperform neither η-expansion (whi
h does not preserve semanti
s in the presen
eof non-total terms) nor λ-lifting, and yet we allow arbitrary forms of re
ursivefun
tions. We have su
h �exibility be
ause we 
onvert λ-abstra
tion and partial1Unrolling approa
h may suit a lazy language better.RR n° 7794
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t Che
king 35appli
ation dire
tly with the help of apply. (Note that our logi
ization [[.]]f 
analso produ
e HOL formula for intera
tive proving by repla
ing (apply(f, x))by (f(x)) and not 
onverting the types.) No logi
ization work in the litera-ture (in
luding [9, 33, 27, 6℄) deal with non-total terms. The work [6℄ usesapproa
hes in [9, 27℄ to deal with polymorphism while Alt-ergo itself supportspolymorphism.Our framework 
an systemati
ally generate Alt-ergo 
ode, like below, toshow that those BADs in R3 are unrea
hable.logi
 len: ('a list, int) arrowlogi
 append: ('a list,('a list,'a list) arrow) arrowaxiom len_def_1 : forall s:'a list. s = nil ->apply(len,s) = 0axiom len_def_2 : forall s:'a list. forall x:'a.forall l:'a list. s = 
ons(x,l) ->apply(len,s) = 1 + apply(len,l)goal app_1 : forall v1,v2:'a list. v1 = nil ->apply(len,v2) = apply(len,v1) + apply(len,v2)goal app_2 : forall v1,v2,l:'a list.forall x:'a.v1 = 
ons(x,l) ->apply(len,apply(apply(append,l),v2))= apply(len,l) + apply(len,v2) ->(exists y:'a list. y = apply(apply(append,l),v2)and apply(len,
ons(x, y))= apply(len,v1) + apply(len,v2))To make an SMT solver's life easier (i.e. multiple small axioms are better thanone big axiom), we have two axioms for len, one for ea
h bran
h, whi
h areself-explanatory. As a 
onstru
tor is always fully applied, we do not en
ode itsappli
ation with apply. The -> (in axioms and goals) is a logi
al impli
ation.For example, in the goal app_1, the 
tx-info v1=nil is from the pattern mat
h-ing mat
h v1 with {[℄ -> ....}; the query is the s
rutinee apply(len,v2)= apply(len,v1) + apply(len,v2). Alt-ergo says valid for both goals.First, how to systemati
ally 
onvert a fun
tion de�nition to an axiom (e.g.len_def_1)? Figure 15 gives an operator [[.]]f that 
onverts an expression to alogi
al formula. The subs
ript f in [[e]]f denotes the expression e. For example,we 
an get len_def_1 thus:
[[λs'a list. mat
h s with {Nil → 0}]]len

= ∀s :'a list.[[mat
h s with {Nil → 0}]](apply(len,s))
= ∀s :'a list. ∃x0 :'a list.[[s]]x0

∧
(x0 = nil -> [[0]](apply(len,s)))

= ∀s :'a list. ∃x0 :'a list. x0 = s ∧
(x0 = nil -> apply(len, s) = 0)Let x0 be s, we get a more readable version (axiom len_def_1).RR n° 7794
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⊕ ∈ [+,−, ∗, /] ⊙ ∈ [>,<,=]

[[.]]f : Expression → Formula

[[let (re
) f = e]]f = [[e]]f top-level defn
[[BADl]]f =

{

true for axioms
false for goals

[[UNRl]]f = false

[[x]]f = f = x
[[n]]f = f = n

[[eτ1 ⊕ eτ2 ]]f = ∃x1 : [[τ ]], ∃x2 : [[τ ]],
([[e1]]x1

∧ [[e2]]x2
∧ f = x1 ⊕ x2)

[[eτ1 ⊙ eτ2 ]]f = ∃x1 : [[τ ]], [[e1]]x1
∧

∃x2 : [[τ ]], [[e2]]x2
∧

((x1 ⊙ x2 ∧ f = true)∨
(not(x1 ⊙ x2) ∧ f = false))

[[λxτ .e]]f = ∀x : [[τ ]], [[e]](apply(f,x))
[[let xτ = e1 in e2]]f = ∃x : [[τ ]], [[e1]]x ∧ [[e2]]f

[[eτ11 eτ22 ]]f = ∃x1 : [[τ1]], [[e1]]x1
∧

∃x2 : [[τ2]], [[e2]]x2
∧

f = apply(x1, x2)
[[K eτ11 . . . eτnn ]]f = ∃x1 : [[τ1]], [[e1]]x1

∧ · · · ∧
∃xn : [[τn]], [[en]]xn

∧ f = K (x1, . . . , xn)

[[
mat
h eτ00 with
−−−−−−−→
K

−→
xτ → e

]]f =
∃x0 : [[τ0]], [[e0]]x0

∧

(
∧

−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ ]], (x0 = K −→x ) ⇒ [[e]]f )Figure 15: Convert expression to logi
al formulaTheorem 11 (Logi
ization for axioms). Given de�nition f = eτ , ∀fv (e), ∃f : τ, [[e]]fis valid.Proof. See Appendix B.1.Next, what query (i.e. goal) shall we make? All we want is to 
he
k thebran
h leading to BAD is rea
hable or not. So our task is to examine thes
rutinee of a mat
h-expression. For example, in the goal app_1, the 
tx-info v1=nil is from the pattern mat
hing mat
h v1 with {[℄ -> ....}; thequery is apply(len,v2) = apply(len,v1) + apply(len,v2). The goal app_1states the 
tx-info L implies the s
rutinee. We have L = ∀v1 : 'a list, ∀v2 :'a list, v1 = nil by [S-lam℄ and [R-s-save℄. The s
rutinnee is [[len v2 =len v1 + len v2}]]true. That is, we want to 
he
k whether len v2 = len v1 +len v2 is equivalent to true. Sending the Alt-ergo 
ode in this paper to Alt-ergosolver, it replies valid for both goals. Thus, we know both BADl1 and BADl2 arenot rea
hable.Theorem 12 (Logi
ization for goals: validity preservation). For all (possiblyopen) expression eτ , ∃f : τ , if ∀fv (e) : τ, [[e]]f is valid and e → e′ for some e′,then ∀fv(e′), [[e′]]f is valid.Proof. See Appendix B.1.There are a few things to note about logi
ization.RR n° 7794
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t Che
king 37Syntax abbreviation The Alt-ergo syntax
−−−−−−−−−→logi
 x : lty;

−−−−−−−−−→axiom ai : φi;
−−−−−−−−→goal gj : φjis semanti
ally the same as ∀−−−→x : lty,

−→
φi ⇒

−→
φj where −→

φ means a 
onjun
tion ofa set of logi
al formulae.Only fun
tions 
alled in 
ontra
ts are 
onverted to Alt-ergo axiomsTo 
he
k a fun
tion (say append) satis�es its 
ontra
t, we do not 
onvert its de�-nition to axioms. As the wrappers ⊲, ⊳ have inserted 
ontra
t 
he
king obligationappropriately su
h that fun
tion 
alls (in
luding re
ursive 
alls) are guarded bytheir 
ontra
ts.Crashing fun
tions 
alled in 
ontra
ts In Figure 15, there are two 
on-vertions for BAD, true for axioms and false for goals. For example, we mayhave:
ontra
t g = {x | x /= [℄} -> {y | head x > y}In this 
ase, the 
ontra
t of g is 
rash-free even if a partial fun
tion head is
alled in the 
ontra
t. The logi
ization of head gives:logi
 head : ('a list, 'a) arrowaxiom head_def_1 : forall x:'a list. x=[℄ -> trueaxiom head_def_2 : forall x,l:'a list.forall y:'a.x = 
ons(y,l) -> apply(head, x) = yThe key thing is that the axiom head_def_1 is not a false axiom, it just doesnot give us any information, whi
h is what we want.Contra
ts that diverge Suppose divergent fun
tions loop and nloop areused in a 
ontra
t.let re
 loop x = loop xlet re
 nloop x = not (nloop x)Logi
ization gives:logi
 loop : 'a -> 'aaxiom loop_def_1 : forall x:'a.apply(loop, x) = apply(loop, x)logi
 nloop : bool -> boolaxiom nloop_def_1 : forall x:bool.apply(nloop, x) = not(apply(nloop, x))Axiom loop_def_1 is same as stating true, whi
h does not hurt. But axiomnloop_def_1 is same as stating false, whi
h we must not allow. Fortunately,we only 
onvert fun
tions used in 
ontra
ts that 
an be proved terminating (inSe
tion 4.5) to axioms. We will not generate the axiom nloop_def_1.
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t Che
king 38BAD and UNR For goals, the [[e]]f 
olle
ts 
tx-info before a s
rutinee of amat
h-expression, thus, [[BAD]]f = [[UNR]]f = false, whi
h implies everything. Forexample:fun x -> let y = if x > 0 then x else UNR inif y + 1 > 0 then y + 1 else BADThe 
tx-info L before y+1 > 0 is ∀x : int, ∃y : int, (x > 0 ⇒ y = x)∧ (not(x >
0) ⇒ false). So L ⇒ y + 1 > 0 is ∀x : int, ∃y : int, (x > 0 ⇒ y = x) ∧ (not(x >
0) ⇒ false) ⇒ y+1 > 0, whi
h is valid. It means, if not(x > 0) holds, y+1 > 0will not be rea
hed. Similar reasoning applies if we repla
e the UNR by BAD inthe above example.5.3 Dis
ussion and preliminary experimentsOne might noti
e that SL ma
hine simpli�es terms under lambda and the bodyof mat
h-expression while we do not have su
h exe
ution rules in Figure 3. Aswe rebuild blames and do not inline re
ursive fun
tions (i.e. no 
rashing andno looping during simpli�
ation), SL ma
hine does not violate 
all-by-valueexe
ution.

∆(n) = n [D1℄
∆(x) = x if x /∈ dom(∆) or [x 7→ ⊥] ⊆ ∆ [D2℄

∆[x 7→ m](x) = m [D3℄
∆(∃x : ty, x = m ∧ φ1) = ∆[x 7→ ∆(m)](φ1) [D4℄

∆(m1 ⊙t m2) = ∆(m1)⊙t ∆(m2) [D5℄
∆(φ1 ⊙p φ2) = ∆(φ1)⊙p ∆(φ2) [D6℄

∆(∀x : ty. φ1) = ∀x : ty, ∆(φ1) [D7℄Figure 16: Partial elimination of ∃ quanti�ersOne might noti
e that the logi
ization generates some existentially quanti�edvariables and simple equalities whi
h 
an be easily eliminated. By observingthe 
onversion in Figure 15, we may en
ounter some sub-formula in this form:
∃x : ty, x = m ∧ φ, whi
h 
an be simpli�ed to φ[m/x]. A simple ∃-eliminationalgorithm in Figure 16 is good enough to eliminate some (but not all) existentialquanti�ers from the formula. The environment ∆ 
aptures the maping from an
∃-bound variable to a term. For example:

∆(∀y : int, ∃x : int, x = y ∧ (∃x : int, x = 8 ∧ x > 6))
= (By [D7℄)

∀y : int,∆(∃x : int, x = y ∧ (∃x : int, x = 8 ∧ x > 6))
= (By [D4℄)

∀y : int,∆[x 7→ y](∃x : int, x = 8 ∧ x > 6)
= (By [D4℄)

∀y : int,∆[x 7→ 8](x > 6)
= (By [D5℄)

∀y : int,∆[x 7→ 8](x) > ∆[x 7→ 8](6)
= (By [D1℄ and [D0℄)

∀y : int, 8 > 6RR n° 7794



Hybrid Contra
t Che
king 39The ∆[x 7→ ∆(m)] means that, if x /∈ dom(∆), we extend the environment
∆ with [x 7→ ∆(m)]; if x ∈ dom(∆), we update x with the term ∆(m). Therest is self-explanatory.Theorem 13 (Corre
tness of ∃ quanti�ers elimination). For all FOL formula
φ, ∆(φ) is valid if and only if φ is valid.Proof. The only 
hange to the formula φ is to substitute the existentially quan-ti�ed x by m. Sin
e we have the equality x = m and the 
onjun
tion, it isimmediate that the substitution is 
orre
t.One might worry that the rule [mat
h-mat
h℄ 
auses exponential 
ode ex-plosion for stati
 analysis (although no run-time overhead). For example, h1 =if (if a then b else c) then d else e, where a, b, c, d, e are expressions. At pro-gram point d, the 
tx-info is (a ⇒ b) ∧ (not(a) ⇒ c)2. Applying [mat
h-mat
h℄to h1, we get: h2 = if a then (if b then d else e) else (if c then d else e).The d is dupli
ated and the 
tx-info for the �rst d is a ∧ b while for the se
ond
d is not(a)∧ c. With [mat
h-mat
h℄, we send smaller formula to an SMT solver(whi
h is good for an SMT solver), but we may 
ommuni
ate with the SMTsolver more often. From our 
urrent observation, it is quite often that the c isBAD or UNR, the SL ma
hine immediately rebuilds the blame with the rest of thesta
k, and we get: if a then (if b then d else e) else c. So d is not dupli
atedand we have smaller formula for the SMT solver.One advantage of the SL ma
hine is to allow adding or removing a rule easily.In the in
 example in �2, with rule [mat
hR℄, we 
an simplify

(λv.v + 1) (if x1 > 0 then x1 else UNR?)to if x1 > 0 then (λv.v + 1) x1 else (λv.v + 1) UNR?. As the variable x1and the 
ontra
t ex
eption UNR? are values, performing beta-redu
tion, we get:if x1 > 0 then x1 + 1 else UNR?. Now, we have a logi
al formula (denoted byQ2):
∃y, (x1 > 0 ⇒ y = x1 + 1) ∧ (not(x1 > 0) ⇒ false) [Q2℄whi
h is equivalent but smaller than the Q1 in �2.We have implemented a prototype3 based on the sour
e 
ode of o
aml
-3.11.2. Table 1 shows the results of preliminary experiments, whi
h are done ona PC running Ubuntu Linux with quad
ore 2.93GHz CPU and 3.2GB memory.We take some examples from [25℄ and OCaml stdlib and time the stati
 
he
king.The 
olumn Ann gives the LOC for 
ontra
t annotations.The preliminary result is promising: it 
he
ks a hundred lines of 
ode (LOC)in a few se
onds. This paper fo
uses on the theory of hybrid 
ontra
t 
he
king,we leave more optimization and rigorous experimentation on tuning the strengthof symboli
 simpli�
ation and the frequen
y of 
alling an SMT solver as futurework.2To illustrate the idea with less 
luttered form, we omit the 
onversion notation [[.]]f for a,

b, c, d, e.3http://gallium.inria.fr/�naxu/resear
h/h

.html
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Hybrid Contra
t Che
king 40Table 1: Results of preliminary experimentsprogram total LOC Ann LOC Time (se
)intro123, neg 23 4 0.08M
Carthy's 91 4 1 0.02a
k, fhnhn 12 2 0.06arith, sum, max 26 4 0.20zipunzip 12 2 0.10OCaml stdlib/list.ml 81 16 0.726 Hybrid 
ontra
t 
he
kingWe have explained with examples how SCC, DCC, HCC work in Se
tion 2.Programmers may 
hoose to have SCC only, DCC only, or HCC. In this se
tion,we summarize their algorithm. Given a program fi ∈ ti, fi = ei for 1 ≤ i ≤ n.Suppose fi is the 
urrent fun
tion under 
ontra
t 
he
king; fj is a fun
tion 
alledin fi (in
luding fi's re
ursive 
all); sl is the SL ma
hine; rmUNR implements therule [rmUNR℄ (mentioned earlier in Se
tion 2).
(if e0 then e1 else UNR) =⇒ e1 [rmUNR]We have: [SCC℄ : sl(ei[(fj ⊳fjfi tfj )/fj ] ⊲fi? t)[DCC℄ : ei[(fj

BADfj
⊲⊳BADfi tfj )/fj][HCC℄ : fi♯ = λ?.rmUNR(sl(ei[((fj♯ “fi”) ⊳fjfi tfj )/fj ] ⊲fi? t))In [HCC℄, the residual 
ode fi♯'s parameter �?" waits for a 
aller's name. Forexample, if an STM solver 
annot prove the goal app_2 in Se
tion 5.2 (althoughit 
an), re
alling R3 in Se
tion 5.2, the residual 
ode append♯ is:

λ?.λv1.λv2.mat
h v1 with
| [ ] → v2;
| x :: l → if len (x :: append t v2) = len v1+len v2then x :: append t v2 else BADlwhi
h says that we only have to 
he
k post
ondition for the se
ond bran
h. (Ifall BADs are simpli�ed away during SCC, a residual 
ode of a fun
tion is itsoriginal de�nition.)Lemma 12 (Teles
oping property [7, 39℄). For all expression e, total 
ontra
t

t, blames r1, r2, r3, r4, (e
r1
⊲⊳
r2

t)
r3
⊲⊳
r4

t = e
r1
⊲⊳
r4

t.Pre
ondition of a fun
tion is 
he
ked at 
aller sites. An fj♯ is the simpli�ed
fj ⊲

fj
fi
tfj , inspe
ting [HCC℄, ea
h fj at 
aller sites is repla
ed by (fj ⊲

fj
fi
tfj )⊳

fj
fi
tfj ,whi
h is (fj BADfj

⊲⊳UNRfi tfj ) UNRfj
⊲⊳BADfi tfj . By the teles
oping property, we have:

(fj
BADfj
⊲⊳UNRfi tfj ) UNRfj

⊲⊳BADfi tfj = fj
BADfj
⊲⊳BADfi tfj [T1℄RR n° 7794



Hybrid Contra
t Che
king 41whi
h is the same as in DCC. This shows that [HCC℄ blames f if and only if[DCC℄ blames f .Moreover, [T1℄ justi�es the 
orre
tness of applying the rule [rmUNR℄ be
auseall UNRs are indeed unrea
hable as BADl is invoked before UNRl for the same l.That is, (if p then e1 else BADl) is invoked before (if p then e else UNRl)for the same p, maybe di�erent e. So it is safe to apply the rule [rmUNR℄even if p diverges or 
rashes be
ause the same p in (if p then e1 else BAD)diverges or 
rashes �rst. It is easy to see if t = {x | p}. If t = t1 → t2, then
(e

BADfj
⊲⊳UNRfi t1 → t2)

UNRfj
⊲⊳BADfi t1 → t2 expands to

λv2.((λv1.(e (v1
UNRfi
⊲⊳BADfj t1))

BADfj
⊲⊳UNRfi t2) (v2 BADfi

⊲⊳UNRfj t1))
UNRfj
⊲⊳BADfi t2Fo
using on the BADs and UNRs above ⊲⊳, inspe
ting [P1℄ and [P2℄ in Figure 6,we 
an see that BADfj is invoked before UNRfj and BADfi is invoked before UNRfi .7 Related workContra
t semanti
s were �rst formalized in [7, 12℄ for a stri
t language and laterin [39℄ for a lazy language. This paper adapt and re-formalize some of theirideas on 
ontra
t satisfa
tion and 
ontra
t 
he
king. Detailed design deferen
eis explained in �4.Pre/post-
ondition spe
i�
ation using logi
al formulae [18, 15, 2, 33℄ allowsprogrammers to existentially quantify over in�nite domains or express meta-properties that are not expressible in 
ontra
ts. However, su
h property 
annotbe 
onverted to program 
ode for dynami
 
he
king. As automati
 stati
 
he
k-ing always has its limitation, being able to 
onvert some di�
ult 
he
ks todynami
 
he
ks is pra
ti
al. Re�nement types and 
ontra
ts 
an be enhan
edin many ways like we did for types, e.g. sub
ontra
t relation [12, 40℄, re
ur-sive 
ontra
ts [7℄, polymorphi
 
ontra
ts [3℄. Contra
ts also enjoy interestingmathemati
al properties [7, 12, 39, 38℄. We like the idea of ghost re�nementin [35℄ that separates properties that 
an be 
onverted to program 
ode fromthe meta-properties logi
al formulae.One might re
all the hybrid re�nement type 
he
king (HTC) [14, ?℄. In the-ory, [17℄ shows that (pi
ky/indy, i.e. our) 
ontra
t 
he
king is able to give moreblame than re�nement type 
he
king in the presen
e of higher order dependentfun
tion 
ontra
ts. That is partly why [35℄ invents a Kind 
he
ker to reportill-formed re�nement types. As dis
ussed in �4.3, we 
he
k e ⊲ t to be 
rash-freein one-go and do not have to 
he
k t to be 
rash-free separately. In pra
ti
e, the

H and L in the SL ma
hine serve the similar purpose as the typing environmentin HTC. But the symboli
 simpli�
ation gives more �exibility su
h as teasingout the path sensitivity analysis with the rule [mat
h-mat
h℄, et
. We hopethis work opens a venue to 
ompare HCC and HTC in pra
ti
e, su
h as thekind of properties we 
an verify, the speed of stati
 
he
king, the size and speedof the residual 
ode generated, et
. Notably, VeriFast [?℄ (for verifying C andJava 
ode) suggests that symboli
 exe
ution is faster than veri�
ation 
onditiongeneration method [15, 2℄.The work [23℄ mixes type 
he
king and symboli
 exe
ution. However, [23℄requires programmers to pla
e blo
k annotations {t t} for type 
he
king andRR n° 7794
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{s s} for symboli
 exe
ution while our SL ma
hine systemati
ally simpli�essubterms and 
onsults the logi
al store for 
he
king at the appropriate programpoint. The [23℄ does not generate residual 
ode while we do. Moreover, theirsymboli
 expression is in linear arithmeti
s, whi
h is more restri
tive than ours.Our approa
h is di�erent from [35℄, whi
h extra
ts proofs of re�nement typesfrom an SMT solver and inje
ts them as terms in the generated byte
ode RDCIL(like proof 
arrying 
ode) during re�nement type 
he
king. It is for se
uritypurpose.Some work [31, 24, 32, 25℄ suggest to 
onvert program to higher order re-
ursive s
heme (HORS), whi
h generates (possibly in�nite) trees, and spe
ifyproperties in a form of trivial automaton and do model 
he
king to know whetherHORS satis�es its desired property. Our approa
hes are 
ompletely di�erent al-though we both do rea
hability 
he
king. They work on automaton while wework on program dire
tly. Our approa
h is modular (no top-level fun
tion isinlined) while theirs is not. They deal with lo
al let re
 (i.e. invariant infer-en
e) while we do not, but we 
ould infer lo
al 
ontra
t with method in [21℄or inline the lo
al let re
 fun
tion for a �xed number of times. They deal withproto
ol 
he
king while we do not unless a proto
ol 
he
king problem 
an be
onverted to 
he
king the rea
hability of BAD. SL ma
hine (in �5) 
an be usedfor any problem that 
he
ks the rea
hability of BAD in general.The 
ontextual information synthesis and 
onversion of expression to logi
alformula is inspired by the use of the appli
ation • in [20, 19℄, whi
h makes
onversion of higher order fun
tions easier. But we use the te
hnique in di�erent
ontexts.Many papers on program veri�
ation [36, 15, 2, 30, 29, 11℄ fo
us on mem-ory leak, array bound 
he
ks, et
. and few handle higher order fun
tions andre
ursive predi
ates. Our work fo
us on more advan
ed properties and blamepre
isely fun
tions at fault. Contra
t 
he
king in the imperative world is leadby [11℄, whi
h stati
ally 
he
ks 
ontra
t satisfa
tion at byte
ode CIL level andrun dynami
 
he
king separately. Residualization has not been done in [11℄.We may adapt some ideas in [?℄ to extend our framework for program with sidee�e
ts.8 Con
lusionWe have formalized a 
ontra
t framework for a pure stri
t higher order subsetof OCaml. We propose a natural integration of stati
 
ontra
t 
he
king anddynami
 
ontra
t 
he
king. With SL ma
hine, our approa
h gives pre
ise blameat both 
ompile-time and run-time in the presen
e of higher order fun
tions. Innear future, besides rigorous experimentation and 
ase-studies, we plan to adduser-de�ned ex
eptions; allow side-e�e
ts in program and hidden side-e�e
ts in
ontra
ts; do 
ontra
t or invariant inferen
e as [11, 29, 21℄ are inspiring.A
knowledgement I would like to thank Xavier Leroy, Fran
ois Pottier,Ni
olas Pouillard, Martin Berger, Simon Peyton Jones and Mi
hael Greenbergfor their feedba
k.
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|.| :: Contract → Int

|{x | p}| = 1
|x : t1 → t2| = |t1|+ |t2|+ 1
|(t1, t2)| = |t1|+ |t2|+ 1
|Any| = 1Figure 17: Size of Contra
tAs some of the proofs involve the stru
tural indu
tion on the size of 
ontra
t,we de�ne it in Figure 17. To make the proof look less 
lustered, we use thefollowing shorthands:

cf : 
rash-free
ss : syntati
ally safedefn : de�nition
cl : 
losed
tl : total

T2

L3 L8 L4L15

t = t 1

T13 T12 L7

L18

L17

t = t 1

L14 L20 L19

L21 L22

T14

T15

L16

T16

Figure 18: Dependen
y of Theorems and Lemmas in Appendix ATo make the dependen
y of theorems and lemmas 
lear, a dependen
y dia-gram is shown in Figure 18. For many theorems and lemmas, we prove themby indu
tion on the size of 
ontra
t t. The dashed dire
ted edge shows thatthe size of the 
ontra
t de
reases, i.e. for a fun
tion 
ontra
t x : t1 → t2, weRR n° 7794
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all another lemma (or theorem) with t = t1 or t = t2. The solid dire
ted edgeshows the size of the 
ontra
t is preserved. This makes the proof well-foundedeven though there are 
y
les in the dependen
ies (examined in Se
tion A.3).Theorem 2 (Soundness and Completeness of Contra
t Che
king (grandtheorem)) For all 
losed expression eτ , 
losed and total 
ontra
t tτ ,
(e ⊲ t) is 
rash-free ⇐⇒ e ∈ tThere are two dire
tions to be proved:� e ∈ t ⇒ e ⊲ t is 
rash-free. The di�
ulty lies in the proof for dependentfun
tion 
ontra
ts. We appeal to a key lemma (Lemma 14p53 [Key lemma℄in Se
tion A.2).� e⊲t is 
rash-free ⇒ e ∈ t. The di�
ulty also lies in the proof for dependentfun
tion 
ontra
ts. We appeal to three things:� de�nition and properties of 
rashes-more-often (De�nition 7p14, Lemma 7p15).� proje
tion pair property of ⊲ and ⊳ (Theorem 15p55 in Se
tion A.5);� 
ongruen
e of 
rashes-more-often (Theorem 14p55 in Se
tion A.4).Proof. The notation eτ and tτ mean that both the expression e and the 
ontra
t

t are well-typed and they have the same type τ . The proof begins by dealingwith two spe
ial 
ases:� Case e →∗ BAD: We prove the two dire
tions separately.(⇒)
e ⊲ t is 
f

⇒ (By Lemma 3p13 (preservation of 
rash-freeness)and Lemma 8p21(b) (about Any))
t = Any

⇒ (By defn of ∈, every expression satis�es Any)
e ∈ t(⇐)
e ∈ t

⇒ (By Lemma 3p13 (preservation of 
rash-freeness)and Lemma 8p21(a) (about Any))
t = Any

⇒ (By defn of ⊲)
e ⊲ Any is 
rash-free� Case e ↑: By inspe
ting the de�nition of ⊲ and ∈, for all t, if e ↑, then

(e ⊲ t)↑ and e ∈ t. Thus, we are done.Hen
e, for the rest of the proof, we assume that e →∗ val 6∈ {BAD, UNR}.The rest of the proof is by indu
tion on the size of t.
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t Che
king 48� Case t is {x | p}:
e ⊲ {x | p} is cf

⇐⇒ (By defn of ⊲)








let x = e inmat
h p with
| true → x
| false→ BAD 







is cf
⇐⇒ (Sin
e e →∗ val 6∈ {BAD, UNR})

e is cf and p 6→∗ {BAD, false}
⇐⇒ (By defn of ∈)

e ∈ {x | p}� Case t is x : t1 → t2: we want to prove that
(e ⊲ x : t1 → t2) is 
f ⇐⇒ e ∈ x : t1 → t2We have the following indu
tion hypotheses:

∀cl e1, e1 ⊲ t1 is 
f ⇐⇒ e1 ∈ t1 [IH1]
∀cl e2, cl tl e′. e2 ⊲ t2[e′/x] is 
f ⇐⇒ e2 ∈ t2[e

′/x] [IH2]We have the following proof:
e ⊲ x : t1 → t2 is 
f.

⇐⇒ (By defn of ⊲)let y = e in λx1.(y (x1 ⊳ t1)) ⊲ t2[(x1 ⊳ t1)/x] is 
f.
⇐⇒ (Sin
e e →∗ val 6∈ {BAD, UNR})

λx1. (e (x1 ⊳ t1)) ⊲ t2[(x1 ⊳ t1)/x] is 
f.
⇐⇒ (By Lemma 4p13 (
rash-free fun
tion))
(†) ∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is 
f.Now the proof splits into two. In the reverse dire
tion, we start with theassumption e ∈ x : t1 → t2:
e ∈ x : t1 → t2

⇐⇒ (By defn of ∈)
∀ e1 ∈ t1. (e e1) ∈ t2[e1/x]

⇒ (By Lemma 14p53 (Key lemma), let e1 = e′ ⊳ t1)
∀cf e′. (e (e′ ⊳ t1)) ∈ t2[(e

′ ⊳ t1)/x])

⇐⇒ (By [IH2℄)
(†) ∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is 
f.Now we have rea
hed the desired 
on
lusion (†). The key step is the useof Lemma 14p53 (Key lemma) (see Se
tion A.2).
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t Che
king 49In the forward dire
tion, we start with (†):
∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is 
f.
⇒ (By [IH1℄, e1 ∈ t1 ⇒ (e1 ⊲ t1) is cf so we repla
e e′ by e1 ⊲ t1)

∀e1 ∈ t1. (e ((e1 ⊲ t1) ⊳ t1)) ⊲ t2[(e1 ⊲ t1 ⊳ t1)/x] is 
f
⇒ (By (Theorem 15p55 (proje
tion pair) andTheorem 14p55 (
ongruen
e of �) andLemma 7p15 (
) (property of �)) twi
e)

∀e1 ∈ t1. (e e1) ⊲ t2[e1/x]) is 
f
⇒ (By [IH2℄)

∀ e1 ∈ t1. (e e1) ∈ t2[e1/x])

⇐⇒ (by de�nition of ∈)
e ∈ x : t1 → t2There are two key steps: one is to 
hoose a parti
ular 
rash-free e′, namely

(e1 ⊲ t1) where e1 ∈ t1; the other one is the appeal to Theorem 15p55, theproje
tion pair property of ⊲ and ⊳ (see Se
tion A.5).� t is (x : t1, t2): We have the following indu
tion hypotheses:
∀cl e1. e1 ⊲ t1 is 
f ⇐⇒ e1 ∈ t1 [IH1]
∀cl e2, cl tl e′. e2 ⊲ t2[e′/x] is 
f ⇐⇒ e2[e

′/x] ∈ t2[e
′/x] [IH2]We prove it as follows.

e ⊲ (x : t1, t2) is cf
⇐⇒ (By defn of ⊲)mat
h e with {(x1, x2) → (x1 ⊲ t1, x2 ⊲ t2[x1 ⊳ t1/x])} is cf
⇐⇒ (By [E-mat
h℄ and defn of 
f)

e →∗ (e1, e2) and e1 and e2 are cf and
(e1 ⊲ t1) is cf and (e2 ⊲ t2[e1 ⊳ t1/x]) is cf

⇐⇒ (By [IH1℄)
(†) e →∗ (e1, e2) and e1 and e2 are cf and

e1 ∈ t1 and (e2 ⊲ t2[e1 ⊳ t1/x]) is cfNow the proof splits into two. In the forward dire
tion, we start with (†):
(†) e →∗ (e1, e2) and e1 and e2 are cf and

e1 ∈ t1 and e2 ⊲ t2[e1 ⊳ t1/x] is cf
⇒ (By Lemma 16p57 (Conditional proje
tion) (a) andTheorem 14p55 (
ongruen
e of �) andLemma 7p15 (
) (property of �))

e →∗ (e1, e2) and e1 ∈ t1 and e2 ⊲ t2[e1/x] is cf
⇐⇒ (By [IH1℄ and [IH2℄)

e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2[e1/x]

⇐⇒ (By de�nition of ∈)
e ∈ (x : t1, t2)The key step is the use of Lemma 16p57 (a) (see Se
tion A.6).RR n° 7794



Hybrid Contra
t Che
king 50Now we prove the reverse dire
tion. We use the fa
t that (x : t1, t2) istotal. By de�nition of total 
ontra
t, t1 is total and for all e ∈ t1, t2[e/x]is total.We have:
e ∈ (x : t1, t2)

⇐⇒ (By de�nition of ∈)
e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2[e1/x]

⇐⇒ (By Lemma 14p53 (Key lemma), let e1 = e′ ⊳ t1)
e →∗ (e1, e2) and e1 ∈ t1 and ∃cf e′, e2 ∈ t2[e

′ ⊳ t1/x]

⇐⇒ (By [IH1℄)
e →∗ (e1, e2) and e1 ⊲ t1 is cf and ∃cf e′, e2 ∈ t2[e

′ ⊳ t1/x]

⇒ (e1 ⊲ t1 is 
f and by [IH2℄)
e →∗ (e1, e2) and e1 ⊲ t1 is cf and e2 ⊲ t2[e1 ⊲ t1 ⊳ t1/x] is cf

⇐⇒ (By Lemma 15p56 (Idempoten
y)Theorem 14p55 (
ongruen
e of �) andLemma 7p15 (
) (property of �))
e →∗ (e1, e2) and e1 ⊲ t1 is cf and e2 ⊲ t2[e1 ⊲ t1 ⊳ t1 ⊳ t1/x] is cf

⇐⇒ (By Theorem 15p55 (Proje
tion pair), e1 ⊲ t1 ⊳ t1 � e1,Theorem 14p55 (
ongruen
e of �) andLemma 7p15 (
) (property of �))
e →∗ (e1, e2) and e1 ⊲ t1 is cf and e2 ⊲ t2[e1 ⊳ t1/x] is cfThe key steps are using Lemma 14p53 (Key lemma), apply Lemma 15p56(Idempoten
y) and use Theorem 15p55 (Proje
tion pair).� t is Any: We have:

e ⊲ Any is cf
⇐⇒ (By de�nition of ⊲)UNR is cf
⇐⇒ (By de�nition of ∈, and UNR ∈ Any)

e ∈ AnyA.1 Teles
oping PropertyThe teles
oping property is adapted from [7℄ and we found that this propertymakes the proofs of many lemmas shorter. However, it is not used in any proofin [7℄.Lemma 13 (Teles
oping Property). For all expression e, and total 
ontra
t t,
(e

r1
⊲⊳
r2

t)
r3
⊲⊳
r4

t = e
r1
⊲⊳
r4

tProof. Before we start the proof, by de�nition of let, [E-exn℄ and [E-mat
h℄,we know two fa
ts:RR n° 7794



Hybrid Contra
t Che
king 51[Fa
t1℄ ∀e′. (let x = BAD in e′) → BAD[Fa
t2℄ ∀alts, (mat
h BAD with alts) → BADThe proof begins by dealing with two spe
ial 
ases.� Case e →∗ BAD: Based on [Fa
t1℄ and [Fa
t2℄, for all t 6= Any, by in-spe
ting the de�nition of ⊲⊳, we know (e
ri
⊲⊳
rj

t) →∗ BAD for all i, j. SoLHS=RHS=BAD for t 6= Any. In the 
ase t = Any, we have:
(e

r1
⊲⊳
r2

Any) r3
⊲⊳
r4

Any
= r2

r3
⊲⊳
r4

Any
= r4

= e
r3
⊲⊳
r4

Any� e↑. Similar to the arguments in the 
ase e →∗ BAD.Hen
e for the rest of the proof we assume that e →∗ val 6∈ {BAD, UNR}.The rest of the proof is by indu
tion on the size of t.� t is {x | p}:
(e

r1
⊲⊳
r2

{x | p})
r3
⊲⊳
r4

{x | p}

= (By de�nition of ⊲⊳)let x =
( let x = e in if p then x else r1

)in if p then x else r3
= (We �oat let x = e out)let x = e in if p then (let x = x in if p then x else r3)else (let x = r1 in if p then x else r3)
= (This is not let re
, so inline x in the then bran
h.By [E-beta℄ and [Fa
t1℄.)let x = e in if p then (if p then x else r3)else r1
= (propagating the true value of p to sub-bran
hes)let x = e in if p then xelse r1
= (By defn of ⊲⊳)

e
r1
⊲⊳
r4

t� t is x : t1 → t2: We have the following indu
tion hypotheses:
∀e, tl t1, (e

r1
⊲⊳
r2

t1)
r3
⊲⊳
r4

t1 = e
r1
⊲⊳
r4

t1 [IH1℄
∀e, e′ ∈ t1, tl t2[e

′/x], (e
r1
⊲⊳
r2

t2[e
′/x])

r3
⊲⊳
r4

t2[e
′/x] = e

r1
⊲⊳
r4

t2[e
′/x] [IH2℄

RR n° 7794



Hybrid Contra
t Che
king 52We have the following proof:
(e

r1
⊲⊳
r2

x : t1 → t2)
r3
⊲⊳
r4

x : t1 → t2

= (By defn of ⊲⊳)let y = e
r1
⊲⊳
r2

x : t1 → t2 in λx1. (y (x1
r4
⊲⊳
r3

t1))
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x]

= (By defn of ⊲⊳ again)let y = e in let y = λx2. ((y (x2
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x2
r2
⊲⊳
r1

t1)/x]) in
λx1. ((y (x1

r4
⊲⊳
r3

t1))
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x])

= (By β-redu
tion)let y = e in
λx1. ((y ((x1

r4
⊲⊳
r3

t1)
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r3

t1
r2
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x]

= (By indu
tion hypothesis with t = t1)let y = e in λx1. ((y (x1
r4
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x]

= (By 
all-by-value, ri in t2 (for all i) are not rea
hable, repla
e r3 by r1)let y = e in λx1. ((y (x1
r4
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x]

= (By indu
tion hypothesis [IH2℄: t = t2[(x1
r4
⊲⊳
r1

t1)/x]

t2[(x1
r4
⊲⊳
r1

t1)/x] is tl be
ause ri in t2 (for all i) are not rea
hable)let y = e in λx1. (y (x1
r4
⊲⊳
r1

t1))
r1
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x]

= (By defn of ⊲⊳)
e

r1
⊲⊳
r4

x : t1 → t2Although the β-redu
tion is done in the body of a let-expression, it isvalid be
ause we know e →∗ val /∈ {BAD, UNR} and it does not violate
all-by-value exe
ution.� t is (x : t1, t2): We have the following indu
tion hypotheses:
∀e, tl t1, (e

r1
⊲⊳
r2

t1)
r3
⊲⊳
r4

t1 = e
r1
⊲⊳
r4

t1 [IH1℄
∀e, e′ ∈ t1, tl t2[e

′/x], (e
r1
⊲⊳
r2

t2[e
′/x])

r3
⊲⊳
r4

t2[e
′/x] = e

r1
⊲⊳
r4

t2[e
′/x] [IH2℄
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king 53We have the following proof:
(e

r1
⊲⊳
r2

(x : t1, t2))
r3
⊲⊳
r4

(x : t1, t2)

= (By defn of ⊲⊳)

(mat
h e with (x1, x2) → (x1
r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x]))
r3
⊲⊳
r4

(x : t1, t2)

= (By defn of ⊲⊳ again)mat
h (mat
h e with (x1, x2) → (x1
r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])) with
(x3, x4) → (x3

r3
⊲⊳
r4

t1, x4
r3
⊲⊳
r4

t2[(x3
r4
⊲⊳
r3

t1)/x])

= (By simpl rule [mat
h-mat
h℄ and [E-mat
h℄)mat
h e with
(x1, x2) → ((x1

r1
⊲⊳
r2

t1)
r3
⊲⊳
r4

t1, (x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r1
⊲⊳
r2

t1
r4
⊲⊳
r3

t1)/x])

= (By indu
tion hypothesis [IH1℄.mat
h e with
(x1, x2) → (x1

r1
⊲⊳
r4

t1, (x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r1
⊲⊳
r3

t1)/x])

= (Due to x1
r1
⊲⊳
r4

t1, for all i, j, the ri, rj in [x1
ri
⊲⊳
rj

t1/x] 
annot be rea
hed.)mat
h e with
(x1, x2) → (x1

r1
⊲⊳
r4

t1, (x2
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x])

= (By indu
tion hypothesis [IH2℄: t = t2[(x1
r4
⊲⊳
r1

t1)/x].)mat
h e with
(x1, x2) → (x1

r1
⊲⊳
r4

t1, x2
r1
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x])

= (By defn of proje
tion)
e

r1
⊲⊳
r4

(x : t1, t2)� t is Any:LHS
(e

r1
⊲⊳
r2

Any) r3
⊲⊳
r4

Any
= r2

r3
⊲⊳
r4

Any
= r4RHS

e
r3
⊲⊳
r4

Any
= r4Sin
e LHS ≡ RHS, we are done.A.2 Key LemmaLemma 14 (Key lemma). For all 
rash-free e and total 
ontra
t t, su
h that

⊢ e :: τ and ⊢c t :: τ ,
e ⊳ t ∈ tRR n° 7794
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t Che
king 54Proof. First, we have the following derivation (named D1).
(e ⊳ t) ⊲ t

= (By defn of ⊳ and ⊲)

(e
UNR
⊲⊳BAD t) BAD

⊲⊳UNR t
= (By Lemma 13p50 (Teles
oping Property))

e
UNR
⊲⊳UNR tNow, we have the following proof.

e is 
f
⇒ (Sin
e t is total, t ≡ ⌊t⌋. By the defn of ⊲⊳, the 
ontext (• UNR

⊲⊳UNR ⌊t⌋)is synta
ti
ally safe. By defn of 
f, we have below)
e

UNR
⊲⊳UNR t is 
f

⇐⇒ (By derivation D1)
(e ⊳ t) ⊲ t is 
f

⇐⇒ (By Theorem 2p18 (grand theorem))
(e ⊳ t) ∈ tA.3 Examination of Cy
li
 Dependen
iesRe
all the dependen
y graph in Figure 18, there are two 
y
les:(1) T2 → L15 → T2(2) T2 → L17 → L19 → T2

T2 L15
t = t 1

    
T2

L17t = t 1

L19
y
le (1) 
y
le (2)Figure 19: Cy
li
 Dependen
y of Three LemmasEa
h 
y
le is shown in Figure 19. The dashed dire
ted edge indi
ates ade
rease in size of t while the solid dire
ted edge shows a preservation of thesize of t. We 
an see that, in ea
h 
y
le, there is an edge that de
reases the size of
t. Cy
le (1) is well-founded be
ause the size of t (where t = x : t1 → t2) de
reases(to t1) when Theorem 2p18 
alls Lemma 14p53. Cy
le (2) is well-founded be
ausethe size of t (where t = x : t1 → t2) de
reases (to t1) when Theorem 2p18 
allsLemma 16p57. Although there are 
y
li
 dependen
ies among these theoremsand lemmas, on ea
h 
y
li
 path, there is a de
rease in the size of t. Thus, ourproof on indu
tion of the size of t is well-founded.RR n° 7794
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king 55A.4 Congruen
e of Crashes-More-OftenTheorem 14 (Congruen
e of Crashes-More-Often).
∀e1, e2. e1 � e2 ⇐⇒ ∀C, C[[e1]] � C[[e2]]Proof. We prove two dire
tions separately:(⇒) For an arbitrary B, we prove B[[e1]] � B[[e2]]. We have the followingproof:

e1 � e2

⇐⇒ (By de�nition 7)
∀C.C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD

⇒ ∀C,D. (C = D[[B[[•]]]]) ⇒ (C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD)
⇒ ∀D. D[[B[[e2]]]] →∗ BAD⇒ D[[B[[e1]]]] →∗ BAD
⇒ ∀B.B[[e1]] � B[[e2]]Note that we assume for all i = 1, 2:

⊢ C[[ei]] :: bool, ⊢ D[[ei]] :: bool and ⊢ E [[ei]] :: bool(⇐) It is trivially true, be
ause we 
an 
hoose an empty 
ontext (i.e. C =
•).A.5 Proje
tion Pair and Closure PairRe
all the de�nition of proje
tion pair. Let D and E be 
omplete partial order's.If f : D → E and g : E → D are 
ontinuous fun
tions su
h that f ◦ g ⊆ id,then (f ,g) is 
alled a proje
tion pair. If id ⊆ f ◦ g, then (f ,g) is 
alled a 
losurepair. In this se
tion, we are not going to explore the theory in depth. We onlynoti
e that in some way (• ⊲ t ⊳ t � id) and (id � • ⊳ t ⊲ t) mat
h the de�nitionof proje
tion pair and 
losure pair respe
tively.Theorem 15 (A proje
tion pair). For all expression e and 
ontra
t t, su
h that
∃Γ. Γ ⊢ e :: τ and Γ ⊢c t :: τ ,

(e ⊲ t) ⊳ t � eProof. We have the following proof:
(e ⊲ t) ⊳ t

= (By defn of ⊲ and ⊳)

(e
BAD
⊲⊳UNR t) UNR

⊲⊳BAD t
= (By Lemma 13p50)

e
BAD
⊲⊳BAD t

≪{BAD} (By Lemma 19p58)
eBy de�nition of ≪{BAD}, we get the desired result.RR n° 7794



Hybrid Contra
t Che
king 56Theorem 16 (A Closure Pair). For all expression e and 
ontra
t t, su
h that
∃Γ. Γ ⊢ e :: τ and Γ ⊢c t :: τ ,

e � (e ⊳ t) ⊲ tProof. We have the following proof:
(e ⊳ t) ⊲ t

= (By defn of ⊳ and ⊲)

(e
UNR
⊲⊳BAD t) BAD

⊲⊳UNR t
= (By Lemma 13p50)

e
UNR
⊲⊳UNR t

≪{UNR} (By Lemma 19p58)
eBy de�nition of ≪{UNR}, we get the desired result.A.6 Contra
ts are Proje
tionsRe
all the de�nition of proje
tion, a proje
tion p is a fun
tion that has twoproperties:1. p = p ◦ p2. p ⊆ 1The �rst one is 
alled the retra
t property and says that proje
tions are idempo-tent on their range. The se
ond one says that the result of a proje
tion 
ontainsno more information than its input.We would like to show that if e ∈ t, then (• ⊳ t) is an error proje
tion while

(• ⊲ t) is a safe proje
tion. By error proje
tion, we mean e ⊳ t either behavesthe same as e or returns BAD. Similarly, by safe proje
tion, we mean e ⊲ t eitherbehaves the same as e or returns UNR.Findler and Blume [12℄ are the �rst to dis
over that 
ontra
ts are pairsof proje
tions. However, they assume that the e is a non-
rashing term andthe only error raised are 
ontra
t violations. We assume that a program may
ontain errors and may 
rash. We give error a 
ontra
t Any. Moreover, we provedi�erent theorems from [12℄.Theorem 17 (Error Proje
tion). For all 
losed e and 
losed t, if e ∈ t, (• ⊳ t)is a proje
tion.Proof. By Lemma 15p56 (a) (Idempoten
y) and Lemma 16p57 (a).Theorem 18 (Safe Proje
tion). For all 
losed e and 
losed t, if e ∈ t, (• ⊲ t)is a proje
tion.Proof. By Lemma 15p56 (b) (Idempoten
y) and Lemma 16p57 (b).Lemma 15 (Idempoten
e). For all 
losed e, t,
e

r1
⊲⊳
r2

t
r1
⊲⊳
r2

t = e
r1
⊲⊳
r2

tRR n° 7794
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t Che
king 57Proof. It follows dire
tly from Lemma 13p50 (teles
oping property).Lemma 16 (Conditional proje
tion). For all 
losed e, 
losed and total t, if
e ∈ t, then

(a) e ⊳ t � e (b) e � e ⊲ tProof. We prove ea
h of them separately.(a) Given e ∈ t, we have:
e ⊳ t

= (By defn of ⊲ in Figure 6)
e

UNR
⊲⊳BAD t

≡s (By Lemma 18p57 (Ex
eption III))
e

BAD
⊲⊳BAD t

� (By Lemma 19p58 (Behaviour of proje
tion) and De�nition 6p14 (≪))
e(b) Given e ∈ t, we have:
e ⊲ t

= (By defn of ⊲ in Figure 6)
e

BAD
⊲⊳UNR t

≡s (By Lemma 18p57 (Ex
eption III))
e

UNR
⊲⊳UNR t

� (By Lemma 19p58 (Behaviour of proje
tion) and De�nition 6p14 (≪))
eLemma 17 (Ex
eption I). ∀C. (C[[UNR, BAD]] is 
f⇒ ∀r1, r2 ∈ {BAD, UNR}. C[[UNR, r1]] ≡s

C[[UNR, r2]])Proof. The intuition is that the BAD in the hole 
annot be rea
hed, so we 
anrepla
e it by any ex
eptional value. This reasoning in turn relies on the absen
eof a "
at
h" primitive that 
an transform BAD into something non-BAD.Formally, we 
an prove the lemma by 
ase splitting on whether C[[UNR, BAD]]terminates, and if it does, by indu
tion on the number of steps of redu
tion.Lemma 18 (Ex
eption III). ∀e, t. e ∈ t ⇒ ∀r. e
BAD
⊲⊳
r
t ≡s e

UNR
⊲⊳
r
t

RR n° 7794
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king 58Proof. For all expression e, 
ontra
t t, we have:
e ∈ t

⇐⇒ (By Theorem 2p18 (Grand Theorem))
e ⊲ t is 
f

⇐⇒ (By defn of ⊲ and 
f)
∀C, BAD 6∈ C. C[[e

BAD
⊲⊳
r
t]] 6→∗ BAD

⇐⇒ (By Lemma 17p57 (Ex
eption I))
∀C, BAD 6∈ C. C[[e

BAD
⊲⊳
r
t]] ≡s C[[e

UNR
⊲⊳
r
t]]

⇒ (Let C = •)

e
BAD
⊲⊳
r
t ≡s e

UNR
⊲⊳
r
tWe are done.A.7 Behaviour of Proje
tionsWe have seen that in Se
tion A.5, we make use of the property of behaves-the-same (≪) (Lemma 19p58). In this se
tion, we give its detailed proof. Lemma 19p58says that an expression wrapped with a 
ontra
t behaves either the same as theoriginal expression or returns one of the ex
eptions whi
h 
an be either BAD orUNR.Lemma 19 (Behaviour of proje
tion). For all r1, r2, e, total t, su
h that ⊢ e :: τand ⊢c t :: τ , and r1, r2 ∈ {BAD, UNR},

e
r1
⊲⊳
r2

t ≪{r1,r2} eProof. The proof begins by dealing with two spe
ial 
ases: e ↑, e →∗ BAD. Inboth 
ases, by De�nition of ⊲⊳, we know e
r1
⊲⊳
r2

t ≡s e and we are done.Hen
e, for the rest of the proof we assume that e →∗ val 6∈ {BAD, UNR}. Weprove it by indu
tion on the size of t. Let R be {r1, r2}.� t is {x | p}: we have
e

r1
⊲⊳
r2

{x | p} = let x = e in mat
h p[e/x] with
| true → e
| false→ r1Sin
e t is total, p[e/x] 6→∗ BAD. So there are two 
ases to 
onsider:� If p[e/x] →∗ false, then e

r1
⊲⊳
r2

{x | p} →∗ r1 and we are done.� If p[e/x] →∗ true, e r1
⊲⊳
r2

{x | p} →∗ e and we are done.� t is x : t1 → t2: We have
e

r1
⊲⊳
r2

x : t1 → t2 = let y = e in λv. ((y (v
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x])RR n° 7794
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t Che
king 59Sin
e e →∗ val 6∈ {BAD, UNR}, e →∗ λx.e′ and (e
r1
⊲⊳
r2

x : t1 → t2) →∗

λv. ((e (v
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x]).We want to show that ∀C. C[[e]] →∗ r ∈ R ⇒ C[[λv. ((e (v
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x]]]) →∗ r. We prove it by indu
tion on 
ontexts. There are 3 
ases to
onsider:1. C = [[•]];2. C = D[[mat
h • with alts]];3. C = D[[• e3]].Case 1 and 2 are trivially true by inspe
ting the operational semanti
s ofmat
h. For Case 3, sin
e we prove it by indu
tion on the size of 
ontext,we have the following indu
tion hypothesis:
∀D[[e]] →∗ r ⇒ D[[• e3]] →

∗ r [IH℄So all we need to prove is that for all e3,
(λv. ((e (v

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x])) e3 ≪R e e3By β-redu
tion, it means we want to show
(e (e3

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(e3
r2
⊲⊳
r1

t1)/x] ≪R (e e3) (∗)By indu
tion hypotheis where t = t2[(e3
r2
⊲⊳
r1

t1)/x], we have
(e (e3

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(e3
r2
⊲⊳
r1

t1)/x] ≪R (e (e3
r2
⊲⊳
r1

t1)) (1)By indu
tion hypothesis where t = t1, we have
e3

r2
⊲⊳
r1

t1 ≪R e3By Lemma 20p60 (Congruen
e of ≪R), we have
e (e3

r2
⊲⊳
r1

t1) ≪R e e3 (2)By (1) and (2) and Lemma 21p60 (Transitivity of≪R), we get (*). By [IH℄,we have the desired result ∀C. C[[e]] →∗ r ∈ R ⇒ C[[e
r1
⊲⊳
r2

x : t1 → t2]] →∗ r.� t is (x : t1, t2): We have
e

r1
⊲⊳
r2

(t1, t2) = mat
h e with
(x1, x2) → (x1

r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])If e →∗ val 6∈ {BAD, UNR}, then e →∗ {e1, e2}. By the indu
tion hypotheseswhere t = t1 and t = t2 respe
tively, we know e1
r1
⊲⊳
r2

t1 ≪R e1 and
e2

r1
⊲⊳
r2

t2 ≪R e2. Therefore, by De�nition 6p14, we have e
r1
⊲⊳
r2

(t1, t2) ≪R e.RR n° 7794
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king 60� t is Any: Sin
e we have e
r1
⊲⊳
r2

Any = r2, we know e
r1
⊲⊳
r2

Any →∗ r2. ByDe�nition 6p14, we are done.Lemma 20 (Congruen
e of Behaves-the-same). If e1 ≪R e2, then ∀C, C[[e1]] ≪R

C[[e2]].Proof. we have the following proof:
e1 ≪R e2

⇐⇒ (By de�nition 6)
∀C, C[[e2]] →∗ r ∈ R ⇒ C[[e1]] →∗ r

⇒ (Choose C be D[[C[[E]]•]])
∀D, ∀E , D[[E [[e2]]]] →∗ r ∈ R ⇒ D[[E [[e1]]]] →∗ r

⇐⇒ (By de�nition 6)
∀C, C[[e1]] ≪R C[[e2]]Note that we assume for all i = 1, 2:

⊢ C[[ei]] :: (), ⊢ D[[ei]] :: () and ⊢ E [[ei]] :: ()Lemma 21 (Transitivity of ≪R). If e1 ≪R e2 and e2 ≪R e3, then e1 ≪R e3.Proof. By De�nition 6p14, we have
(1) ∀C. C[[e2]] →∗ r ∈ R ⇒ C[[e1]] →∗ r
(2) ∀C. C[[e3]] →

∗ r ∈ R ⇒ C[[e2]] →
∗ rFor all C, assuming C[[e3]] →∗ r ∈ R, we want to show C[[e1]] →∗ r. We have thefollowing proof:

∀C. C[[e3]] →∗ r ∈ R

⇒ (By (2))
C[[e2]] →∗ r ∈ R

⇒ (By (1))
C[[e1]] →

∗ rB Corre
tness of SL ma
hineB.1 Corre
tness of Logi
izationTheorem 11 (Logi
ization for axioms) Given a de�nition f = eτ , the logi
alformula ∀fv(e), ∃f : τ.[[e]]f is valid.Proof. We prove it by stru
tural indu
tion on the size of the (possiblly open)expression e. As UNR is for internal usage, we do not have UNR in e.� Case e is BADl. We have [[BADl]]f = true, whi
h is valid.RR n° 7794
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king 61� Case e is x. We have ∃f.f = x. Let f be x, we have x = x, whi
h is valid.� Case e is n. We have ∃f.f = n. Let f be n, we have n = n, whi
h is valid.� Case e is eτ1⊕eτ2 . It is semanti
ally equivalent to let x1 = e1 in let x2 =
e2 in x1 ⊕ x2. From x1 = e1, by indu
tion hypothesis, (1) [[e1]]x1

isvalid. From x2 = e1, by indu
tion hypothesis, (2) [[e2]]x2
is valid. Let theexistentially quanti�ed f be x1⊕x2, we have (3) x1⊕x2 = x1 ⊕x2. From(1), (2), (3), we know ∃f : τ.∃x1 : [[τ ]], ∃x2 : [[τ ]], ([[e1]]x1
∧ [[e2]]x2

∧ f =
x1 ⊕ x2) is valid.� Case e is eτ1⊙eτ2 . It is semanti
ally equivalent to let x1 = e1 in let x2 =
e2 in x1 ⊙ x2. From x1 = e1, by indu
tion hypothesis, (1) [[e1]]x1

isvalid. From x2 = e1, by indu
tion hypothesis, (2) [[e2]]x2
is valid. If

eτ11 ⊙ eτ22 evaluates to true, x1 ⊙ x2 is valid and not(x1 ⊙ x2) is invalid.So ∃f : τ, ∃x1 : [[τ ]], [[e1]]x1
∧ ∃x2 : [[τ ]], [[e2]]x2

∧ ((x1 ⊙ x2 ∧ f = true) ∨
(not(x1 ⊙ x2) ∧ f = false)) dedu
es to ∃f : τ, ∃x1 : [[τ1]], [[e1]]x1

∧ ∃x2 :
[[τ2]], [[e2]]x2

∧ (x1 ⊙ x2 ∧ f = true). Let the existentially quanti�ed f betrue. From (1), (2) and true = true, we know [[eτ1 ⊙ eτ2 ]]f is valid. If
eτ11 ⊙ eτ22 evaluates to false, we apply the similar reasoning as above withthe exitentially quanti�ed f being false.� Case e is λxτ1 .eτ22 . We have ∃f : τ1 → τ2, ∀x : [[τ ]], [[e]](apply(f,x)). Letthe existentially quanti�ed f be λx.e2.� Case e is let xτ1 = e1 in eτ22 . It is semanti
ally equivalent to let xτ1 =
e1 in let xτ2

2 = e2 in x2. We have [[let xτ1 = e1 in let xτ2
2 =

e2 in x2]]f = ∃x : [[τ ]], [[e1]]x ∧ ∃x2 : [[τ ]], [[e2]]x2
∧ f = x2. From de�-nitions xτ = e1 and xτ2

2 = e2, by indu
tion hypothesis, (1) ∃x : τ1, [[e1]]xis valid and (2) ∃x2 : τ2, [[e2]]x2
is valid. Let x2 be f . From (1), (2) and

f = f , we know ∃f : τ2, ∃x : [[τ ]], [[e1]]x ∧∃x2 : [[τ ]], [[e2]]x2
∧f = x2 is valid.� Case e is (eτ11 eτ22 ). It is semanti
ally equivalent to let x1 = e1 in let x2 =

e2 in x1 x2. We have [[let x1 = e1 in let x2 = e2 in x1 x2]]f =
∃x1 : τ1, [[e1]]x1

∧ ∃x2 : τ2, [[e2]]x2
∧ f = apply(x1, x2). From de�nitions

x1 = e1 and x2 = e2, by indu
tion hypothesis, (1) ∃x1 : τ1, [[e1]]x1
isvalid and (2) ∃x2 : τ2, [[e2]]x2

is valid. Let the existentially quanti�ed f be
apply(x1, x2). From (1), (2) and apply(x1, x2) = apply(x1, x2), we know
∃x1 : τ1, [[e1]]x1

∧ ∃x2 : τ2, [[e2]]x2
∧ f = apply(x1, x2) is valid.� Case e is Kτ eτ11 . . . eτnn . It is semanti
ally equivalent to let x1 = e1 in . . .let xn = en in K x1 . . . xn. We have [[let x1 = e1 in . . . let xn =

en in K x1 . . . xn]]f = ∃x1 : τ1, [[e1]]x1
∧ · · · ∧ ∃x1 : τ1, [[e1]]x1

∧ f =
K(x1, . . . , xn). From de�nitions xi = ei for 1 ≤ i ≤ n, by indu
-tion hypothesis, we know (i) ∃xi.[[ei]]xi

is valid. Let f be K(x1, . . . , xn).From (i) and K(x1, . . . , xn) = K(x1, . . . , xn), we know ∃f : τ, ∃x1 :
τ1, [[e1]]x1

∧ · · · ∧ ∃x1 : τ1, [[e1]]x1
∧ f = K(x1, . . . , xn) is valid.� Case e is mat
h eτ00 with −−−−−−−−→

K
−→
xτx → eτ . It is semanti
ally equivalent tolet xτ0

0 = e0 in mat
h x0 with−−−−−−−−−−−−−−−−−−→K
−→
xτx → let y = e in y. We have [[let xτ0

0 =

e0 in mat
h x0 with −−−−−−−−−−−−−−−−−−→
K

−→
xτx → let y = e in y]]f = ∃x0 : τ0, [[e0]]x0
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(
∧

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ ]], (x0 = K −→x ) ⇒ ∃y : τ, [[e]]y ∧ f = y). From de�nitions x0 = e0and y = e, by indu
tion hypothesis, (1) ∃x0 : τ0, [[e0]]x0

is valid and (2)
∃y : τ, [[e]]y is valid. Let y be f . From (2) and f = f , the RHS of
⇒ in the logi
al formula is valid. Together with (1), we know ∃x0 :

τ0, [[e0]]x0
∧ (

∧

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ ]], (x0 = K −→x ) ⇒ ∃y : τ, [[e]]y ∧ f = y) is valid.Theorem 12 (Logi
ization for goals: validity preservation) For all (possiblyopen) expression eτ , if ∃f : τ, [[e]]f is valid and e → e′ for some e′, then [[e′]]f isvalid.Proof. We prove it by stru
tural indu
tion on the size of e. The lemma holdsva
uriously for expressions BAD, UNR, x, n, e1⊕ e2. We fo
us on two 
ases wherea redex o

urs. The rest of the 
ases 
an be proved easily by applying indu
tionhypotheses.� Case e is (λxτ .e1) e2. We have

[[(λxτ .e1)
τ1 eτ22 ]]f is valid

⇐⇒ (By de�nition of [[.]]f )
∃x1 : [[τ1]], [[(λx

τ .e1)]]x1
∧ ∃x2 : [[τ2]], [[e2]]x2

∧
f = apply(x1, x2) is valid

⇐⇒ (By de�nition of [[.]]x1
)

∃x1 : [[τ1]], ∀xτ , [[e1]](apply(x1,x))
∧ ∃x2 : [[τ2]], [[e2]]x2

∧

f = apply(x1, x2) is valid
⇐⇒ (By Logi
: P ∧ ∃x,Q(x) ⇐⇒ ∃x, P ∧Q(x) where x is not in P )

∃x1 : [[τ1]], ∃x2 : [[τ2]], ∀x
τ , [[e1]](apply(x1,x))

∧ [[e2]]x2
∧

f = apply(x1, x2) is valid
⇒ (Let x be x2)

∃x1 : [[τ1]], ∃x2 : [[τ2]], [[e1]](apply(x1,x2))
[x2/x] ∧ [[e2]]x2

∧

f = apply(x1, x2) is valid
⇐⇒ (Sin
e f = apply(x1, x2), repla
e apply(x1, x2) by f)

∃x1 : [[τ1]], ∃x2 : [[τ2]], [[e1]]f [x2/x] ∧ [[e2]]x2
is valid

⇐⇒ (Rename x2 to x)
∃x1 : [[τ1]], ∃x : [[τ2]], [[e1]]f ∧ [[e2]]x is valid

⇐⇒ (By Logi
: ∃x, P ⇐⇒ P where x is not in P )
∃x : [[τ2]], [[e1]]f ∧ [[e2]]x is valid

⇐⇒ (By de�nition of [[.]]f )
[[let x = e2 in e1]]f is valid

⇐⇒ (let x = e2 in e1 is semanti
ally equivalent to e1[e2/x])
[[e1[e2/x]]]f is valid
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t Che
king 63� Case e is mat
h K −→ai with −−−−−−−→
K

−→
xτ → ei. We have

[[mat
h (K
−→
val)τ0 with −−−−−−−→

K −→x → ei]]f is valid
⇐⇒ (By de�nition of [[.]]f )

∃x0 : [[τ0]], [[K
−→
val]]x0

∧ (
∧

−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−−→
x : [[τ ]], (x0 = K −→x ) ⇒ [[ei]]f ) is valid

⇐⇒ (By de�nition of [[.]]x0
)

∃x0 : [[τ0]],
−−−−−−−−−−→
∃
−−−−→
y : [[τ ]], [[val]]y ∧ x0 = K −→y ∧

(
∧

−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−−→
x : [[τ ]], (x0 = K −→x ) ⇒ [[ei]]f ) is valid

⇒ (Let −→x be −→y )

∃x0 : [[τ0]],
−−−−−−−−−−→
∃
−−−−→
y : [[τ ]], [[val]]y ∧ x0 = K −→y ∧

(
∧

−−−−−−−−−−−−−−−−−−−→
(x0 = K −→y ) ⇒ [[ei]]f [

−−→
y/x]) is valid

⇐⇒ (By Logi
: P ∧ (P ⇒ Q) ∧ (¬P ⇒ R) ⇐⇒ P ∧Q)

∃x0 : [[τ0]],
−−−−−−−−−−→
∃
−−−−→
y : [[τ ]], [[val]]y ∧ x0 = K −→y ∧ [[ei]]f [

−−→
y/x] is valid

⇒ (By Logi
: ∃x, ∃y, P (y) ∧ P (x, y) ⇐⇒ ∃y, P (y) ∧ ∃x, P (x, y))
−−−−−−−−−−→
∃
−−−−→
y : [[τ ]], [[val]]y ∧ ∃x0 : [[τ0]], x0 = K −→y ∧ [[ei]]f [

−−→
y/x] is valid

⇐⇒ (Let x0 be K −→y . By Logi
: true ∧ P ⇐⇒ P )
−−−−−−−−−−→
∃
−−−−→
y : [[τ ]], [[val]]y ∧ [[ei]]f [

−−→
y/x] is valid

⇐⇒ (Rename −→y to −→x )
−−−−−−−−−−→
∃
−−−−→
x : [[τ ]], [[val]]x ∧ [[ei]]f is valid

⇐⇒ (By de�nition of [[.]]f )
[[let −−−−−→

x = val in ei]]f

⇐⇒ (let −−−−−→
x = val in ei is semanti
ally equivalent to ei[

−−−→
val/x])

[[ei[
−−−→
val/x]]]f is validB.2 Transition rulesThe SL ma
hine does not inline top-level fun
tions. We do not have lo
allet re
 in our language and we only inline trivial values. Moreover, we seta stop-bound for the SMT solver Alt-ergo with an option �-stop <n>� (whi
hrestri
t the total amount of time) or �-steps <n>� (whi
h restri
t the totalnumber of steps) so that the SMT solver always terminates. Thus, there is noelement in the SL ma
hine 
ausing non-termination.Theorem 8 (SL ma
hine terminates) For all H, e,S,L, there exists an ex-pression a su
h that 〈H || e || S ||

lgc〉 ∗ a.Proof. The rebuilding rules either lead to the end state ([R-done℄) or redu
e thenumber of sta
k frames ([R-r℄, [R-lam℄, [R-beta℄, [R-app℄, [R-K℄, [R-K-mat
h℄,[R-s-mat
h℄, [R-s-save℄) or redu
e the size of the sta
k frame on top of the sta
k([R-fun℄. [R-mat
h℄, [R-let-save℄).RR n° 7794
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t Che
king 64The simpli�
ation rules either lead dire
tly to a rebuild rule ([R-
onst℄, [R-exn℄, [R-var1℄, [R-var2℄) or lead to a simpli�
ation rule that redu
es the size ofthe expression under simpli�
ation ([S-lam℄, [S-app℄, [S-mat
h℄, [S-K℄) or leadto a simpli�
ation rule that redu
es the size of the sta
k ([S-letL℄, [S-mat
hL℄,[S-letR℄, [S-mat
hR℄, [S-mat
h-mat
h℄, [S-mat
h-let℄).For the 
ases that 
orresponding to simpli�
ation rules in Figure 11, we usethe fa
t: [EqFa
t℄ e1 ≡s e2 if ∃e3, e1 →∗ e3 and e2 →∗ e3. Moreover, if any ofthe subexpression is an ex
eption r, it is easy to show that both sides evaluateto the same r. So we only 
onsider the 
ase that none of the subexpression isan ex
eption r.Theorem 9 (Corre
tness of SL ma
hine) For all 
losed expression e, if
〈∅ || e || [ ] || ∅〉 ∗ a, then e ≡s a.Proof. We prove it by indu
tion on the number of transition steps. We have thefollowing indu
tion hypothesis: for allH, e,S,L, there existsH2, e2,S2,L2, su
hthat 〈H || e || S || L〉 〈H2 || e2 || S2 || L2〉 or 〈H || e || S || L〉 〈〈H2 || e2 || S2 || L2〉〉,

〈H2 || e2 || S || L2〉 ∗ a ∧ e2 ≡s a [IH℄By Lemma 22p68 (Corre
tness of rebuilding), we know
〈〈H2 || e2 || S2 || L2〉〉 ∗ a ∧ e2 ≡s a [RB℄For 
ases [S-
onst℄, [S-exn℄, [S-var1℄ [S-var2℄, by indu
tion hybothesis, we getthe desired result. We now fo
us on slightly non-obvious transitions.� Case [S-lam℄. We �rst have:
〈H || λxτ .e || [ ] || ∅〉

 (By [S-lam℄)
〈H || e || (λx.•) :: [ ] || ∀x : τ〉

 ∗ (By [IH℄, 〈H || e || (λx.•) :: S || L, ∀x : τ〉 ∗ a ∧ e ≡s a)
〈〈H || a || (λx.•) :: [ ] || ∀x : τ〉〉

 (By [R-lam℄)
〈〈H || λx.a || [ ] || ∀x : τ〉〉

 (By [R-done℄)
λx.aWe now have:

e ≡s a

⇐⇒ (By De�nition 1p11 ≡s)
∀C, r, C[[e]] →∗ r ⇐⇒ C[[a]] →∗ r

⇐⇒ (C = D[[λx.•]])
∀D, r,D[[λx.e]] →∗ r ⇐⇒ D[[λx.a]] →∗ r

⇐⇒ (By De�nition 1p11 ≡s)
λx.e ≡s λx.a
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t Che
king 65� Case [S-app℄. If e1 is r, it is easy. By [S-app℄ and [R-r-fun℄, we get
〈H || r e2 || [ ] || ∅〉 ∗ r, whi
h is semanti
ally equivalent to r e2. We now
onsider the 
ase where e1 is not r. We have:

〈H || e1 e2 || [ ] || ∅〉
 (By [S-app℄)

〈H || e1 || (• e2) :: [ ] || ∅〉
 ∗ (By [IH℄, 〈H || e1 || (• e2) :: [ ] || ∅〉 ∗ a1 ∧ e1 ≡s a1)

〈〈H || a1 || (• e2) :: [ ] || ∅〉〉
 (By [R-fun℄)

〈H || e2 || (a1 •) :: [ ] || ∅〉
 ∗ (By [IH℄, 〈H || e2 || (a1 •) :: [ ] || ∅〉 ∗ a2 ∧ e2 ≡s a2)

〈〈H || a2 || (a1 •) :: [ ] || ∅〉〉
 (By [R-app℄)

〈〈H || a1 a2 || [ ] || ∅〉〉
 (By [R-done℄)

a1 a2Given e1 ≡s a1 and e2 ≡s a2, by 
ongruen
e of≡s, we know e1 e2 ≡s a1 a2.� Case [S-mat
h℄.
〈H || mat
h e0 with alts || [ ] || ∅〉

 (By [S-mat
h℄)
〈H || e0 || (mat
h • with alts) :: [ ] || ∅〉

 ∗ (By [IH℄, 〈H || e0 || (mat
h • with alts) :: [ ] || ∅〉 ∗ a0 ∧ e0 ≡s a0)
(†) 〈〈H || a0 || (mat
h • with alts) :: [ ] || ∅〉〉There are two sub
ases: either [R-s-mat
h℄ or [R-s-save℄ is applied. Let
alts be −−−−−−−→

K
−→
xτ → ei.� there exists a bran
h (K

−→
xτ ) su
h that L ⇒ (∃

−−−−→
x : [[τ ]], [[a0]](K −→x )).We 
ontinue from (†):

〈〈H || a0 || (mat
h • with −−−−−−−→
K

−→
xτ → ei) :: [ ] || ∅〉〉

 (By [R-s-mat
h℄)
〈H || ei || [ ] || ∃

−→
xτ , [[a0]]K −→x 〉

 ∗ (By [IH℄, 〈H || ei || [ ] || ∃
−→
xτ , [[a0]](K −→x )〉 

∗ ai ∧ ei ≡s ai)

〈〈H || ai || [ ] || ∃
−→
xτ , [[a0]](K −→x )〉〉

 (By [R-done℄)
aiGiven L ⇒ (∃

−−−−→
x : [[τ ]], [[a0]](K −→x )), by Theorem 12p36, we know a0 ≡s

K
−→
xτ for some −→

xτ . Together with e0 ≡s a0 and ei ≡s ai, by 
ongru-en
e of ≡s, we have mat
h e0 with −−−−−−−→
K

−→
xτ → ei ≡s ai.� there is no bran
h (K −→x ) su
h that L ⇒ [[a0]](K −→x ).RR n° 7794
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t Che
king 66We 
ontinue from (†):
〈〈H || a0 || (mat
h • with −−−−−−−→

K
−→
xτ → ei) :: [ ] || ∅〉〉

 (By [R-s-save℄)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈H || ei || (mat
h a with K
−→
xτ → (•,S,L)) :: [ ] || L, ∃

−−−−→
x : [[τ ]],

[[a]](K −→x )

〉

 ∗ (By [IH℄, −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→〈H || ei || (mat
h a with K
−→
xτ

→ (•,S,L)) :: [ ]
|| L, ∃

−−−−→
x : [[τ ]],

[[a]](K −→x )

〉 ∗ ai

∧ei ≡s ai)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈〈H || ai || (mat
h a with K
−→
xτ → (•,S,L)) :: [ ] || L, ∃

−−−−→
x : [[τ ]],

[[a]](K −→x )

〉〉

 (By [R-mat
h℄)
〈〈H || mat
h a0 with −−−−−−−→

K −→x → ai || [ ] || L, ∃
−−−−→
x : [[τ ]], [[a]](K −→x )〉〉

 (By [R-done℄)mat
h a0 with −−−−−−−→
K −→x → aiFrom e0 ≡s a0 and ei ≡s ai, by 
ongruen
e of ≡s, we havemat
h e0 with −−−−−−−→

K −→x → ei ≡s mat
h a0 with −−−−−−−→
K −→x → ai.� Case [S-K℄. The proof is similar to the 
ase [S-app℄. Simpli�
ation ofea
h 
omponent ei to ai is semanti
ally preserving. After applying indu
-tion hypothesis, we apply [R-K℄. Given ei ≡s ai, by 
ongruen
e of ≡s,

K e1 . . . en ≡s K a1 . . . an.� Case [S-letL℄. We want to show that (let x = e1 in e2) e ≡s let x =
e1 in e2 e. We have:

(let x = e1 in e2) e
→ (let x = val1 in e2) e
→ e2[val1/x] e
→ (λy.a[val1/x]) e
→ (λy.a[val1/x]) val
→ a[val1/x, val/y]and let x = e1 in e2 e
→∗ let x = val1 in e2 e
→ (e2 e)[val1/x]
→ ((λy.a) e)[val1/x]
→∗ ((λy.a) val)[val1/x]
→∗ a[val/y, val1/x]
= a[val1/x, val/y]By [EqFa
t℄, we are done.
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t Che
king 67� Case [S-mat
hL℄. We want to show that if fv(e)∩−→x = ∅, then (mat
h e0 with
−−−−−−−→
K −→x → ei) e ≡s mat
h e0 with −−−−−−−−−−→

K −→x → (ei e). We have:
(mat
h e0 with −−−−−−−→

K −→x → ei) e

→∗ (mat
h K
−−→
valx with −−−−−−−→

K −→x → ei) e

→ ei[
−−−−→
valx/x] e

→∗ (λy.e2[
−−−−→
valx/x]) e

→∗ (λy.e2[
−−−−→
valx/x]) val

→ e2[
−−−−→
valx/x, val/y]and mat
h e0 with −−−−−−−−−−→

K −→x → (ei e)

→∗ mat
h K
−−→
valx with −−−−−−−−−−→

K −→x → (ei e)

→ (ei e)[
−−−−→
valx/x]

→∗ (λy.e2 e)[
−−−−→
valx/x]

→∗ (λy.e2 val)[
−−−−→
valx/x]

→∗ e2[
−−−−→
valx/x, val/y]By [EqFa
t℄, we are done.� Case [S-letR℄. We want to show that if x 6∈ fv(e), then λy.e (let x =

e1 in e2) ≡s let x = e1 in λy.e e2. We have:
λy.e (let x = e1 in e2)

→∗ λy.e (let x = val1 in e2)
→ λy.e (e2[val1/x])
→∗ λy.e (val2[val1/x])
→ e[val2[val1/x]/y]
= e[val2/y][val1/x]and let x = e1 in (λy.e) e2
→∗ let x = val1 in (λy.e) e2
→ ((λy.e) e2)[val1/x]
→∗ ((λy.e) val2)[val1/x]
→ e[val2/y][val1/x]By [EqFa
t℄, we are done.� Case [S-mat
h-mat
h℄. We want to show that if fv (alts) ∩ −→x = ∅, thenmat
h (mat
h e0 with −−−−−−→
K −→x → e) with alts ≡smat
h eo with −−−−−−−−−−−−−−−−−−−−→

K −→x → mat
h e with alts. We have:mat
h (mat
h e0 with −−−−−−→
K −→x → e) with alts

→∗ mat
h (mat
h K
−−→
val0 with −−−−−−→

K −→x → e) with alts

→ mat
h e[
−−−−→
val0/x] with alts
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t Che
king 68and mat
h eo with −−−−−−−−−−−−−−−−−−−−→
K −→x → mat
h e with alts

→∗ mat
h K
−−→
val0 with −−−−−−−−−−−−−−−−−−−−→

K −→x → mat
h e with alts

→ (mat
h e with alts)[
−−−−→
val0/x]

= (By fv(alts) ∩−→x = ∅)mat
h e[
−−−−→
val0/x] with altsBy [EqFa
t℄, we are done.� Case [S-mat
h-let℄. We want to show if x /∈ fv (alts), then mat
h (let x =

e1 in e2) with alts ≡s let x = e1 in mat
h e2 with alts. We have:mat
h (let x = e1 in e2) with alts
→∗ mat
h (let x = val1 in e2) with alts
→ mat
h e2[val1/x] with altsand let x = e1 in mat
h e2 with alts
→∗ let x = val1 in mat
h e2 with alts
→ (mat
h e2 with alts)[val1/x]
= (By x /∈ fv (alts))mat
h e2[val1/x] with altsBy [EqFa
t℄, we are done.Lemma 22 (Corre
tness of rebuilding). For all H, a1,S,L, if 〈〈H || a1 || s ::

S || L〉〉 ∗ a, then a1 ≡s a.Proof. We prove it by indu
tion on the number of transition steps. We have thefollowing indu
tion hypothesis: for all H, a1,S,L, there exists H2, a2,S2,L2,su
h that 〈〈H || a1 || S || L〉〉  〈H2 || a2 || S2 || L2〉 or 〈〈H || a1 || S || L〉〉  
〈〈H2 || a2 || S2 || L2〉〉,

〈〈H2 || a2 || S2 || L2〉〉 ∗ a ∧ a2 ≡s a [IH℄The base 
ase is [R-done℄. As two expressions a at both LHS and RHS of aresynta
ti
ally the same, they are semanti
ally equivalent, so we have the desiredresult. By [E-exn℄, [E-
tx℄, de�nition of 
ontexts and indu
tion hypothesis [IH℄,we get the desired result for [R-r-mat
h℄, [R-r-let℄, [R-r-fun℄, [R-r-arg℄, [R-r-K℄.The • in a sta
k frame indi
ates the original position of the expression beingsimpli�ed. It is easy to 
he
k that [R-lam℄, [R-fun℄, [R-app℄ and [R-K℄ justput the simplifed expression ba
k to the • so they are 
orre
t. By [E-beta℄and [S-var1℄, [R-beta℄ is 
orre
t. We now 
onsider those slightly non-obvioustransitions.� Case [R-K-mat
h℄. This transition implements the simpli�
ation rule [K-mat
h℄ in Figure 11. We want to show that mat
h K a1 . . . an with
{. . . ;K x1 . . . xn → e; . . . } ≡s let x1 = a1 in . . . let xn = an in e.We have: mat
h K a1 . . . an with {. . . ;K x1 . . . xn → e; . . . }

→∗ mat
h K val1 . . . valn with {. . . ;K x1 . . . xn → e; . . . }

→ e[
−−−→
val/x]RR n° 7794



Hybrid Contra
t Che
king 69and let x1 = a1 in . . . let xn = an in e
→∗ let x1 = val1 in . . . let xn = valn in e

→ e[
−−−→
val/x]By [EqFa
t℄, we are done.� Case [R-s-mat
h℄. Given L ⇒ ∃

−−−−→
x : [[τ ]], [[a]]K −→x is valid and a →∗ Ki

−→
valfor some −→

val, by Theorem 12p36, L ⇒ ∃−→x , [[Ki

−→
val]]K −→x is valid. FromFigure 15, we know Ki = K. By [E-mat
h℄, we get the body e in thebran
h K. Sin
e L ⇒ ∃−→x , [[a]]K −→x implies L ∧ ∃−→x , [[a]]K −→x , [R-s-mat
h℄is 
orre
t.� Case [R-s-save℄. This transition simpli�es ea
h bran
hes with the as-sumption that ∃−→x , [[a]](K −→x ). Given L ∧ ∃

−−−−→
x : [[τ ]], [[a]]K −→x is valid and

a →∗ Ki

−→
val for some −→

val, by Theorem 12p36, L ∧ ∃−→x , [[Ki

−→
val]]K −→x isvalid. From Figure 15, we know Ki = K. By [E-mat
h℄, we get the body

e in the bran
h K. So [R-s-save℄ is 
orre
t.� Case [R-mat
h℄. This rule just put ba
k ea
h simpli�ed bran
h to itsoriginal position indi
ated by the •. The S and L keep the sta
k andlogi
al store before ea
h bran
hes are simpli�ed. So [R-mat
h℄ is 
orre
t.� Case [R-let-save℄. The lo
al let de�nes x, by Theorem 11p36, ∃x : [[τ ]], [[a]]xis valid. So [R-let-save℄ is 
orre
t.
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