
HAL Id: hal-00644156
https://inria.hal.science/hal-00644156

Submitted on 23 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Contract Checking via Symbolic Simplification
Na Xu

To cite this version:
Na Xu. Hybrid Contract Checking via Symbolic Simplification. [Research Report] RR-7794, INRIA.
2011. �hal-00644156�

https://inria.hal.science/hal-00644156
https://hal.archives-ouvertes.fr

appor t

de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
77

94
--

F
R

+
E

N
G

Programs, Verification and Proofs

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Hybrid Contract Checking via Symbolic
Simplification

Dana N. Xu

N° 7794

Novembre 2011

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Hybrid Contra
t Che
king via Symboli
Simpli�
ationDana N. XuTheme : Programs, Veri�
ation and ProofsAlgorithmi
s, Programming, Software and Ar
hite
tureÉquipes-Projets GalliumRapport de re
her
he n° 7794 � Novembre 2011 � 69 pages
Abstra
t: Program errors are hard to dete
t and to prove absent. Contra
t
he
king allows us to (a) stati
ally verify that a fun
tion satis�es its
ontra
t; (b)pre
isely blame fun
tions at fault both stati
ally and dynami
ally when thereis a
ontra
t violation. Stati

ontra
t
he
king
at
hes all bugs but
an only
he
k restri
ted properties while dynami

he
king
an
he
k more expressiveproperties, but is not
omplete. In this paper, we integrate stati
 and dynami

ontra
t
he
king for a subset of OCaml. We exploit a stati

he
ker as mu
h aspossible and leave the residual
ontra
t satisfa
tion
he
ks to run-time. Thus,no (potential) bugs
an es
ape and yet expressive properties
an be expressed.Key-words:
ontra
t semanti
s, stati
, dynami
, hybrid,
ontra
t
he
king,fun
tional language, veri�
ation, debugging

Véri�
ation de
ontrats hybride parsimpli�
ation symboliqueRésumé : Il est di�
ile de déte
ter des erreurs dans des programmes, ou dedémontrer leur absen
e. Permettre aux programmeurs d'é
rire des spé
i�
ationsformelles et pré
ises, en parti
ulier sous la forme de
ontrats, est une appro
he
ommune pour véri�er des programmes et trouver des erreurs. Nous formalisonset proposons une implémentation d'un véri�
ateur hybride de
ontrats pour unsous-ensemble d'OCaml. La te
hnique prin
ipale que nous mettons en ÷uvre estla simpli�
ation symbolique, qui permet de
ombiner fa
ilement les véri�
ationsstatiques et dynamiques de
ontrats. La te
hnique que nous proposons
onsisteà véri�er qu'une fon
tion satisfait son
ontrat ou indique quelle est la fon
tionà l'origine de sa violation. Quand la satisfa
tion d'un
ontrat n'est pas dé
id-able statiquement, du
ode de test est ajouté au programme a�n d'e�e
tuer lesvéri�
ations à l'exé
ution.Mots-
lés : la sémantique du
ontrat, statique, dynamique, hybride, langagefon
tionnel, véri�
ation, débogage

Hybrid Contra
t Che
king 3Contents1 Introdu
tion 42 Overview 53 The language 93.1 Syntax . 93.2 Type
he
king rules for expression 103.3 Operational semanti
s . 113.4 Crashing . 123.5 Behaves-the-same . 143.6 Crashes-more-often . 144 Contra
ts 164.1 Type
he
king for
ontra
ts . 164.2 A semanti
s for
ontra
t satisfa
tion 174.3 The wrappers . 184.4 Open expressions and
ontra
ts 194.5 Terminating
ontra
ts . 194.6 Contra
t Any . 204.7 Contra
t ordering . 214.7.1 Predi
ate Contra
t Ordering 224.7.2 Dependent Fun
tion Contra
t Ordering 234.7.3 Dependent tuple
ontra
t ordering 234.8 Contra
t equivalen
e . 245 Stati

ontra
t
he
king and residualization 265.1 The SL ma
hine . 295.2 Logi
ization . 325.3 Dis
ussion and preliminary experiments 386 Hybrid
ontra
t
he
king 407 Related work 418 Con
lusion 42A Proof for the main theorem 46A.1 Teles
oping Property . 50A.2 Key Lemma . 53A.3 Examination of Cy
li
 Dependen
ies 54A.4 Congruen
e of Crashes-More-Often 55A.5 Proje
tion Pair and Closure Pair 55A.6 Contra
ts are Proje
tions . 56A.7 Behaviour of Proje
tions . 58B Corre
tness of SL ma
hine 60B.1 Corre
tness of Logi
ization . 60B.2 Transition rules . 63RR n° 7794

Hybrid Contra
t Che
king 41 Introdu
tionConstru
ting reliable software is di�
ult even with fun
tional languages. For-mulating and
he
king (stati
ally or dynami
ally) logi
al assertions [18, 15, 2,5, 35℄, espe
ially in the form of
ontra
ts [28, 13, 7, 14, 39℄, is one popularapproa
h to error dis
overy. Stati

ontra
t
he
king
an
at
h all
ontra
tviolations but may give false alarm and
an only
he
k restri
ted properties;dynami

he
king
an
he
k more expressive properties but
onsumes run-time
y
les and only
he
ks the a
tual exe
uted paths, thus is not
omplete. Stati
and dynami

he
king
an be
omplementary. In this paper, we formalize hy-brid (i.e. stati
 followed by dynami
)
ontra
t
he
king for a subset of OCaml.Thus, no (potential)
ontra
t violations
an es
ape and yet expressive properties
an be expressed.Consider an OCaml program augmented with a
ontra
t de
laration:(* val f1 : int -> int -> int *)
ontra
t f1 = ({x | x >= 0} -> {y | y >= 0})-> {z | z >= 0}let f1 g = (g 1) - 1let f2 = f1 (fun x -> x - 1)The
ontra
t of f1 says that if f1 takes a fun
tion that returns a non-negativenumber when given a non-negative number, the fun
tion f1 itself returns anon-negative number. Both a stati

he
ker and a dynami

he
ker are ableto report that f1 fails its post
ondition: the stati

he
ker relies on the in-validity of ∀g : int → int, (g 1) ≥ 0 ⇒ (g 1) − 1 ≥ 0 while the dynami

he
ker evaluates (((fun x -> x - 1) 1) - 1) to -1, whi
h violates the
on-tra
t {z | z >= 0}. However, a dynami

he
ker
annot tell that the argument(fun x -> x - 1) fails f1's pre
ondition be
ause there is no witness at run-time, while a stati

he
ker
an report this
ontra
t violation be
ause x− 1 ≥ 0does not hold for all x of int to satisfy the post
ondition {y | y ≥ 0}. Onthe other hand, a stati

he
ker usually gives three out
omes: (a) de�nitely nobug; (b) de�nitely a bug; (
) possibly a bug. Here, a bug refers to a
ontra
tviolation. If we get many alarms (
), it may take us a lot of time to
he
k whi
hone is a real bug and whi
h one is a false alarm. We may want to invoke adynami

he
ker when the out
ome is (
).Following the formalization in [39℄, but this time for a stri
t language. We�rst give a denotational semanti
s to
ontra
t satisfa
tion. That is to de�newhat it means by an expression e satis�es its
ontra
t t (written e ∈ t) withoutknowing its implementation. Next, we de�ne a wrapper ⊲ that takes an expres-sion e and its
ontra
t t and produ
es a term e ⊲ t su
h that
ontra
t
he
ksare inserted at appropriate pla
es in e. If a
ontra
t
he
k is violated, a spe
ial
onstru
tor BADl signals the violation. As the term e ⊲ t is a term in the samelanguage as e, all we have to do is to
he
k the rea
hability of BADl. If a BADis rea
hable, we know a
ontra
t is violated and the label l pre
isely
apturesthe fun
tion at fault. We symboli
ally simplify the term e ⊲ t aiming to simplifyBADs away. In
ase there is any BAD left, we either report it as a
ompile-timeerror or leave the residual
ode for dynami

he
king. We make the following
ontributions:� We
larify the relationship between stati

ontra
t
he
king and dynami

ontra
t
he
king (�2). A new observation is that, after stati

he
king,RR n° 7794

Hybrid Contra
t Che
king 5we should prune away some more unrea
hable
ode before go on dynami

he
king. Su
h unrea
hable
ode however is essential during stati

he
k-ing. We prove the
orre
tness of this pruning (�6) with the teles
opingproperty studied (but not used for su
h purpose) in [7, 39℄.� We de�ne e ∈ t and e⊲t and prove a theorem �e⊲t is
rash-free ⇐⇒ e ∈ t�(�4). The �
rash-free� means �BAD is not rea
hable under all
ontexts�.Su
h a formalization is tri
ky and its
orre
tness proof is non-trivial. Were-do the kind of proofs in [40℄ for a stri
t language.� We design a novel SL ma
hine that augments symboli
 simpli�
ation with
ontextual information synthesis for
he
king the rea
hability of BAD stat-i
ally (�5). The di�
ulty lies in the reasoning about non-total terms. The
he
king is automati
 and modular and we prove is soundness. Moreover,the SL ma
hine produ
es residual
ode for dynami

he
king. We
ompareour framework with other approa
hes in �7.� We design a logi
ization te
hnique that transforms expressions to logi
alformulae, inspired by [20, 19℄ and axiomatization of fun
tions that inter-a
tive theorem provers perform before
alling SMT sovlers. However, wehave to deal with non-total terms and that is the key
ontribution of thelogi
ization (�5).2 OverviewAssertions [18℄ state logi
al properties of an exe
ution state at arbitrary points ina program;
ontra
ts spe
ify agreements
on
erning the values that �ow a
ross aboundary between distin
t parts of a program (modules, pro
edures, fun
tions,
lasses). If an agreement is violated,
ontra
t
he
king is supposed to pre
iselyblame the fun
tion at fault. Contra
ts were �rst introdu
ed to be
he
ked atrun-time [28, 13℄. To perform dynami

ontra
t
he
king (DCC), a fun
tionmust be
alled to be
he
ked. For example:
ontra
t in
 = {x | x > 0} -> {y | y > 0}let in
 = fun v -> v + 1let t1 = in
 0A dynami

he
ker wraps the in
 in t1 with its
ontra
t tin
:let t1 = (in
 BADl
⊲⊳BADl′ tin
) 0where l is (2, 5, “in
”) indi
ating the sour
e lo
ation where in
 is de�ned(row:2,
ol:5) and l′ is (3, 10, “t1”) indi
ating the lo
ation of the
all site with
aller's name. This wrapped t1 expands to:

(λx1. let y = in
 (let x = x1 inif x > 0 then x else BAD(3,10,“t1”))in if y > 0 then y else BAD(2,5,“in
”)) 0In the upper box, the argument of in
 is guarded by the
he
k x > 0; in the lowerbox, the result of in
 is guarded by the
he
k y > 0. If a
he
k su

eeds, theRR n° 7794

Hybrid Contra
t Che
king 6original term is returned; otherwise, the spe
ial
onstru
tor BAD is rea
hed and ablame is raised. In this
ase, t1
alls in
 with 0, whi
h fails in
's pre
ondition.Running the above wrapped
ode, we get BAD(3,10,“t1”), whi
h pre
isely blamest1. The DCC algorithm is like this. Given a fun
tion f and a
ontra
t t, to
he
k that the
allee f and its
aller agree on the
ontra
t t dynami
ally, a
he
ker wraps ea
h
all to f with its
ontra
t:
f

BADf
⊲⊳BAD? twhi
h behaves the same as f ex
ept that (a) if f disobeys t, it blames f , signaledby BADf ; (b) if the
ontext uses f in a way not permitted by t, it blames the
aller of f , signaled by BAD? where �?� is �lled with a
aller name and the
allsite lo
ation.Later, [7, 39℄ give formal de
larative semanti
s for
ontra
t satisfa
tion thatnot only allow us to prove the
orre
tness of DCC w.r.t. this semanti
s, butalso to
he
k
ontra
ts stati
ally.The essen
e of stati

ontra
t
he
king (SCC) is:splitting BADf

⊲⊳BAD? into half: e ⊲ t = e
BADf
⊲⊳UNR? t and e ⊳ t = e

UNRf
⊲⊳BAD? t.The ⊲ (�ensures�) and the ⊳ (�requires�) are dual to ea
h other. The spe
ial
onstru
tor UNR (pronoun
ed �unrea
hable�), does not raise a blame, but stopsan exe
ution. (One, who is familiar with assert and assume,
an think of(if p then e else BAD) as (assert p; e) and (if p then e else UNR) as(assume p; e).)SCC is modular and performed at de�nition site of ea
h fun
tion. For ex-ample, (λv.v + 1) ⊲ tin
 expands to:

λx1. let y = (λv.v + 1)
(let x = x1 in if x > 0 then x else UNR?) inif y > 0 then y else BAD(2,5,“in
”)At the de�nition site of a fun
tion, f = e, we assume f 's pre
ondition holdsand assert its post
ondition. If all BADs in e ⊲ t are not rea
hable, we know fsatis�es its
ontra
t t. One way to
he
k rea
hability of BAD is to symboli
allysimplify the fragment. In the above
ase, inlining x, we get:

λx1. let y =(λv.v + 1) (if x1 > 0 then x1 else UNR?) inif y > 0 then y else BAD(2,5,“in
”)Unlike [37℄ in a lazy setting, we
annot apply beta-redu
tion in a stri
t lan-guage if an argument is not a value as it may not preserve the semanti
s. Inthis paper, besides symboli
 simpli�
ation, we
olle
t
ontextual information inlogi
al formula form and
onsult an SMT solver to
he
k the rea
hability of BAD.An SMT solver usually deals with formulae in �rst order logi
 (FOL), �5 givesthe details of the generation of formulae in FOL. As an overview, we presentformulae in higher order logi
 (HOL). For the two subexpressions of the RHSof y, we have:RR n° 7794

Hybrid Contra
t Che
king 7
λv.v + 1 ∃x2, (∀v, x2(v) = v + 1)if x1 > 0 then x1 else UNR? ∃x3, (x1 > 0 ⇒ x3 = x1)∨

(not(x1 > 0) ⇒ false)One
an think of the existentially quanti�ed x2 (and x3) denoting the expressionitself. For the RHS of y, we have logi
al formula:
∀y, ∃x2, (∀v, x2(v) = v + 1) ∧ (∃x3, (x1 > 0 ⇒ x3 = x1)
∧(not(x1 > 0) ⇒ false) ∧ y = x2(x3)) [Q1℄We
he
k the validity of ∀x1,Q1 ⇒ y > 0 by
onsulting an SMT solver. As

∀x1,Q1 ⇒ y > 0 is valid, we know the BAD(2,5,“in
”) is not rea
hable, thus in
satis�es its
ontra
t.Consider the fun
tion f1 and its
ontra
t tf1 in �1. So f1⊲tf1 is (λg.(g 1)−
1) ⊲ ({x | x ≥ 0} → {y | y ≥ 0}) → {z | z ≥ 0}, whi
h expands to:

λx1. let z = (λg.(g 1)− 1)
(λx2. let y = x1 (let x = x2 inif x ≥ 0 then xelse BAD(4,5,“f1”)) inif y ≥ 0 then y else UNR?) inif z ≥ 0 then z else BAD(4,5,“f1”)After applying some
onventional simpli�
ation rules, we have:R1 : λx1. let z = let y = x1 1 inif y ≥ 0 then y − 1 else UNR?if z ≥ 0 then z else BAD(4,5,“f1”)We see that the inner BAD(4,5,“f1”) has been simpli�ed away, be
ause x = x2 = 1and (if 1 ≥ 0 then 1 else BAD(4,5,“f1”)) is simpli�ed to 1. As we
annot prove

∀x1, ∀z, (∃y, y = x1 1 ∧ (y ≥ 0 ⇒ z = y − 1)) ⇒ z ≥ 0 to be valid, the otherBAD(4,5,“f1”) remains. We
an either report this potential
ontra
t violation at
ompile-time or leave this residual
ode R1 for DCC to a
hieve hybrid
he
king.Hybrid
ontra
t
he
king (HCC) performs SCC �rst and runs the residual
ode as in DCC. In SCC, f1 ⊲ tf1
he
ks whether f1 satis�es its post
onditionby assuming its pre
ondition holds. At ea
h
all site of f1, we wrap the fun
tionwith ⊳. For example:
ontra
t f3 = {v | v >= 0}let f3 = f1 zutwhere zut is a di�
ult fun
tion for an SMT solver and zut's
ontra
t is {x |true}. Say zut ⊳ {x | true} = zut, we then have the term f3 ⊲ tf3 to be:
((f1 ⊳ tf1) zut) ⊲ {v | v > 0}whi
h requires f3 to satisfy f1's pre
ondition and assumes f1 satis�es its post-
ondition be
ause f1 ⊲ tf1 has been
he
ked. During SCC, a top-level fun
tionis never inlined. We do not have to know its detailed implementation at its
all

RR n° 7794

Hybrid Contra
t Che
king 8site as it has been guarded by its
ontra
t with f ⊳ t. The f3 ⊲ tf3 expands to:let v = let z = f1
(λx2.let y = zut (let x = x2 inif x ≥ 0 then xelse UNR(7,10,“f1”)) inif y ≥ 0 then y else BAD(7,10,“f3”)) inif z ≥ 0 then z else UNR(7,10,“f1”)if v ≥ 0 then v else BAD(7,10,“f3”)As ⊳ is dual to ⊲, the RHS of v is a
tually a
opy of the earlier f1 ⊲ tf1 butswapping the BAD and UNR and substituting x1 with zut. We now know thesour
e lo
ation of the
all site of f1 and its
aller's name, the UNR? be
omesBAD(7,10,“f3”) and the BAD(4,5,“f1”) be
omes UNR(7,10,“f1”). At de�nition site wherethe
aller is unknown, we use the lo
ation of f1, i.e. (4, 5, “f1”). On
e its
alleris known, we use (7, 10, “f1”). It is easy to get sour
e lo
ation, whi
h is forthe sake of error message reporting. So we do not elaborate the sour
e lo
ationfurther.As an SMT solver says valid for ∀v.(∃z.z ≥ 0∧ v = z) ⇒ v ≥ 0, the f3 ⊲ tf3
an be simpli�ed to (say R2):let z = f1

(λx2. let y = zut (let x = x2 inif x > 0 then xelse UNR(7,10,“f1”)) inif y ≥ 0 then y else BAD(7,10,“f3”)) inif z ≥ 0 then z else UNR(7,10,“f1”)One BAD remains. We
an either report this potential
ontra
t violation at
ompile-time or
ontinue a DCC. For SCC, we have
he
ked f1 ⊲ tf1, but forDCC, to invoke f1 ⊲ tf1, we must use the residual
ode R1. However, the UNR
lauses are useful for SCC, but redundant for DCC. We
an remove UNRs witha simpli�
ation rule:
(if e0 then e1 else UNR) =⇒ e1 [rmUNR](We shall explain why it is valid to apply this rule even if e0 may diverge or
rashin �6. Intuitively, UNR is indeed unrea
hable and e0 has been
he
ked before thisprogram point.) Applying the rule [rmUNR℄ to R1 and R2 and simplify a bit,we get: f1♯ = λx1. let z = (let y = (x1 1) in y − 1) inif z ≥ 0 then z else BAD(4,5,“f1”)f2♯ = f1♯ (λx2.let y = zut x2 inif y ≥ 0 then y else BAD(7,10,“f3”))respe
tively, whi
h is the residual
ode being run. We show in �6 that HCCblames a fun
tion fi i� DCC blames fi.Summary Given a de�nition f = e and a
ontra
t t, to
he
k e satis�es t(written e ∈ t), we perform these steps. (1) Constru
t e ⊲ t. (2) Simplify e ⊲ tas mu
h as possible to e′,
onsulting an SMT solver when ne
essary. (3) If noRR n° 7794

Hybrid Contra
t Che
king 9BAD is in e′, then there is no
ontra
t violation; if there is a BAD in e′ but nofun
tion
all in e′, then it is de�nitely a bug and report it at
ompile-time; ifthere is a BAD and fun
tion
all(s) in e′, then it is a potential bug. (4) For ea
hfun
tion f ,
reate its residual
ode f♯ by simplifying e′ with the rule [rmUNR℄,and run the program with ea
h f being repla
ed by f♯.3 The languageThe language presented in this paper, named M, is pure and stri
t, a subset ofOCaml, in
luding parametri
 polymorphism.3.1 Syntax
x, f ∈ Variables

T ∈ Type constructors

K ∈ Data constructors

pgm ::= def1 , . . . , defn Program

τ ::= −→τ T | τ1 → τ2 Types

t ∈ Contracts

t ::= {x | p} predi
ate
ontra
t
| x : t1 → t2 dependent fun
tion
ontra
t
| (x : t1, t2) dependent tuple
ontra
t
| Any polymorphi
 Any
ontra
t

def ∈ Definitions

def ::= type −→
′α T =

−−−−−→
K of −→τ

|
ontra
t f = t
| let f −→x = e top-level fun
tion
| let re
 f −→x = e top-level re
ursive fun
tion

a, e, p ∈ Exp Expressions

a, e, p ::= n integers
| r blame
| x | λ(xτ).e | e1 e2

| mat
h e0 with−→alt pattern-mat
hing
| K −→e
onstru
tor

r ::= BADl | UNRl Blames

l ::= (n1, n2, String) Label

alt ::= K (xτ1
1 , . . . , xτn

n) → e Alternatives

val ::= n | x | r | K −→v | λ(xτ).e ValuesFigure 1: Syntax of the language MRR n° 7794

Hybrid Contra
t Che
king 10Figure 1 gives the syntax of language M. A program
ontains a set of datatype de
larations,
ontra
t de
larations and fun
tion de�nitions. Expressionsin
lude variables, lambda abstra
tions, appli
ations,
onstru
tors and mat
h-expressions. Base types su
h as int and bool are data types with no parameter.Pairs are a spe
ial
ase of
onstru
ted terms, i.e. (e1, e2) is Pair (e1, e2) withtype ('a,'b) produ
t = Pair of 'a * 'b. We have top-level let re
, butfor the ease of presentation, we omit lo
al let re
. (It is possible to allowlo
al let re
 by either assuming that a lo
al re
ursive fun
tion is given a
ontra
t or using
ontra
t inferen
e [21℄ to infer its
ontra
t. Even if [21℄ isnot modular, it is good enough to infer a
ontra
t for a lo
al fun
tion.) Alo
al let-expression let x = e1 in e2 is a synta
ti
 sugar for (λx.e2) e1. Anif-expression if e0 then e1 else e2 is synta
ti
 sugar for mat
h e0 with {true
→ e1; false→ e2}.We assume all top-level fun
tions are given a
ontra
t. Contra
t
he
king isdone after the type
he
king phase in a
ompiler so we assume all expressions,
ontexts and
ontra
ts are well-typed and use its type information (presentedas supers
ript, e.g. eτ or tτ) whenever ne
essary.The two
ontra
t ex
eptions (also
alled blames) BADl and UNRl are adaptedfrom [39℄. They are for internal usage, not visible to programmers. The label
l
ontains information su
h as fun
tion name and sour
e
ode lo
ation, whi
his useful for error reporting as well as for examination of the
orre
tness ofblaming. But we may omit the label l when it is not the fo
us of the dis
ussion.It is possible for programmers to write:let head xs = mat
h xs with| [℄ -> raise Emptylist| x::l -> xwhere raise : ∀α. Ex
eption → α. The Ex
eption is a built-in data type forex
eptions and Emptylist has type Ex
eption. As we do not have try-with inlanguageM (leaving it as future work), a prepro
essing
onverts raise Emptylistto BADhead.We have four forms of
ontra
ts. The p in a predi
ate
ontra
t {x | p} refersto a boolean expression in the same language M. Dependent fun
tion
ontra
tsallow us to des
ribe dependen
y between input and output of a fun
tion. Forexample, x : {y | y > 0} → {z | z > x} says that, the input is greater than 0 andthe output is greater than the input. We
an use a shorthand {x | x > 0} → {z |
z > x} by assuming x s
opes over the RHS of →. The → is right asso
iative.Similarly, dependent tuple
ontra
ts allow us to des
ribe dependen
y betweentwo
omponents of a tuple. For example, (x : {y | y > 0}, {z | z > x}) whoseshort hand is ({x | x > 0}, {z | z > x}). Contra
t Any is a universal
ontra
tthat any expression satis�es. We support higher order
ontra
ts, e.g. k : ({x |
x > 0} → {y | y > x}) → {z | k 5 > −1} for a fun
tion let f g = g 2.3.2 Type
he
king rules for expressionThe language M is stati
ally typed in the
onventional way. Figure 2 gives type
he
king rules. A type judgement has the form

Γ ⊢ eτRR n° 7794

Hybrid Contra
t Che
king 11whi
h states that given Γ (whi
h is a mapping from variable to its type), e hastype τ assuming that any free variable in it has type given by Γ. If Γ = ∅, weomit the Γ, and write ⊢ eτ .
Γ ⊢ BAD :: τ [T-BAD] Γ ⊢ UNR :: τ [T-UNR]

v :: τ ∈ Γ
Γ ⊢ v :: τ

[T-Var] Γ, x :: τ1 ⊢ e :: τ2
Γ ⊢ (λ(xτ1).e) :: τ1 → τ2

[T-Lam]
Γ ⊢ e1 :: τ1 → τ2 Γ ⊢ e2 :: τ1

Γ ⊢ (e1 e2) :: τ2
[T-App]

K :: −→τ → T ∈ Γ Γ ⊢ −→e :: −→τ
Γ ⊢ K −→e :: T −→α

[T-Con]
Γ ⊢ e0 :: T −→τ Γ, {v :: T −→τ }, {

−−−−−−−−−→
Ki

−→xi :: T
−→τ } ⊢ ei :: τ

Γ ⊢ (
ase e0 of (vT
−→τ) {Ki

−→xi → ei}) :: τ
[T-Mat
h]Figure 2: Type Che
king RulesAs we do type
he
king before
ontra
t
he
king, we assume all expressionsare well-typed (i.e. no type error) in the rest of this paper. Note that nothingsubstantial in the paper depends deli
ately on the type system. The reasonwe ask that programs are well-typed is to avoid the te
hni
al in
onvenien
ein designing the semanti
s of
ontra
ts if, say, evaluation �nds an ill-typedexpression (3 True).3.3 Operational semanti
sThe semanti
s of our language is given by redu
tion rules in Figure 3. For a top-level fun
tion, we fet
h its de�nition from the evaluation envrionment ∆. Weadapt some basi
 de�nitions from [39℄. De�nition 1 de�nes the usual
ontextualequivalen
e. Two expressions are said to be semanti
ally equivalent, if under all(
losing)
ontexts, if one evaluates to a blame r, the other also evaluates to thesame r.De�nition 1 (Semanti
ally Equivalent). Two expressions e1 and e2 are seman-ti
ally equivalent, namely e1 ≡s e2, i� for all
losing C, for all r, C[[e1]] →∗

r ⇐⇒ C[[e2]] →∗ rOur framework only guarantees partial
orre
tness. A diverging programdoes not
rash.De�nition 2 (Diverges). A
losed expression e diverges, written e↑, i� either
e →∗ UNR, or there is no value val su
h that e →∗ val.
RR n° 7794

Hybrid Contra
t Che
king 12let (re
) f = e ∈ ∆
f → e

[E-top℄
(λx.e) val → e[val/x] [E-beta℄mat
h K

−→
val with −−−−−−→

K −→x → e → e[
−−−→
val/x] [E-mat
h℄

e1 → e2
C[[e1]] → C[[e2]]

[E-
tx℄ C[[r]] → r [E-exn℄Contexts C ::= [[•]] | C e | val C | K
−→
val C −→e

| mat
h C with −→
altFigure 3: Semanti
s of the language M3.4 CrashingWe use BAD to signal that something has gone wrong in the program, whi
h
anbe a program failure or a
ontra
t violation.De�nition 3 (Crash). A
losed term e
rashes i� e →∗ BAD.At
ompile-time, one de
idable way to
he
k the safety of a program is tosee whether the program is synta
ti
ally safe.De�nition 4 (Synta
ti
 safety). A (possibly-open) expression e is synta
ti
allysafe i� BAD /∈s e. Similarly, a
ontext C is synta
ti
ally safe i� BAD /∈s C.The notation BAD /∈s e means BAD does not synta
ti
ally appear anywherein e, similarly for BAD /∈s C. For example, λx.x is synta
ti
ally safe while

λx. (BAD, x) is not.De�nition 5 (Crash-free expression). A (possibly-open) expression e is
rash-free i� : for all C su
h that BAD /∈s C and ⊢ C[[e]] :: bool, C[[e]] 6→∗ BAD.The notation ⊢ C[[e]] :: bool means C[[e]] is
losed and well-typed. Thequanti�ed
ontext C serves the usual role of a probe that tries to provoke e into
rashing. Note that a
rash-free expression may not be synta
ti
ally safe, e.g.
λx.if x ∗ x ≥ 0 then x+ 1 else BAD.Lemma 1 (Synta
ti
ally safe expression is
rash-free).

e is synta
ti
ally safe ⇒ e is
rash-freeProof. Sin
e there is no BAD synta
ti
ally in e, for all
ontext C, su
h thatthere is no BAD syntati
ally in C, then C[[e]] 6→∗ BAD. By de�nition 5 (Crash-freeexpression), e is
rash-free.For ease of presentation, when we do not give label l to BAD or UNR, we meanBAD or UNR for any l. Moreover, expressions BADl and UNRl are
losed expressionseven if l is not expli
itly bound.Lemma 2 (Neutering). If e is
rash-free, then ⌊e⌋ ≡s e.RR n° 7794

Hybrid Contra
t Che
king 13Proof. Sin
e e is
rash-free, all BADs in e are not rea
hable so by
onverting allBADs in e to UNR by ⌊.⌋ does not
hange the semanti
s of e. Formally, we provethis by indu
tion on redu
tion rules.Lemma 3 (Crash-free Preservation). Given e1 → e2,
e1 is
rash-free ⇐⇒ e2 is
rash-freeProof. We prove two dire
tions by
ontradi
tion.(⇒)Suppose e2 is not
rash-free. By De�nition 5p12 (Crash-free Expression), thereexists a C su
h that BAD /∈s C and C[[e2]] →∗ BAD. By [E-
tx℄ and e1 → e2 and

C[[e2]] →
∗ BAD, we have: C[[e1]] →

∗ C[[e2]] →
∗ BAD. As we know e1 is
rash-free,we rea
h
ontradi
tion. Thus, we are done.(⇐)Suppose e1 is not
rash-free. By De�nition 5p12 (Crash-free Expression), thereexists a C su
h that BAD /∈s C and C[[e1]] →∗ BAD. By [E-
tx℄ and e1 → e2 and
on�uen
e of the language, we have C[[e2]] →∗ BAD. With the assumption that

e2 is
rash-free, we rea
h
ontradi
tion. Thus, we are done.Lemma 4 (Crash-free fun
tion). For all (possibly-open) terms λx.e,
λx.e is
rash-free

⇐⇒for all (possibly-open)
rash-free e′, e[e′/x] is
rash-free.Proof. We prove two dire
tions separately.(⇒)
λx.e is
rash-free

⇒ (By Lemma 2p12, e′ is
rash-free ⇒ ⌊e′⌋ ≡s e
′and by the de�nition of
rash-free expression)for all
rash-free e′, e[e′/x] is
rash-free(⇐) We have the following proof.for all cf e′, e[e′/x] is
rash-free

⇐⇒ (By Lemma 3p13)for all cf e′, (λx.e) e′ is
rash-free
⇐⇒ (By De�nition 5p12 (Crash-free Expression))for all cf e′, ∀C, BAD /∈s C, C[[(λx.e) e′]] 6→∗ BAD
⇒ (By Lemma 2p12, e′ is
rash-free ⇒ ⌊e′⌋ ≡s e

′)
∀C, BAD /∈s C, C[[(λx.e) ⌊e′⌋]] 6→∗ BAD

⇒ (By BAD /∈s ⌊e′⌋)
∀C, BAD /∈s C, C[[(λx.e)]] 6→∗ BAD

⇐⇒ (By De�nition 5p12 (Crash-free Expression))
λx.e is
rash-free

RR n° 7794

Hybrid Contra
t Che
king 143.5 Behaves-the-sameWe de�ne an ordering, named Behaves-the-same, whi
h is useful in later se
-tions.De�nition 6 (Behaves the same). Expression e1 behaves the same as e2 w.r.t.a set of ex
eptions R, written e1 ≪R e2, i� for all
ontexts C, su
h that ∀i ∈
{1, 2}. ⊢ C[[ei]] :: bool

C[[e2]] →
∗ r ∈ R ⇒ C[[e1]] →

∗ rDe�nition 6p14 says that e1 either behaves the same as e2 or throws an ex-
eption from R. (The de�nition does not look as strong as that, but as everytheorist knows, it is. For example,
ould e1 produ
e true while e2 produ
esfalse? No, be
ause we
ould �nd a
ontext C that would make C[[e2]] throw anex
eption while C[[e1]] does not.) In our framework, there are only two ex
ep-tional values in R: BAD and UNR. Certainly, if e2 itself throws an ex
eption, then
e1 must throw the same ex
eption.As we only have two ex
eptional values BAD, UNR (whi
h are dual to ea
hother) in R, this yields Lemma 5p14. We omit {} if there is only one element in
R.Lemma 5 (Properties of Behaves-the-same). For all
losed e1 and e2,

e1 ≪UNR e2 ⇐⇒ e2 ≪BAD e1Proof. We prove two dire
tions separately.(⇒) We have the following proof:
e1 ≪UNR e2

⇐⇒ (By defn of ≪UNR)
∀C. C[[e2]] →∗ UNR ⇒ C[[e1]] →∗ UNR

⇐⇒ (By logi
)
∀C. C[[e1]] 6→∗ UNR ⇒ C[[e2]] 6→∗ UNRWe want to show that ∀D. D[[e1]] →

∗ BAD⇒ D[[e2]] →
∗ BAD.Assume D[[e1]] →∗ BAD.Let C = mat
h (D[[•]]) with {DEFAULT→ UNR}Now we have C[[e1]] →∗ BAD⇒ C[[e2]] 6→∗ UNR.Sin
e C[[e2]] =
ase D[[e2]] with {DEFAULT→ UNR}, we have D[[e2]] →∗ BAD.So we have

∀D. D[[e1]] →
∗ BAD ⇒ D[[e2]] →

∗ BAD(⇐) By repla
ing BAD by UNR and UNR by BAD in the above proof for thedire
tion (⇒), we get the proof for the dire
tion (⇐).3.6 Crashes-more-oftenWe study a spe
ialized ordering
rashes-more-often, whi
h plays a
ru
ial rolein proving our main theorems.De�nition 7 (Crashes-more-often). An expression e1
rashes more often than
e2, written e1 � e2, i� e1 ≪BAD e2.RR n° 7794

Hybrid Contra
t Che
king 15Informally, e1
rashes more often than e2 if they behave in exa
tly the sameway ex
ept that e1 may
rash when e2 does not. By De�nition 7p14, Lemma 5p14also says that:
e1 ≪UNR e2 ⇐⇒ e2 � e1Theorem 1 (Crashes-more-often is AntiSymmetri
). For all expressions e1 and

e2, e1 � e2 and e2 � e1 i� e1 ≡s e2.Proof. It follows immediately from the de�nition of ≡s (De�nition 1p11) and thede�nition of �.The
rashes-more-often operator has many properties. Lemma 6p15 says thatBAD
rashes-more-often then all expressions; all expressions
rash more oftenthen a diverging expression. Lemma 7p15 gives more intuitive properties.Lemma 6 (Properties of Crashes-more-often - I).
(a) BAD � e2
(b) e1 � e2 if e2 ↑Proof. We prove ea
h property separately (all by
ontradi
tion) and we assumetype soundness.(a) Assume there exists a
ontext C su
h that C[[e2]] →∗ BAD and C[[BAD]] 6→∗BAD. There are two possibilities for C[[e2]] →∗ BAD: (1) the BAD is from the
ontext C; (2) the BAD is from the hole e2. For
ase (1), we must have

C[[BAD]] →∗ BAD sin
e we use the same
ontext C. For
ase (2), if the holeis evaluated, we rea
h BAD immediately. So we rea
h a
ontradi
tion andwe are done.(b) Given e2 ↑, assume there exists a
ontext C su
h that C[[e2]] →∗ BAD and
C[[e1]] 6→∗ BAD. Sin
e e2 ↑ and C[[e2]] →∗ BAD, we know the BAD is fromthe
ontext C. So no matter what e1 is, we have C[[e1]] →∗ BAD. Thus, weagain rea
h a
ontradi
tion and we are done.Lemma 7 (Properties of Crashes-more-often - II). If e1 � e2

(a) e1 →∗ K f1 ⇒ e2 →∗ K f2 or e2 ↑
(b) e1 ↑ ⇒ e2 ↑
(c) e1 is
rash-free ⇒ e2 is
rash-free
(d) e1 →∗ λx.e′1 ⇒ e2 →∗ λx.e′2 or e2 ↑Proof. We prove ea
h property separately (all by
ontradi
tion):(a) Given e1 →∗ K f1, assume neither e2 →∗ K f2 nor e2 ↑. Then we musthave e2 →∗ BAD. By the de�nition of � and the fa
t that e1 � e2, if

e2 →∗ BAD, then e1 →∗ BAD. Sin
e e1 →∗ K f1, we rea
h a
ontradi
tionand we are done.(b) Given e1 ↑, assume e2 6 ↑. Then e2 →∗ val and there exists a synta
ti
allysafe
ontext C su
h that C[[e2]] →∗ BAD. But C[[e1]] always diverges as e1diverges if BAD /∈s C. By the fa
t that e1 � e2 and by the de�nition of �,we rea
h a
ontradi
tion and we are done.RR n° 7794

Hybrid Contra
t Che
king 16(
) Given e1 is
rash-free, assume e2 is not
rash-free. By De�nition 5p12(Crash-free Expression), there exists a synta
ti
ally safe
ontext C su
hthat C[[e2]] →∗ BAD. By the fa
t that e1 � e2 and by the de�nition of �,we have C[[e1]] →∗ BAD. This
ontradi
ts with another assumption that e1is
rash-free. Sin
e we rea
h a
ontradi
tion, we are done.(d) The proof is similar to that in (a).4 Contra
tsFindler and Felleisen (FF) �rst introdu
ed an algorithm for dynami
 higherorder
ontra
t
he
king [13℄. Blume and M
Allester [7℄ then de�ne a semanti
sfor
ontra
t satisfa
tion and show its sound-and-
ompleteness with respe
t tothe FF-algorithm. As the algorithm and the
ontra
t semanti
s are de�nedby two groups of people, there are some mismat
hes addressed in [12℄. Later,[39℄ de�nes both a
ontra
t semanti
s and a (stati
)
he
king algorithm fora lazy language. In this paper, we follow the style in [39℄, design
ontra
tsatisfa
tion and
he
king algorithm for a stri
t language. As diverging
ontra
tsmake dynami

ontra
t
he
king unsound (explained in Se
tion 4.5) and we dohybrid
he
king, we fo
us on total
ontra
ts.De�nition 8 (Total
ontra
t). A
ontra
t t is total i�
t is {x | p} and λx.p is total (i.e.
rash-free, terminating)or t is x : t1 → t2 and t1 is total andfor all val1 ∈ t1, t2[val1/x] is totalor t is (x : t1, t2) and t1 is total andfor all val1 ∈ t1, t2[val1/x] is totalor t is AnyOur de�nition of total
ontra
t is di�erent from that in [7℄, but
lose to the
rash-free
ontra
t in [39℄ with an additional
ondition that λx.p is a terminatingfun
tion. For example,
ontra
t {x | x 6= [℄} → {y | head x > y} is total inour framework be
ause head x does not
rash for all x satisfying {x | x 6= [℄}.Su
h a
ontra
t is not total in [7℄ be
ause a
rashing fun
tion head is
alled ina predi
ate
ontra
t.4.1 Type
he
king for
ontra
tsA
ontra
t type judgement has the form

Γ ⊢c t ∈ τwhi
h states that given Γ (a mapping from program variable to its type, andfrom type variable α to its kind k), e has type τ assuming that any free variablein it has type given by Γ. Contra
t type
he
king rules are shown in Figure 4.
RR n° 7794

Hybrid Contra
t Che
king 17
Γ, α :: k ⊢c t :: τ

Γ ⊢c (∀α :: k. t) :: τ
[C-Forall]

Γ ⊢c Any :: τ [C-Any] Γ, x :: τ ⊢c e :: Bool
Γ ⊢c {x | e} :: τ

[C-One]
Γ ⊢c t1 :: τ1 Γ, x :: τ1 ⊢c t2 :: τ2

Γ ⊢c x : t1 → t2 :: τ1 → τ2
[C-Fun]

Γ ⊢c t1 :: τi Γ, x :: τ1 ⊢c t2 :: τ2
Γ ⊢c (x : t1, t2) :: (τ1, τ2)

[C-Tuple]Figure 4: Type Che
king Rules for Contra
tFor a well-typed expression e, de�ne e ∈ t thus:
e ∈ {x | p} ⇐⇒ e↑ or (e is
rash-free and [A1℄

p[e/x] →∗ true)
e ∈ x : t1 → t2 ⇐⇒ e↑ or (e →∗ λx.e2 and [A2℄

∀val1 ∈ t1. (e val1) ∈ t2[val1/x])

e ∈ (x : t1, t2) ⇐⇒ e↑ or (e →∗ (val1, val2) and [A3℄
val1 ∈ t1 and val2[val1/x] ∈ t2[val1/x])

e ∈ Any ⇐⇒ true [A4℄Figure 5: Contra
t Satisfa
tion4.2 A semanti
s for
ontra
t satisfa
tionWe give the semanti
s of
ontra
ts by de�ning �e satis�es t" (written e ∈ t)in Figure 5 inspired by [7, 39℄. Here are some
onsequen
es: (1) a divergentexpression satis�es any
ontra
t, hen
e all
ontra
ts are inhabited; (2) only
rash-free expression satis�es a predi
ate
ontra
t; (3) any expression satis�es
ontra
t Any; (4) BAD only satis�es
ontra
t Any.One di�eren
e from [39℄ is that, we do not allow p[e/x] in [A1℄ to divergewhile [39℄ allows be
ause they only do stati

he
king. We support dependenttuple
ontra
ts, that are not in [7, 39℄. One di�eren
e from [7℄ is that, theysay that a
rashing expression does not satisifay any
ontra
t; we say that a
rashing expression satisfy the universal
ontra
t Any. Having a top ordering
ontra
t is debated in [12℄ where a sub
ontra
t ordering is de�ned below. It isobvious that Any is useful in a lazy language [39℄ as we may want to ignore somesub
omponents of a
onstru
tor. We explain why Any is also useful for a stri
tlanguage in Se
tion 4.6.De�nition 9 (Sub
ontra
t). For all
losed
ontra
ts t1 and t2, t1 is a sub
on-tra
t of t2, written t1 ≦ t2, i� ∀e. e ∈ t1 ⇒ e ∈ t2RR n° 7794

Hybrid Contra
t Che
king 184.3 The wrappers
e ⊲ t = e

BADl1
⊲⊳UNRl2 t e ⊳ t = e

UNRl2
⊲⊳BADl1 t

e
r1
⊲⊳
r2

{x | p} = let x = e in if p then x else r1 [P1]

e
r1
⊲⊳
r2

x : t1 → t2 = let y = e in
λx1.((y (x1

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x]) [P2]

e
r1
⊲⊳
r2

(x : t1, t2) = mat
h e with
(x1, x2) → (x1

r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x]) [P3]

e
r1
⊲⊳
r2

Any = r2 [P4]Figure 6: Contra
t
he
king with the wrappersAs mentioned in Se
tion 2, the essen
e of
ontra
t
he
king is the two wrap-pers ⊲ and ⊳, whi
h are dual to ea
h other (de�ned in Figure 6). We omit thelabels for ⊲ and ⊳ whose full versions are ⊲l1l2 and ⊳l1l2 respe
tively. The wrappedexpression e
r1
⊲⊳
r2

t expands to a parti
ular expression, whi
h behaves the same as
e ex
ept that it raises blame r1 if e does not obey t and raise r2 if the wrappedterm is used in a way disobeying t.From [P1℄ to [P3℄, if e
rashes, the wrapped term
rashes; if e diverges, thewrapped term diverges. Whenever an ri is rea
hed, we know the property pdoes not evaluate to true (as in [P1℄). The wrappers are de�ned su
h thatTheorem 2 holds.Theorem 2 (Sound-and-
ompleteness of
ontra
t
he
king). For all
losed ex-pression eτ ,
losed and total
ontra
t tτ ,

(e ⊲ t) is
rash-free ⇐⇒ e ∈ tThe supers
ript τ says both e and t are well-typed and have the same type
τ . The full proof of Theorem 2 is in Appendix A, whi
h is similar to that in [40℄.In pra
ti
e, we only need Thereom 3, i.e. one dire
tion of Thereom 2.Theorem 3 (Soundness of
ontra
t
he
king). For all
losed expression eτ ,
losed and terminating
ontra
t tτ ,

(e ⊲ t) is
rash-free ⇒ e ∈ tNote that, if t is terminating and e⊲t is
rash-free, then t is total. Unlike [13℄,whi
h assumes there is no ex
eption from a
ontra
t itself, our
ontra
t
he
kingalgorithm helps programmers to ensure it by dete
ting ex
eptions in
ontra
tsthemselves. The term t2[(v
r2
⊲⊳
r1

t1/x] in [P2℄ and [P3℄ says that, we wrap ea
h(fun
tion)
all in a
ontra
t with its
ontra
t so that if there is any
ontra
tviolation in a
ontra
t, we report this error. For example:RR n° 7794

Hybrid Contra
t Che
king 19
ontra
t f = k:({x | x > 0 } -> {y | y > 0 })-> {z | k 0 > -1}let f g = g 2let t2 = f (fun x -> x)a
ontra
t violation o

urs in {z | k 0 > -1} be
ause the
all k 0 fails k'spre
ondition {x | x > 0}. As addressed in [10℄, we should blame the
ontra
t.We omit passing around the name of the
ontra
t in this paper as our fo
us isto
he
k the rea
hability of BAD. Instead, we use r1 to indi
ate that the label of
r1 is repla
ed by the name of the
ontra
t.4.4 Open expressions and
ontra
tsFor open expressions, we use the same idea in [39℄. Suppose the de
lared
on-tra
ts for f and g are tf , tg respe
tively, and the de�nition of g is g = eg wheref is
alled in eg. Then, instead of
he
king that eg ∈ tg, we
he
k that

(λf. eg) ∈ tf → tgThat means we simply lambda-abstra
t over any variables free in eg. The sameidea applies for the re
ursive fun
tions. If the programmer spe
i�es the
ontra
t
tf for a de�nition f = e, then it su�
es to
he
k that

λf.e ∈ tf → tfwhi
h is easier be
ause λf.e does not
all f re
ursively. There is nothing newhere � it is just the standard te
hnique of loop invariants in another guise � butit is pa
kaged very
onveniently.In other words, imagine we have a
ontra
t judgement:
∆ ⊢ e ∈ twhi
h states that given∆, whi
h is a mapping from variable to its type,
ontra
tand de�nition.De�nition 10 (Contra
t judgement). We write ∆ ⊢ e ∈ t to mean that ehas
ontra
t t assuming that any free variable in e has
ontra
t given by ∆and any free variable in t has de�nition given by ∆. Suppose ∆ = {f1 7→

(τ1, t1, e1), . . . , fn 7→ (τn, tn, en)}, we de�ne:
∆ ⊢ e ∈ t ⇐⇒ λf1.fn.e ∈ t1 → · · · → tn → tThis means, in theory (i.e. in the formalization of the veri�
ation), we onlyneed to deal with
losed expressions; in pra
ti
e (i.e. in the implementation),we may refer to the environment ∆ when ne
essary. We
an simply
he
k
rash-freeness of e[(g ⊳ tg)/g]⊲ tf [(g ⊳ tg)/g] where a
all to g is repla
ed by g ⊳ tg. Thisidea holds for re
ursive
alls of f in e as well, we
he
k e[f ⊳ tf/f] ⊲ tf . (Notethat f is not allowed to be used in tf .)4.5 Terminating
ontra
tsWe want p in {x | p} to be terminating be
ause a divergent
ontra
t hides
rashes. For example:RR n° 7794

Hybrid Contra
t Che
king 20let re
 loop x = loop x
ontra
t fb = {x | loop x} -> {y | true}let fb x = head [℄fb ⊲ tfb is λx1.((λx.head []) (if loop x1 then x1 else BAD)), whi
h divergeswhenever applied be
ause of the loop. However, the fun
tion fb is not
rash-free.Consider the higher order fun
tion f in Se
tion 4.3, one might wonderwhether we have to
he
k the argument of the higher order fun
tion f to beterminating be
ause k is
alled in the
ontra
t. The answer is no. By inspe
t-ing [P1℄ and [P2℄, we
an see that an argument is always evaluated earlier thanthe x in t2. So we will not en
ounter the situation that a divergent
ontra
thides a
rash.We only have to prove termination of fun
tions used in
ontra
ts, not all thefun
tions in a program. We
an adapt ideas in [26, 34, 4℄ to build an e�
ientautomati
 termination
he
ker.4.6 Contra
t AnyThere is a debate in [12℄ on whether it is useful to have a top ordering
ontra
tAny. We want Any be
ause we want to give a fun
tion, that always fails, a
ontra
t to satisfy, so that we do not blame it at its de�nition site during SCCbe
ause ∀e, e⊲Any = UNR, whi
h is
rash-free. Consider a popular OCaml libraryfun
tion:
ontra
t failwith = {x | true} -> Anylet failwith str = raise (Failure str)where Failure has type Ex
eption. A
aller of failwith always violates the
ontra
t Any be
ause ∀e, e ⊳ Any = BAD. For example:let get a i = if i >= 0 and i < Array.length a - 1then a.(i) else failwith "Out of bound"Whenever the else-bran
h is rea
hed (either in SCC or DCC), the
aller get isblamed be
ause a safe program is meant not to invoke a fun
tion that fails. Itis not useful to blame the failwith itself. Certainly, programmers' intention isnot to have an index out of bound so they may give get a
ontra
t:
{a | true} → {i | i ≥ 0 ∧ i < Array.length a− 1} → {z | true}so that a
aller of get will be blamed if it fails get's pre
ondition.The example under debate in [12℄ is something like:
ontra
t id = ({x | x /= 0} -> {y | true}) -> Anylet id x = xlet t3 = let invert y = 1/y in (id invert) 0If programmers' intention is not to de�ne a fun
tion that always fails, theyshould repla
e Any by {z | true}, whi
h never assigns blame be
ause ∀e, e⊲{z |true} = e ⊳ {z | true} = e. With this new
ontra
t, id is blamed in eitherSCC or DCC for violating its
ontra
t be
ause id
annot guarantee a
rash-freeRR n° 7794

Hybrid Contra
t Che
king 21result (required by {z | true}) when taking a non-
rash-free fun
tion as itsargument.With the de
larative semanti
s for
ontra
t satisfa
tion,
ontra
ts
an be ex-ported for separate
ompilation. An implementation of a fun
tion may
hangeover time (e.g. having a more e�
ient implementation), but its exported
on-tra
t may not
hange. In our framework, we respe
t a fun
tion's
ontra
t morethan its implementation. This is di�erent from the original purpose in [13℄,whi
h only uses
ontra
ts for dynami
 blaming.We have a simple lemma for
ontra
t Any.Lemma 8 (Contra
t Any). (a) If BAD ∈ t, then t = Any.(b) If BAD ⊲ t is
rash-free, then t = Any.Proof. (a) By inspe
ting the de�nition of ∈, the only
ontra
t that BAD satis-�es is Any.(b) By inspe
ting the de�nition of ⊲, for all t su
h that t 6= Any, BAD⊲t →∗ BADwhi
h is not
rash-free. And we have BAD ⊲ Any = UNR whi
h is
rash-free,so we are done.4.7 Contra
t orderingthe sub
ontra
t relation
an be illustrated in rule-form shown in Figure 7. Ea
hrule in Figure 7 is a theorem. The relation p ⇒e q in rule [C-Pred℄ is de�nedin De�nition 11. Rule [C-Any℄ follows dire
tly from the de�nition of ≦. Wenow study the rules [C-Pred℄, [C-DepFun℄ and [C-DepTup℄. We assume thestatement above the line is true, and prove the statement below the line is true.We leave the proof of other dire
tion as a open problem.
p ⇒e q

{x | p} ≦ {x | q}
[C-Pred] t ≦ Any [C-Any]

t1 ≦ t3 ∀e ∈ t1, t2[e/x] ≦ t4[e/x]
(x : t1, t2) ≦ (x : t3, t4)

[C-DepTup]
t3 ≦ t1 ∀e ∈ t3, t2[e/x] ≦ t4[e/x]

x : t1 → t2 ≦ x : t3 → t4
[C-DepFun]Figure 7: Sub
ontra
t RelationDe�nition 11 (Boolean Expression Impli
ation). For all boolean expressions pand q, we say p implies q (written p ⇒e q) i� (if q then ()else BAD)

�

(if p then ()else BAD)From De�nition 11p21, for example, we know {x | x < 10} ⇒e {x | x < 12}.The substitution for
ontra
ts is de�ned in Figure 8. Here, we assume ea
hbound variable has a unique name.RR n° 7794

Hybrid Contra
t Che
king 22
{x | p}[e/y] = {x | p[e/y]}
(x : t1 → t2)[e/y] = x : t1[e/y] → t2[e/y]
(t1, t2)[e/y] = (t1[e/y], e2[e/y])Any[e/y] = AnyFigure 8: Substitution for Contra
ts4.7.1 Predi
ate Contra
t OrderingWe prove that the rule [C-Pred℄ is sound; that is we prove Theorem 4p22.Theorem 4 (Predi
ate Contra
t Ordering). For all expressions p, q, if p ⇒ qthen {x | p} ≦ {x | q}.Proof. We have the following proof for all t1, t2, t3, t4:

p ⇒e q

⇐⇒ (By De�nition 11p21 (Boolean Expression Impli
ation), let
e1 =





ase p ofTrue→ ()False→ BAD 

 and e2 =





ase q ofTrue → ()False→ BAD 

)

e2 � e1

⇐⇒ (By De�nition 7p14 (Crashes-more-often))
∀C. C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD

⇒ (By (*) below)
∀e. e is
rash-free and (e1[e/x] 6→∗ {BAD, False} ⇒ e2[e/x] 6→∗ {BAD, False})

⇐⇒ (By logi
 and de�nition of ∈ in Figure 5)
∀e. e ∈ {x | e1} ⇒ e ∈ {x | e2}

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
{x | e1} ≦ {x | e2}(*) We know ∀e, a, x. e[a/x] ≡s let x = a in e.Assuming for all
rash-free e:

(1) ∀C. C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD
(2) (let x = e in e1) 6→

∗ {BAD, False})we want to show (let x = e in e2) 6→∗ {BAD, False}Suppose (let x = e in e2) →∗ BADBy (1), let C be let x = e in •, we have C[[e1]] →∗ BAD.That means (let x = e in e1) →∗ BAD.This
ontradi
ts with (2) so our assumption is wrong and we are done.Suppose (let x = e in e2) →
∗ FalseBy (1), let C be
ase (let x = e in •) of {False→ BAD}, we have C[[e1]] →∗ BAD.That means (
ase (let x = e in e1) of {False→ BAD}) →∗ BAD.That means (let x = e in e1) →∗ {BAD, False}.This
ontradi
ts with (2) so our assumption is wrong and we are done.End of proof.RR n° 7794

Hybrid Contra
t Che
king 234.7.2 Dependent Fun
tion Contra
t OrderingWe prove that the rule [C-DepFun℄ is sound; that is we prove Theorem 5p23.Theorem 5 (Dependent Fun
tion Contra
t Ordering). For all t1, t2, t3, t4.if t3 ≦ t1 and ∀e ∈ t3. t2[e/x] ≦ t4[e/x], then x : t1 → t2 ≦ x : t3 → t4Proof. We have the following proof for all t1, t2, t3, t4:
t3 ≦ t1 and ∀e3 ∈ t3. t2[e3/x] ≦ t4[e3/x]

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
(†1) ∀e1. e1 ∈ t3 ⇒ e1 ∈ t1 and ∀e3 ∈ t3.∀e2. e2 ∈ t2[e3/x] ⇒ e2 ∈ t4[e3/x]

⇒ (By the (*) below)
(†2) ∀e. ∀e1 ∈ t1. (e e1) ∈ t2[e1/x] ⇒ ∀e3 ∈ t3. (e e3) ∈ t4[e3/x]

⇐⇒ (By de�nition of ∈ in Figure 5)
∀e. e ∈ x : t1 → t2 ⇒ e ∈ x : t3 → t4

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
x : t1 → t2 ≦ x : t3 → t4

(∗) For all e, assuming:
(1) ∀e1. e1 ∈ t3 ⇒ e1 ∈ t1 (�rst
lause of the line †1)
(2) ∀e3 ∈ t3, ∀e2. e2 ∈ t2[e3/x] ⇒ e2 ∈ t4[e3/x] (se
ond
lause of the line †1)
(3) ∀e1 ∈ t1.(e e1) ∈ t2[e1/x] (LHS of the line †2)we show ∀e3. e3 ∈ t3 ⇒ (e e3) ∈ t4[e3/x]as follows.

e3 ∈ t3

⇐⇒ (By (1))
e3 ∈ t1

⇐⇒ (By (3))
(e e3) ∈ t2[e3/x]

⇐⇒ (By (2))
(e e3) ∈ t4[e3/x]We are done.4.7.3 Dependent tuple
ontra
t orderingWe prove the rule [C-DepTup℄ is sound by showing:For all t1, t2, t3, t4. if t1 ≦ t3 and t2 ≦ t4, then (t1, t2) ≦ (t3, t4)Proof. For all e, if e diverges, then for all t1, t2, t3, t4, e ∈ (t1, t2) and e ∈ (t3, t4)be
ause a divergent expression satis�es all
ontra
ts. By the de�nition of ≦,we have the desired result (t1, t2) ≦ (t3, t4). Now, we prove the
ase when

RR n° 7794

Hybrid Contra
t Che
king 24
e →∗ (e1, e2) as follows.

t1 ≦ t3 and t2 ≦ t4

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
∀e1. e1 ∈ t1 ⇒ e1 ∈ t3 and ∀e2. e2 ∈ t2 ⇒ e2 ∈ t4

⇐⇒ (By logi
 (∀x.A) ∧ (∀y.B) ≡ ∀x, y. A ∧B if y /∈ fv(A) and x 6∈ fv(B))
∀e1, e2. e1 ∈ t1 ⇒ e1 ∈ t3 and e2 ∈ t2 ⇒ e2 ∈ t4

⇒ (By logi
 ((A ⇒ B) ∧ (C ⇒ D)) ⇒ ((A ∧C) ⇒ (B ∧D)))
∀e. e →∗ (e1, e2) and ((e1 ∈ t1 and e2 ∈ t2) ⇒ (e1 ∈ t3 and e2 ∈ t4))

⇒ (By logi
 (A ∧ (B ⇒ C)) ⇒ ((A ∧B) ⇒ (A ∧ C)))
∀e. (e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2)
⇒ (e →∗ (e1, e2) and e1 ∈ t3 and e2 ∈ t4)

⇐⇒ (By de�nition of ∈ in Figure 5)
∀e. e ∈ (t1, t2) ⇒ e ∈ (t3, t4)

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
(t1, t2) ≦ (t3, t4)Note that some tuple
ontra
ts are not
omparable by ≦, for example:

(Ok, Any) 6≦ (Any, Ok) and (Any, Ok) 6≦ (Ok, Any).4.8 Contra
t equivalen
eIn this se
tion we give formal de�nition of the equivalen
e of two
ontra
ts.De�nition 12 (Contra
t Equivalen
e). Two
losed
ontra
ts t1 and t2 areequivalent, namely t1 ≡t t2, i�
∀e. e ∈ t1 ⇐⇒ e ∈ t2Contra
t equivalen
e ≡t refers to semanti
 equivalen
e, not equality. Forexample, {x | false} → {x | true} ≦ {x | false} → {x | false} and {x |false} → {x | false} ≦ {x | false} → {x | true}, and {x | false} → {x |true} ≡t {x | false} → {x | false}, but {x | false} → {x | true} 6= {x |false} → {x | false}.Theorem 6 (Sub
ontra
t is antisymmetri
). For all
losed
ontra
ts t1 and t2,

t1 ≦ t2 and t2 ≦ t1 i� t1 ≡t t2.Proof.
t1 ≦ t2 and t2 ≦ t1

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
∀e. e ∈ t1 ⇒ e ∈ t2 and ∀e. e ∈ t2 ⇒ e ∈ t1

⇐⇒ (By logi
 (∀x. A(x) ⇒ B(x)) ∧ (∀x. B(x) ⇒ A(x)) ≡ ∀x. A(x) ⇐⇒ B(x))
∀e. e ∈ t1 ⇐⇒ e ∈ t2

⇐⇒ (By De�nition 12p24 (Contra
t Equivalen
e))
t1 ≡t t2End of proof.RR n° 7794

Hybrid Contra
t Che
king 25For open
ontra
ts t, we assume impli
itly that there is an environment
∆, whi
h is a mapping from variable to its type,
ontra
t and de�nition (SeeDe�nition 10p19 in Se
tion 4.4).Lemma 9 (Predi
ate Contra
t Equivalen
e). For all expressions e1 and e2, if
e1 ≡s e2, then {x | e1} ≡t {x | e2}.Proof. We have the following proof:

e1 ≡s e2

⇐⇒ (By Theorem 1p15 (Crashes-more-often is antisymmetri
))
e1 � e2 and e2 � e1

⇐⇒ (By Theorem 4p22 (Predi
ate
ontra
t ordering))
{x | e1} ≦ {x | e2} and {x | e2} ≦ {x | e1}

⇐⇒ (By Theorem 6p24 (Sub
ontra
t is antisymmetri
))
{x | e1} ≡t {x | e2}Lemma 10 (Dependent Fun
tion Contra
t Equivalen
e). For all
ontra
ts

t1, t2, t3, t4, if t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x], then x : t1 → t2 ≡t

x : t3 → t4.Proof. We have the following proof.
t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x]

⇐⇒ (By Theorem 6p24 (Sub
ontra
t is Antisymmetri
))
t1 ≦ t3 and t3 ≦ t1 and
(∀e ∈ t1. t2[e/x] ≦ t4[e/x] and ∀e ∈ t1. t4[e/x] ≦ t2[e/x])

⇐⇒ (Sin
e t1 ≡t t3, e ∈ t1 ⇐⇒ e ∈ t3.)
t3 ≦ t1 and ∀e ∈ t1. t2[e/x] ≦ t4[e/x] and
t1 ≦ t3 and ∀e ∈ t1. t4[e/x] ≦ t2[e/x]

⇒ (By [C-DepFun℄ in Figure 7)
x : t1 → t2 ≦ x : t3 → t4 and x : t3 → t4 ≦ x : t1 → t2

⇐⇒ (By Theorem 6p24 (Sub
ontra
t is Antisymmetri
))
x : t1 → t2 ≡t x : t3 → t4We are done.Lemma 11 (Dependent Tuple Contra
t Equivalen
e). For all
ontra
ts t1, t2, t3, t4,if t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x], then (x : t1, t2) ≡t (x : t3, t4).

RR n° 7794

Hybrid Contra
t Che
king 26Proof. We have the following proof.
t1 ≡t t3 and ∀e ∈ t1. t2[e/x] ≡t t4[e/x]

⇐⇒ (By Theorem 6p24 (Sub
ontra
t is Antisymmetri
))
t1 ≦ t3 and t3 ≦ t1 and
(∀e ∈ t1. t2[e/x] ≦ t4[e/x] and ∀e ∈ t1. t4[e/x] ≦ t2[e/x])

⇐⇒ (Sin
e t1 ≡t t3, e ∈ t1 ⇐⇒ e ∈ t3.)
t3 ≦ t1 and ∀e ∈ t1. t2[e/x] ≦ t4[e/x] and
t1 ≦ t3 and ∀e ∈ t1. t4[e/x] ≦ t2[e/x]

⇒ (By [C-DepFun℄ in Figure 7)
(x : t1, t2) ≦ (x : t3, t4) and (x : t3, t4) ≦ (x : t1, t2)

⇐⇒ (By Theorem 6p24 (Sub
ontra
t is Antisymmetri
))
(x : t1, t2) ≡t (x : t3, t4)We are done.Theorem 7 (Sub
ontra
t and Crashes-more-often Ordering). For all t1 and

t2,
∀e. e ⊲ t1 � e ⊲ t2 ⇒ t1 ≦ t2Proof. We have the following proof:

∀e. e ⊲ t1 � e ⊲ t2

⇒ (By Lemma 7p15 (
) (Properties of Crashes-more-often - II))
∀e. e ⊲ t1 is
rash-free⇒ e ⊲ t2 is
rash-free

⇒ (By Theorem 2p18 (grand theorem))
∀e. e ∈ t1 ⇒ e ∈ t2

⇐⇒ (By De�nition 9p17 (Sub
ontra
t))
t1 ≦ t2

5 Stati

ontra
t
he
king and residualizationThanks to the ground-breaking higher order
ontra
t wrappers ⊲⊳ (�rst intro-du
ed in [13℄), whi
h makes the analysis of higher order program mu
h easier.From Theorem 3, all we need is to show that e ⊲ t is
rash-free. That is to
he
k the rea
hability of BAD as ea
h BAD signals a
ontra
t violation. We
ansymboli
ally simplify e ⊲ t as mu
h as possible to e′ and
he
k for o

urren
e ofBAD in e′.We introdu
e an SL ma
hine (Figure 10) whi
h
ombines symboli
 simpli�
a-tion and
ontextual information (
tx-info) synthesis with logi
al formulae. Thenovelty of our work is to
ombine them in a way to a
hieve veri�
ation, blamingand residualization in one-go. The SL ma
hine takes an expression e and pro-du
es its semanti
ally equivalent and simpli�ed version. A 4-tuple 〈H || e || S || L〉is pronoun
ed simplify and a 4-tuple 〈〈H || e || S || L〉〉 is pronoun
ed rebuild where� H is an environment mapping variables to trivial values;RR n° 7794

Hybrid Contra
t Che
king 27
〈H || n || S || L〉 〈〈H || n || S || L〉〉 [S-
onst℄
〈H || r || S || L〉 〈〈H || r || S || L〉〉 [S-exn℄
〈H[x 7→ tval] || x || S || L〉 〈〈H[x 7→ tval] || tval || S || L〉〉 [S-var1℄if x /∈ H, 〈H || x || S || L〉 〈〈H || x || S || L〉〉 [S-var2℄
〈H || λxτ .e || S || L〉 〈H || e || (λx.•) :: S || L, ∀x : [[τ]]〉 [S-lam℄
〈H || e1 e2 || S || L〉 〈H || e1 || (• e2) :: S || L〉 [S-app℄
〈H || mat
h e0 with alts || S || L〉
 〈H || e0 || (mat
h • with alts) :: S || L〉 [S-mat
h℄
〈H || K (a1, . . . , ei, . . . , en) || S || L〉
 〈H || ei || (K (a1, . . . , •, . . . , en)]) :: S || L〉 [S-K℄if x 6∈ fv(e),
〈H || let x = e1 in e2 || (• e) :: S || L〉
 〈H || let x = e1 in e2 e || S || L〉 [S-letL℄if fv (e) ∩ −→xi = ∅,

〈H || (mat
h e0 with −−−−−−−→
K −→x → ei) || (• e) :: S || L〉

 〈H || mat
h e0 with −−−−−−−−→
K −→x → ei e || S || L〉 [S-mat
hL℄if x 6∈ fv(a),

〈H || val || (• (let x = e1 in e2)) :: S || L〉
 〈H || let x = e1 in val e2 || S || L〉 [S-letR℄if fv(val) ∩−→x = ∅,

〈H || val || (• (mat
h e0 with −−−−−−→
K −→x → e)) :: S || L〉

 〈H || mat
h e0 with −−−−−−−−−−→
K −→x → val e || S || L〉 [S-mat
hR℄if fv (alts) ∩ −→x = ∅,

〈H ||
mat
h e0 with
−−−−−−→
K −→x → e

|| (mat
h • with alts) :: S || L〉

 〈H ||
mat
h e0 with
−−−−−−−−−−−−−−−−−−−−→
K −→x → mat
h e with alts

|| S || L〉 [S-mat
h-mat
h℄if x 6∈ fv(alts),
〈H || let x = e1 in e2 || (mat
h • with alts) :: S || L〉
 〈H || let x = e1 in mat
h e2 with alts || S || L〉 [S-mat
h-let℄Figure 9: SL ma
hine part (a)RR n° 7794

Hybrid Contra
t Che
king 28
〈〈H || a || [] || L〉〉 a [R-done℄if (s 6= mat
h e with K −→x → (•,S,L)),
〈〈H || r || s :: S || L〉〉 〈〈H || r || S || L〉〉 [R-r℄
〈〈H || a || (λx.•) :: S || L〉〉 〈〈H || λx.a || S || L〉〉 [R-lam℄Rules below: a /∈ {BADl, UNRl}
〈〈H || a || (• e2) :: S || L〉〉 〈H || e2 || (a •) :: S || L〉 [R-fun℄
〈〈H || val || ((λx.a1) •) :: S || L〉〉 〈〈H[x 7→ val] || a1 || S || L〉〉 [R-beta℄if a1 6= λx.a′ or a 6= val,
〈〈H || a || (a1 •) :: S || L〉〉 〈〈H || a1 a || S || L〉〉 [R-app℄
〈〈H || an || (K a1 . . . •) :: S || L〉〉 〈〈H || K −→a || S || L〉〉 [R-K℄
〈〈H || K −→a || (mat
h • with {. . . ;K −→x → e; . . . }) :: S || L〉〉
 〈H || let −−−→x = a in e || S || L〉 [R-K-mat
h℄if exists (K −→

xτ) su
h that L ⇒ (∃
−−−−→
x : [[τ]], [[a]](K −→x)),

〈〈H || a || (mat
h • with −−−−−−−→
K

−→
xτ → e) :: S || L〉〉

 〈H || e || S || L, ∃
−−−−→
x : [[τ]], [[a]](K −→x)〉 [R-s-mat
h℄if for all (K −→

xτ) su
h that L 6⇒ (∃
−−−−→
x : [[τ]], [[a]](K −→x)),

〈〈H || a || (mat
h • with −−−−−−−→
K

−→
xτ → e) :: S || L〉〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈H || e ||
(mat
h a with K

−→
xτ

→ (•,S,L)) :: []
|| L, ∃

−−−−→
x : [[τ]],

[[a]](K −→x)

〉 [R-s-save℄
−−→
〈〈H || a || (mat
h a0 with K −→x → (•,S,L)) :: S ′ || L′〉〉

 〈〈H || mat
h a0 with −−−−−−−→
K −→x → a || S || L〉〉 for some S ′ and L′ [R-mat
h℄

〈〈H || a || (let xτ = • in e2) :: S || L〉〉
 〈H || e2 || (let x = a in •) :: S || L, ∃x : [[τ]], [[a]]x〉 [R-let-save℄Figure 10: SL ma
hine part (b)� e is the expression under simpli�
ation (or being rebuilt);� S is a sta
k whi
h embodies the simpli�
ation
ontext, or
ontinuationthat will
onsume a simpli�ed expression;

RR n° 7794

Hybrid Contra
t Che
king 29
(let x = e1 in e2) e =⇒ let x = e1 in e2 e [letL]if fv (e) ∩ −→x = ∅,

(mat
h e0 with −−−−−−−→
K −→x → ei) e

=⇒ mat
h e0 with −−−−−−−−−−→
K −→x → (ei e) [mat
hL]if x 6∈ fv (e),

tval (let x = e1 in e2) =⇒ let x = e1 in tval e2 [letR]if fv (tval) /∈ −→x ,

val (mat
h e0 with −−−−−−→
K −→x → e)

=⇒ mat
h e0 with −−−−−−−−−→
K −→x → val e [mat
hR]if fv (alts) ∩ −→x = ∅,mat
h (mat
h e0 with −−−−−−→

K −→x → e) with alts

=⇒ mat
h eo with −−−−−−−−−−−−−−−−−−−−→
K −→x → mat
h e with alts [mat
h-mat
h]if x /∈ fv (alts),mat
h (let x = e1 in e2) with alts

=⇒ let x = e1 in mat
h e2 with alts [mat
h-let]mat
h K a1 . . . an with {. . . ;K x1 . . . xn → e; . . . }
=⇒ let x1 = a1 in . . . let xn = an in e [s
rut-mat
h]Figure 11: Simpli�
ation Rules� L is a logi
al store whi
h
ontains the
tx-info in logi
al formula form; itssyntax is

L ::= ∅ | ∀x : τ,L | φ,Lwhere φ is a predi
ate in Figure 12.The job of SL ma
hine is to simplify an expression as mu
h as possible,
on-sulting the logi
al store when ne
essary; when it
annot simplify the expressionfurther, rebuilds the expression.5.1 The SL ma
hineIn Figure 10, the
onstant n and blame r
annot be simpli�ed further, thusbeing rebuilt as shown in [S-
onst℄ and [S-exn℄ respe
tively. One might ask whywe rebuild rather than return a blame. There are two reasons: (a) it givesmore information for stati
 error reporting, i.e. we know
onditions leading toa rea
hable BAD; (b) as we do hybrid
ontra
t
he
king, we want to send theresidual
ode with undis
harged blames to a dynami

he
ker.As we perform symboli
 simpli�
ation rather than evaluation (as in CEKma
hine [16℄), we only put a variable in the environment H if it denotes atrivial value. A variable denoting a top-level fun
tion is not put in H. Variablesin H are inlined by [S-var1℄ while variables not in H are rebuilt by [S-var2℄.RR n° 7794

Hybrid Contra
t Che
king 30Ea
h element on the sta
k is
alled a sta
k frame where the hole • in a sta
kframe refers to the expression under simpli�
ation or being rebuilt. We use ato represent an expression that has been simpli�ed. the syntax of a sta
k frame
s in S is

s ::= [] | (• e) :: s | (e •) :: s | (λx.•) :: s | let x = • in e
| (mat
h • with alt) :: s | let x = e in •

| (mat
h e0 with −−−−−−−−−−−−→
K −→x → (•,S,L)) :: sThe transitions [S-app℄, [S-mat
h℄ and [S-K℄ implement the
ontext redu
tion inFigure 3. The transitions [S-letL℄, [S-mat
hL℄, [S-letR℄, [S-mat
hR℄, [S-mat
h-mat
h℄, [S-mat
h-let℄ implement the
onventional simpli�
ation rules in Fig-ure 11. Here, −→x abbreviates a sequen
e of x1, . . . , xn. We use let instead oflambda for easy reading. Rules [letL℄ and [mat
hL℄ push the argument into thelet-body and mat
h-body respe
tively. Rules [letR℄ and [mat
hR℄ push the fun
-tion into the let-body and mat
h-body. The rules [mat
h-mat
h℄ and [mat
h-let℄are to make an expression less nested. Rule [K-mat
h℄ allows us to simplifymat
h Some e with {Some x → 5; None → BAD}(where e is a
rash-free expression, not a value) to let x = e in 5 whi
h is
rash-free.What does rebuild do? If the sta
k is empty ([R-done℄), whi
h indi
ates theend of the whole simpli�
ation pro
ess, we return the expression. Otherwise,we examine the sta
kframe. By [E-exn℄, the transitions [R-r-mat
h℄, [R-r-let℄,[R-r-fun℄ and [R-r-arg℄ rebuild UNR (or BAD) with the rest of the sta
k. After we�nish simplifying one subexpression, we start to simplify another subexpression(e.g. [R-fun℄). When all subexpressions are simpli�ed, we rebuild the expression(e.g. [R-lam℄ and [R-app℄). If
urrent simpli�ed expression is a value andwe have sta
k frame lambda on S, we use [R-beta℄; together with [S-var1℄,they implement a beta-redu
tion [E-beta℄. Bound variables are renamed whenne
essary.The logi
al store L
aptures all the
tx-info up to the program point beingsimpli�ed. (We use if-expression to save spa
e, but refer to mat
h-transitions.)Consider:

〈H ||
(λx. if x > 0 then (if x+ 1 > 0then 5 else BAD)else UNR) || [] || ∅〉The [S-lam℄ puts ∀x : int in L, whi
h is initially empty:

〈H ||

(if x > 0then (if x+ 1 > 0then 5 else BAD)else UNR) || (λx.•) :: [] || ∀x : int〉The [S-mat
h℄ starts to simplify the s
rutinee x > 0, whi
h is being rebuilt aftera few trivial steps.
〈〈H || x > 0 ||

(if • then (if x+ 1 > 0then 5 else BAD)else UNR) :: (λx.•) :: [] || ∀x : int〉〉RR n° 7794

Hybrid Contra
t Che
king 31Before applying the transition [R-s-save℄, we
he
k whether x > 0 or not(x >
0) is implied by L to see whether the transition [R-s-mat
h℄
an be applied.The transition [R-s-mat
h℄ implements [E-mat
h℄, where the side
ondition�if ∃(K −→x), L ⇒ [[a]](K −→x)"
he
ks if there is any bran
hK −→x that mat
hes thes
rutinee. But the
urrent information in L is not enough to show the validityof either x > 0 or not(x > 0). By [R-s-save℄, we
onvert this s
rutinee to log-i
al formula with [[a]](K −→x) (explained later) and put it in L and simplify bothbran
hes. Note that, we put x > 0 in L for the true bran
h while not(x > 0)for the false bran
h.

[〈H ||
if x+ 1 > 0then 5 else BAD ||

(if x > 0 then •)
:: (λx.•) :: []

||
∀x : int,
x > 0

〉;

〈H || UNR || (if x > 0 else •) :: S || ∀x : int, not(x > 0)〉]In the true bran
h, after a few steps, we rebuild the s
rutinee x + 1 > 0.In this
ase, ∀x : int, x > 0 ⇒ x+ 1 > 0 is valid. By [R-s-mat
h℄, we take thetrue bran
h, whi
h is a
onstant 5. As both 5 and UNR
annot be simpli�edfurther, we rebuild them by [S-
onst℄ and [S-unr℄ respe
tively and obtain:
[〈〈H || 5 ||

(if x > 0 then •})
:: (λx.•) :: []

||
∀x : int, x > 0,
(x+ 1 > 0)

〉〉;

〈〈H || UNR ||
(if x > 0 else •})
:: (λx.•) :: []

||
∀x : int,
not(x > 0)

〉〉]By [R-mat
h℄, we
ombine both simpli�ed bran
hes to rebuild the mat
h-expression:
〈〈H || if x > 0 then 5 else UNR || (λx.•) :: [] || ∀x : int〉〉We
ontinue to rebuild the expression by [R-lam℄:

〈〈H || λx. if x > 0 then 5 else UNR || [] || ∀x : int〉〉and terminate (by [R-done℄) with a synta
ti
ally safe expression:
λx. if x > 0 then 5 else UNR.Besides [R-s-save℄, another transition that saves
tx-info to L is [R-let-save℄.Consider an example:

λv. let y = v + 1 in if y > v then y else BADAfter a few simpli�
ation steps, we have:
〈〈H || v + 1 || (let y = • in if y > vthen y else BAD) :: (λv.•) :: [] || ∀v : int〉〉The rule [R-let-save℄ saves the information y = v + 1 to L, whi
h allows us to
he
k the validity of the s
rutinee y > v later.
〈H ||

if y > vthen yelse BAD ||
(let y = v + 1 in •)
:: (λx.•) :: []

||
∀v : int,
∃y : int,
y = v + 1

〉RR n° 7794

Hybrid Contra
t Che
king 32Sin
e ∀v : int, ∃y : int, y = v + 1 ⇒ y > v is valid, by [R-s-mat
h℄, we onlyneed to simplify the true bran
h:
〈H || y ||

(let y = v + 1 in •)
:: (λv.•) :: []

||
∀v : int, ∃y : int,
y = v + 1, y > v

〉whi
h leads to the �nal result λv. let y = v + 1 in y, whi
h is synta
ti
allysafe.Theorem 8 (SL ma
hine terminates). For all expression e, there exists anexpression a su
h that 〈∅ || e || [] || ∅〉 ∗ a.Proof. See Appendix B.2.Intuitively, SL ma
hine behaves like CEK ma
hine [16℄, but does not inlinetop-level fun
tions and we do not have lo
al let re
 in our language. Wealso
all SMT solver Alt-ergo with an option �-stop <time-bound>� or �-steps<bound>� to make sure the SMT solver terminates. So there is no element
ausing non-termination.Theorem 9 (Corre
tness of SL ma
hine). For all expression e, if 〈∅ || e || [] || ∅〉 ∗

a, then e ≡s a.Proof. See Appendix B.2.The SL is designed in a way su
h that the simpli�ed a preserves the semanti
sof the original expression e. The proof of Therem 9 (in Appendix B.2) uses thefa
t that, if there exists e3 su
h that 〈H || e1 || S || L〉 ∗ 〈H || e3 || S || L〉 and
〈H || e2 || S || L〉 ∗ 〈H || e3 || S || L〉, then e1 ≡s e2.Theorem 10 (Soundness of stati

ontra
t
he
king). For all
losed expression
e, and
losed and terminating
ontra
t t,

〈∅ || e ⊲ t || [] || ∅〉 ∗ e′ and BAD /∈s e
′ ⇒ e ∈ tProof. By Theorem 9, Lemma 1 and Theorem 3.5.2 Logi
izationWe now explain the mysterious
onvertion [[.]]f , whi
h we
all logi
ization. Fig-ure 12 gives the abstra
t syntax of the logi
al formula supported by an SMTsolver named Alt-ergo [8℄, whi
h is an automati
 theorem prover for polymor-phi
 �rst order logi
 modulo theories. It uses
lassi
al logi
 and assumes alltypes are inhabited. First, data type de
laration in language M, e.g.type 'a list = Nil | Cons of 'a * ('a list)is
onverted to Alt-ergo
ode with type and logi
 de
larations:type 'a listlogi
 nil : 'a listlogi

ons : 'a , 'a list -> 'a listRR n° 7794

Hybrid Contra
t Che
king 33
x, s, i, f ∈ Identifier

file ::= decl1, . . . , decln

bty ::= int | bool | i | 'i | −→bty i Base type

lty ::= bty | ~ty -> bty Logic type

ty ::= α | (ty1, . . . , tyn) s Types

decl ::= type ~'i s
| logi
~i : lty | axiom i : φ | goal i : φ

⊕ ::= + | - | * | /
⊙t ::= = | <> | < | <= | > | >=
⊙p ::= -> | <-> | or | and
m ::= n | x | m1 ⊕ m2 | - m | f −→m Term

φ ::= true | false | f −→m Predicate

| m1 ⊙t m2 | φ1 ⊙p φ2 | not(φ)
| forall ~x : ty.φ | exists ~x : ty.φFigure 12: Syntax of logi
 de
larationData type in language M:type −→'a s = K1 of −→

t1 | · · · | Kn of −→
tnCorresponding alt-ergo
ode: type −→'a slogi
K1 :
−→
t1 -> −→'a s

:logi
Kn :
−→
tn -> −→'a sFigure 13: Converting data type to Alt-ergo
odeAs Alt-ergo supports only �rst order logi
 (FOL), arguments of a logi
al fun
tionare a tuple, e.g. 'a , 'a list. The type variable 'a is assumed universallyquanti�ed at top-level. The
onvertion algorithm for an arbitrary user-de�neddata type is in Figure 13.Moreover, we introdu
e a �rst order fun
tion type:type ('a, 'b) arrowwhi
h allows us to en
ode the fun
tion type in the langugage M to Alt-ergo's�rst order type where the 'a and 'b refer to a fun
tion's input type and outputtype respe
tively. We also introdu
e a logi
al fun
tion apply:logi
 apply : ('a, 'b) arrow , 'a -> 'bwhere en
oding with apply is
onventional [22℄. Converting types in the lan-guage M is straight forward (Figure 14).

[[τ1 . . . τn T]] = [[τ1]] . . . [[τn]] T
[[τ1 → τ2]] = ([[τ1]], [[τ2]]) arrowFigure 14: Converting higher order type to �rst order typeRR n° 7794

Hybrid Contra
t Che
king 34We now give an example showing that the SL ma
hine is better than theunrolling approa
h in [37, 40℄1.(* val len : 'a list -> int *)
ontra
t len = {x | true} -> {y | y >= 0}let len s = mat
h s with | [℄ -> 0| x::u -> 1 + len u(* val append : 'a list -> 'a list -> 'a list *)
ontra
t append = {xs | true} -> {ys | true}-> {len rs = len xs + len ys}let append xs ys = mat
h xs with| [℄ -> ys| x::u -> x :: append u ysThe fun
tion len
omputes the length of a list and the fun
tion append appendstwo lists. Let ea and ta stand for the de�nition and
ontra
t of append respe
-tively. Applying only simpli�
ation rules (in
luding redu
tion rules) to ea ⊲ ta,we get (R3):
λv1.λv2.mat
h v1 with
| [] → if len v2 = len v1 + len v2 then v2 else BADl1
| x :: u → if (len (x ::

(if len (append u v2) = len u+ len v2then append u v2 else UNR))
= len v1 + len v2)then x :: append u v2 else BADl2The simpli�
ation approa
h in [37℄ and the model
he
king approa
h in [32℄involve inlining top-level fun
tions, while we do not. Instead, we axiomatize top-level fun
tion de�nitions
alled in
ontra
ts and lift expressions under
he
kingto logi
 level and
onsult an SMT solver. The
hanllenge is to deal with non-total expressions (e.g. BAD) in our sour
e
ode. In the literature of
onvertingfun
tional
ode (in an intera
tive theorem prover) to SMT formula [1, 9, 27, 6℄,they
onvert expression to a logi
al form dire
tly. In [1℄, given a non-re
ursivefun
tion de�nition f = e, they �rst η-expand e to get f = λx1 . . . xn.e

′ where
e′ does not
ontain λ; if it is a re
ursive fun
tion, they assume e is in a par-ti
ular form su
h that all lambdas are at top-level and the fun
tion perform-ing an immediate
ase-analysis over one of its arguments. Then, they form
∀−→x , f(x1, . . . , xn) = [[e′]] where [[.]]
onverts an expression to logi
al form. (Onthe other hand, [6℄ uses λ-lifting method: λ-abstra
tions are translated frominside out, ea
h λ-abstra
tion is repla
ed by a
all to a newly de�ned fun
-tions. That is to form ∀−→x , fn(x1, . . . , xn) = [[e′]]; . . . ; ∀x1, f = f1(x1) .) Thisis �ne for
onverting total terms, e.g. [[5]] = 5 and [[x]] = x, et
., but what are
[[BAD]] and [[UNR]]? Our key idea is not to
onvert an expression dire
tly to a
orresponding logi
al term, but form equality with [[.]]f re
ursively (de�ned inFigure 15). The subs
ript f in [[e]]f denotes the expression e. Moreover, weperform neither η-expansion (whi
h does not preserve semanti
s in the presen
eof non-total terms) nor λ-lifting, and yet we allow arbitrary forms of re
ursivefun
tions. We have su
h �exibility be
ause we
onvert λ-abstra
tion and partial1Unrolling approa
h may suit a lazy language better.RR n° 7794

Hybrid Contra
t Che
king 35appli
ation dire
tly with the help of apply. (Note that our logi
ization [[.]]f
analso produ
e HOL formula for intera
tive proving by repla
ing (apply(f, x))by (f(x)) and not
onverting the types.) No logi
ization work in the litera-ture (in
luding [9, 33, 27, 6℄) deal with non-total terms. The work [6℄ usesapproa
hes in [9, 27℄ to deal with polymorphism while Alt-ergo itself supportspolymorphism.Our framework
an systemati
ally generate Alt-ergo
ode, like below, toshow that those BADs in R3 are unrea
hable.logi
 len: ('a list, int) arrowlogi
 append: ('a list,('a list,'a list) arrow) arrowaxiom len_def_1 : forall s:'a list. s = nil ->apply(len,s) = 0axiom len_def_2 : forall s:'a list. forall x:'a.forall l:'a list. s =
ons(x,l) ->apply(len,s) = 1 + apply(len,l)goal app_1 : forall v1,v2:'a list. v1 = nil ->apply(len,v2) = apply(len,v1) + apply(len,v2)goal app_2 : forall v1,v2,l:'a list.forall x:'a.v1 =
ons(x,l) ->apply(len,apply(apply(append,l),v2))= apply(len,l) + apply(len,v2) ->(exists y:'a list. y = apply(apply(append,l),v2)and apply(len,
ons(x, y))= apply(len,v1) + apply(len,v2))To make an SMT solver's life easier (i.e. multiple small axioms are better thanone big axiom), we have two axioms for len, one for ea
h bran
h, whi
h areself-explanatory. As a
onstru
tor is always fully applied, we do not en
ode itsappli
ation with apply. The -> (in axioms and goals) is a logi
al impli
ation.For example, in the goal app_1, the
tx-info v1=nil is from the pattern mat
h-ing mat
h v1 with {[℄ ->}; the query is the s
rutinee apply(len,v2)= apply(len,v1) + apply(len,v2). Alt-ergo says valid for both goals.First, how to systemati
ally
onvert a fun
tion de�nition to an axiom (e.g.len_def_1)? Figure 15 gives an operator [[.]]f that
onverts an expression to alogi
al formula. The subs
ript f in [[e]]f denotes the expression e. For example,we
an get len_def_1 thus:
[[λs'a list. mat
h s with {Nil → 0}]]len

= ∀s :'a list.[[mat
h s with {Nil → 0}]](apply(len,s))
= ∀s :'a list. ∃x0 :'a list.[[s]]x0

∧
(x0 = nil -> [[0]](apply(len,s)))

= ∀s :'a list. ∃x0 :'a list. x0 = s ∧
(x0 = nil -> apply(len, s) = 0)Let x0 be s, we get a more readable version (axiom len_def_1).RR n° 7794

Hybrid Contra
t Che
king 36
⊕ ∈ [+,−, ∗, /] ⊙ ∈ [>,<,=]

[[.]]f : Expression → Formula

[[let (re
) f = e]]f = [[e]]f top-level defn
[[BADl]]f =

{

true for axioms
false for goals

[[UNRl]]f = false

[[x]]f = f = x
[[n]]f = f = n

[[eτ1 ⊕ eτ2]]f = ∃x1 : [[τ]], ∃x2 : [[τ]],
([[e1]]x1

∧ [[e2]]x2
∧ f = x1 ⊕ x2)

[[eτ1 ⊙ eτ2]]f = ∃x1 : [[τ]], [[e1]]x1
∧

∃x2 : [[τ]], [[e2]]x2
∧

((x1 ⊙ x2 ∧ f = true)∨
(not(x1 ⊙ x2) ∧ f = false))

[[λxτ .e]]f = ∀x : [[τ]], [[e]](apply(f,x))
[[let xτ = e1 in e2]]f = ∃x : [[τ]], [[e1]]x ∧ [[e2]]f

[[eτ11 eτ22]]f = ∃x1 : [[τ1]], [[e1]]x1
∧

∃x2 : [[τ2]], [[e2]]x2
∧

f = apply(x1, x2)
[[K eτ11 . . . eτnn]]f = ∃x1 : [[τ1]], [[e1]]x1

∧ · · · ∧
∃xn : [[τn]], [[en]]xn

∧ f = K (x1, . . . , xn)

[[
mat
h eτ00 with
−−−−−−−→
K

−→
xτ → e

]]f =
∃x0 : [[τ0]], [[e0]]x0

∧

(
∧

−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ]], (x0 = K −→x) ⇒ [[e]]f)Figure 15: Convert expression to logi
al formulaTheorem 11 (Logi
ization for axioms). Given de�nition f = eτ , ∀fv (e), ∃f : τ, [[e]]fis valid.Proof. See Appendix B.1.Next, what query (i.e. goal) shall we make? All we want is to
he
k thebran
h leading to BAD is rea
hable or not. So our task is to examine thes
rutinee of a mat
h-expression. For example, in the goal app_1, the
tx-info v1=nil is from the pattern mat
hing mat
h v1 with {[℄ ->}; thequery is apply(len,v2) = apply(len,v1) + apply(len,v2). The goal app_1states the
tx-info L implies the s
rutinee. We have L = ∀v1 : 'a list, ∀v2 :'a list, v1 = nil by [S-lam℄ and [R-s-save℄. The s
rutinnee is [[len v2 =len v1 + len v2}]]true. That is, we want to
he
k whether len v2 = len v1 +len v2 is equivalent to true. Sending the Alt-ergo
ode in this paper to Alt-ergosolver, it replies valid for both goals. Thus, we know both BADl1 and BADl2 arenot rea
hable.Theorem 12 (Logi
ization for goals: validity preservation). For all (possiblyopen) expression eτ , ∃f : τ , if ∀fv (e) : τ, [[e]]f is valid and e → e′ for some e′,then ∀fv(e′), [[e′]]f is valid.Proof. See Appendix B.1.There are a few things to note about logi
ization.RR n° 7794

Hybrid Contra
t Che
king 37Syntax abbreviation The Alt-ergo syntax
−−−−−−−−−→logi
 x : lty;

−−−−−−−−−→axiom ai : φi;
−−−−−−−−→goal gj : φjis semanti
ally the same as ∀−−−→x : lty,

−→
φi ⇒

−→
φj where −→

φ means a
onjun
tion ofa set of logi
al formulae.Only fun
tions
alled in
ontra
ts are
onverted to Alt-ergo axiomsTo
he
k a fun
tion (say append) satis�es its
ontra
t, we do not
onvert its de�-nition to axioms. As the wrappers ⊲, ⊳ have inserted
ontra
t
he
king obligationappropriately su
h that fun
tion
alls (in
luding re
ursive
alls) are guarded bytheir
ontra
ts.Crashing fun
tions
alled in
ontra
ts In Figure 15, there are two
on-vertions for BAD, true for axioms and false for goals. For example, we mayhave:
ontra
t g = {x | x /= [℄} -> {y | head x > y}In this
ase, the
ontra
t of g is
rash-free even if a partial fun
tion head is
alled in the
ontra
t. The logi
ization of head gives:logi
 head : ('a list, 'a) arrowaxiom head_def_1 : forall x:'a list. x=[℄ -> trueaxiom head_def_2 : forall x,l:'a list.forall y:'a.x =
ons(y,l) -> apply(head, x) = yThe key thing is that the axiom head_def_1 is not a false axiom, it just doesnot give us any information, whi
h is what we want.Contra
ts that diverge Suppose divergent fun
tions loop and nloop areused in a
ontra
t.let re
 loop x = loop xlet re
 nloop x = not (nloop x)Logi
ization gives:logi
 loop : 'a -> 'aaxiom loop_def_1 : forall x:'a.apply(loop, x) = apply(loop, x)logi
 nloop : bool -> boolaxiom nloop_def_1 : forall x:bool.apply(nloop, x) = not(apply(nloop, x))Axiom loop_def_1 is same as stating true, whi
h does not hurt. But axiomnloop_def_1 is same as stating false, whi
h we must not allow. Fortunately,we only
onvert fun
tions used in
ontra
ts that
an be proved terminating (inSe
tion 4.5) to axioms. We will not generate the axiom nloop_def_1.
RR n° 7794

Hybrid Contra
t Che
king 38BAD and UNR For goals, the [[e]]f
olle
ts
tx-info before a s
rutinee of amat
h-expression, thus, [[BAD]]f = [[UNR]]f = false, whi
h implies everything. Forexample:fun x -> let y = if x > 0 then x else UNR inif y + 1 > 0 then y + 1 else BADThe
tx-info L before y+1 > 0 is ∀x : int, ∃y : int, (x > 0 ⇒ y = x)∧ (not(x >
0) ⇒ false). So L ⇒ y + 1 > 0 is ∀x : int, ∃y : int, (x > 0 ⇒ y = x) ∧ (not(x >
0) ⇒ false) ⇒ y+1 > 0, whi
h is valid. It means, if not(x > 0) holds, y+1 > 0will not be rea
hed. Similar reasoning applies if we repla
e the UNR by BAD inthe above example.5.3 Dis
ussion and preliminary experimentsOne might noti
e that SL ma
hine simpli�es terms under lambda and the bodyof mat
h-expression while we do not have su
h exe
ution rules in Figure 3. Aswe rebuild blames and do not inline re
ursive fun
tions (i.e. no
rashing andno looping during simpli�
ation), SL ma
hine does not violate
all-by-valueexe
ution.

∆(n) = n [D1℄
∆(x) = x if x /∈ dom(∆) or [x 7→ ⊥] ⊆ ∆ [D2℄

∆[x 7→ m](x) = m [D3℄
∆(∃x : ty, x = m ∧ φ1) = ∆[x 7→ ∆(m)](φ1) [D4℄

∆(m1 ⊙t m2) = ∆(m1)⊙t ∆(m2) [D5℄
∆(φ1 ⊙p φ2) = ∆(φ1)⊙p ∆(φ2) [D6℄

∆(∀x : ty. φ1) = ∀x : ty, ∆(φ1) [D7℄Figure 16: Partial elimination of ∃ quanti�ersOne might noti
e that the logi
ization generates some existentially quanti�edvariables and simple equalities whi
h
an be easily eliminated. By observingthe
onversion in Figure 15, we may en
ounter some sub-formula in this form:
∃x : ty, x = m ∧ φ, whi
h
an be simpli�ed to φ[m/x]. A simple ∃-eliminationalgorithm in Figure 16 is good enough to eliminate some (but not all) existentialquanti�ers from the formula. The environment ∆
aptures the maping from an
∃-bound variable to a term. For example:

∆(∀y : int, ∃x : int, x = y ∧ (∃x : int, x = 8 ∧ x > 6))
= (By [D7℄)

∀y : int,∆(∃x : int, x = y ∧ (∃x : int, x = 8 ∧ x > 6))
= (By [D4℄)

∀y : int,∆[x 7→ y](∃x : int, x = 8 ∧ x > 6)
= (By [D4℄)

∀y : int,∆[x 7→ 8](x > 6)
= (By [D5℄)

∀y : int,∆[x 7→ 8](x) > ∆[x 7→ 8](6)
= (By [D1℄ and [D0℄)

∀y : int, 8 > 6RR n° 7794

Hybrid Contra
t Che
king 39The ∆[x 7→ ∆(m)] means that, if x /∈ dom(∆), we extend the environment
∆ with [x 7→ ∆(m)]; if x ∈ dom(∆), we update x with the term ∆(m). Therest is self-explanatory.Theorem 13 (Corre
tness of ∃ quanti�ers elimination). For all FOL formula
φ, ∆(φ) is valid if and only if φ is valid.Proof. The only
hange to the formula φ is to substitute the existentially quan-ti�ed x by m. Sin
e we have the equality x = m and the
onjun
tion, it isimmediate that the substitution is
orre
t.One might worry that the rule [mat
h-mat
h℄
auses exponential
ode ex-plosion for stati
 analysis (although no run-time overhead). For example, h1 =if (if a then b else c) then d else e, where a, b, c, d, e are expressions. At pro-gram point d, the
tx-info is (a ⇒ b) ∧ (not(a) ⇒ c)2. Applying [mat
h-mat
h℄to h1, we get: h2 = if a then (if b then d else e) else (if c then d else e).The d is dupli
ated and the
tx-info for the �rst d is a ∧ b while for the se
ond
d is not(a)∧ c. With [mat
h-mat
h℄, we send smaller formula to an SMT solver(whi
h is good for an SMT solver), but we may
ommuni
ate with the SMTsolver more often. From our
urrent observation, it is quite often that the c isBAD or UNR, the SL ma
hine immediately rebuilds the blame with the rest of thesta
k, and we get: if a then (if b then d else e) else c. So d is not dupli
atedand we have smaller formula for the SMT solver.One advantage of the SL ma
hine is to allow adding or removing a rule easily.In the in
 example in �2, with rule [mat
hR℄, we
an simplify

(λv.v + 1) (if x1 > 0 then x1 else UNR?)to if x1 > 0 then (λv.v + 1) x1 else (λv.v + 1) UNR?. As the variable x1and the
ontra
t ex
eption UNR? are values, performing beta-redu
tion, we get:if x1 > 0 then x1 + 1 else UNR?. Now, we have a logi
al formula (denoted byQ2):
∃y, (x1 > 0 ⇒ y = x1 + 1) ∧ (not(x1 > 0) ⇒ false) [Q2℄whi
h is equivalent but smaller than the Q1 in �2.We have implemented a prototype3 based on the sour
e
ode of o
aml
-3.11.2. Table 1 shows the results of preliminary experiments, whi
h are done ona PC running Ubuntu Linux with quad
ore 2.93GHz CPU and 3.2GB memory.We take some examples from [25℄ and OCaml stdlib and time the stati

he
king.The
olumn Ann gives the LOC for
ontra
t annotations.The preliminary result is promising: it
he
ks a hundred lines of
ode (LOC)in a few se
onds. This paper fo
uses on the theory of hybrid
ontra
t
he
king,we leave more optimization and rigorous experimentation on tuning the strengthof symboli
 simpli�
ation and the frequen
y of
alling an SMT solver as futurework.2To illustrate the idea with less
luttered form, we omit the
onversion notation [[.]]f for a,

b, c, d, e.3http://gallium.inria.fr/�naxu/resear
h/h

.html
RR n° 7794

Hybrid Contra
t Che
king 40Table 1: Results of preliminary experimentsprogram total LOC Ann LOC Time (se
)intro123, neg 23 4 0.08M
Carthy's 91 4 1 0.02a
k, fhnhn 12 2 0.06arith, sum, max 26 4 0.20zipunzip 12 2 0.10OCaml stdlib/list.ml 81 16 0.726 Hybrid
ontra
t
he
kingWe have explained with examples how SCC, DCC, HCC work in Se
tion 2.Programmers may
hoose to have SCC only, DCC only, or HCC. In this se
tion,we summarize their algorithm. Given a program fi ∈ ti, fi = ei for 1 ≤ i ≤ n.Suppose fi is the
urrent fun
tion under
ontra
t
he
king; fj is a fun
tion
alledin fi (in
luding fi's re
ursive
all); sl is the SL ma
hine; rmUNR implements therule [rmUNR℄ (mentioned earlier in Se
tion 2).
(if e0 then e1 else UNR) =⇒ e1 [rmUNR]We have: [SCC℄ : sl(ei[(fj ⊳fjfi tfj)/fj] ⊲fi? t)[DCC℄ : ei[(fj

BADfj
⊲⊳BADfi tfj)/fj][HCC℄ : fi♯ = λ?.rmUNR(sl(ei[((fj♯ “fi”) ⊳fjfi tfj)/fj] ⊲fi? t))In [HCC℄, the residual
ode fi♯'s parameter �?" waits for a
aller's name. Forexample, if an STM solver
annot prove the goal app_2 in Se
tion 5.2 (althoughit
an), re
alling R3 in Se
tion 5.2, the residual
ode append♯ is:

λ?.λv1.λv2.mat
h v1 with
| [] → v2;
| x :: l → if len (x :: append t v2) = len v1+len v2then x :: append t v2 else BADlwhi
h says that we only have to
he
k post
ondition for the se
ond bran
h. (Ifall BADs are simpli�ed away during SCC, a residual
ode of a fun
tion is itsoriginal de�nition.)Lemma 12 (Teles
oping property [7, 39℄). For all expression e, total
ontra
t

t, blames r1, r2, r3, r4, (e
r1
⊲⊳
r2

t)
r3
⊲⊳
r4

t = e
r1
⊲⊳
r4

t.Pre
ondition of a fun
tion is
he
ked at
aller sites. An fj♯ is the simpli�ed
fj ⊲

fj
fi
tfj , inspe
ting [HCC℄, ea
h fj at
aller sites is repla
ed by (fj ⊲

fj
fi
tfj)⊳

fj
fi
tfj ,whi
h is (fj BADfj

⊲⊳UNRfi tfj) UNRfj
⊲⊳BADfi tfj . By the teles
oping property, we have:

(fj
BADfj
⊲⊳UNRfi tfj) UNRfj

⊲⊳BADfi tfj = fj
BADfj
⊲⊳BADfi tfj [T1℄RR n° 7794

Hybrid Contra
t Che
king 41whi
h is the same as in DCC. This shows that [HCC℄ blames f if and only if[DCC℄ blames f .Moreover, [T1℄ justi�es the
orre
tness of applying the rule [rmUNR℄ be
auseall UNRs are indeed unrea
hable as BADl is invoked before UNRl for the same l.That is, (if p then e1 else BADl) is invoked before (if p then e else UNRl)for the same p, maybe di�erent e. So it is safe to apply the rule [rmUNR℄even if p diverges or
rashes be
ause the same p in (if p then e1 else BAD)diverges or
rashes �rst. It is easy to see if t = {x | p}. If t = t1 → t2, then
(e

BADfj
⊲⊳UNRfi t1 → t2)

UNRfj
⊲⊳BADfi t1 → t2 expands to

λv2.((λv1.(e (v1
UNRfi
⊲⊳BADfj t1))

BADfj
⊲⊳UNRfi t2) (v2 BADfi

⊲⊳UNRfj t1))
UNRfj
⊲⊳BADfi t2Fo
using on the BADs and UNRs above ⊲⊳, inspe
ting [P1℄ and [P2℄ in Figure 6,we
an see that BADfj is invoked before UNRfj and BADfi is invoked before UNRfi .7 Related workContra
t semanti
s were �rst formalized in [7, 12℄ for a stri
t language and laterin [39℄ for a lazy language. This paper adapt and re-formalize some of theirideas on
ontra
t satisfa
tion and
ontra
t
he
king. Detailed design deferen
eis explained in �4.Pre/post-
ondition spe
i�
ation using logi
al formulae [18, 15, 2, 33℄ allowsprogrammers to existentially quantify over in�nite domains or express meta-properties that are not expressible in
ontra
ts. However, su
h property
annotbe
onverted to program
ode for dynami

he
king. As automati
 stati

he
k-ing always has its limitation, being able to
onvert some di�
ult
he
ks todynami

he
ks is pra
ti
al. Re�nement types and
ontra
ts
an be enhan
edin many ways like we did for types, e.g. sub
ontra
t relation [12, 40℄, re
ur-sive
ontra
ts [7℄, polymorphi

ontra
ts [3℄. Contra
ts also enjoy interestingmathemati
al properties [7, 12, 39, 38℄. We like the idea of ghost re�nementin [35℄ that separates properties that
an be
onverted to program
ode fromthe meta-properties logi
al formulae.One might re
all the hybrid re�nement type
he
king (HTC) [14, ?℄. In the-ory, [17℄ shows that (pi
ky/indy, i.e. our)
ontra
t
he
king is able to give moreblame than re�nement type
he
king in the presen
e of higher order dependentfun
tion
ontra
ts. That is partly why [35℄ invents a Kind
he
ker to reportill-formed re�nement types. As dis
ussed in �4.3, we
he
k e ⊲ t to be
rash-freein one-go and do not have to
he
k t to be
rash-free separately. In pra
ti
e, the

H and L in the SL ma
hine serve the similar purpose as the typing environmentin HTC. But the symboli
 simpli�
ation gives more �exibility su
h as teasingout the path sensitivity analysis with the rule [mat
h-mat
h℄, et
. We hopethis work opens a venue to
ompare HCC and HTC in pra
ti
e, su
h as thekind of properties we
an verify, the speed of stati

he
king, the size and speedof the residual
ode generated, et
. Notably, VeriFast [?℄ (for verifying C andJava
ode) suggests that symboli
 exe
ution is faster than veri�
ation
onditiongeneration method [15, 2℄.The work [23℄ mixes type
he
king and symboli
 exe
ution. However, [23℄requires programmers to pla
e blo
k annotations {t t} for type
he
king andRR n° 7794

Hybrid Contra
t Che
king 42
{s s} for symboli
 exe
ution while our SL ma
hine systemati
ally simpli�essubterms and
onsults the logi
al store for
he
king at the appropriate programpoint. The [23℄ does not generate residual
ode while we do. Moreover, theirsymboli
 expression is in linear arithmeti
s, whi
h is more restri
tive than ours.Our approa
h is di�erent from [35℄, whi
h extra
ts proofs of re�nement typesfrom an SMT solver and inje
ts them as terms in the generated byte
ode RDCIL(like proof
arrying
ode) during re�nement type
he
king. It is for se
uritypurpose.Some work [31, 24, 32, 25℄ suggest to
onvert program to higher order re-
ursive s
heme (HORS), whi
h generates (possibly in�nite) trees, and spe
ifyproperties in a form of trivial automaton and do model
he
king to know whetherHORS satis�es its desired property. Our approa
hes are
ompletely di�erent al-though we both do rea
hability
he
king. They work on automaton while wework on program dire
tly. Our approa
h is modular (no top-level fun
tion isinlined) while theirs is not. They deal with lo
al let re
 (i.e. invariant infer-en
e) while we do not, but we
ould infer lo
al
ontra
t with method in [21℄or inline the lo
al let re
 fun
tion for a �xed number of times. They deal withproto
ol
he
king while we do not unless a proto
ol
he
king problem
an be
onverted to
he
king the rea
hability of BAD. SL ma
hine (in �5)
an be usedfor any problem that
he
ks the rea
hability of BAD in general.The
ontextual information synthesis and
onversion of expression to logi
alformula is inspired by the use of the appli
ation • in [20, 19℄, whi
h makes
onversion of higher order fun
tions easier. But we use the te
hnique in di�erent
ontexts.Many papers on program veri�
ation [36, 15, 2, 30, 29, 11℄ fo
us on mem-ory leak, array bound
he
ks, et
. and few handle higher order fun
tions andre
ursive predi
ates. Our work fo
us on more advan
ed properties and blamepre
isely fun
tions at fault. Contra
t
he
king in the imperative world is leadby [11℄, whi
h stati
ally
he
ks
ontra
t satisfa
tion at byte
ode CIL level andrun dynami

he
king separately. Residualization has not been done in [11℄.We may adapt some ideas in [?℄ to extend our framework for program with sidee�e
ts.8 Con
lusionWe have formalized a
ontra
t framework for a pure stri
t higher order subsetof OCaml. We propose a natural integration of stati

ontra
t
he
king anddynami

ontra
t
he
king. With SL ma
hine, our approa
h gives pre
ise blameat both
ompile-time and run-time in the presen
e of higher order fun
tions. Innear future, besides rigorous experimentation and
ase-studies, we plan to adduser-de�ned ex
eptions; allow side-e�e
ts in program and hidden side-e�e
ts in
ontra
ts; do
ontra
t or invariant inferen
e as [11, 29, 21℄ are inspiring.A
knowledgement I would like to thank Xavier Leroy, Fran
ois Pottier,Ni
olas Pouillard, Martin Berger, Simon Peyton Jones and Mi
hael Greenbergfor their feedba
k.
RR n° 7794

Hybrid Contra
t Che
king 43Referen
es[1℄ Ni
olas Aya
he and Jean-Christophe Filliatre. Combining the Coq proofassistant with �rst-order de
ision pro
edures. Unpublished, 2006.[2℄ Mike Barnett, K. Rustan M. Leino, and Wolfram S
hulte. The Spe
#programming system: An overview. CASSIS, LNCS 3362, 2004.[3℄ João Filipe Belo, Mi
hael Greenberg, Atsushi Igarashi, and Benjamin C.Pier
e. Polymorphi

ontra
ts. In Gilles Barthe, editor, ESOP, volume6602 of Le
ture Notes in Computer S
ien
e, pages 18�37. Springer, 2011.[4℄ Amir M. Ben-Amram and Chin Soon Lee. Program termination analysis inpolynomial time. ACM Trans. Program. Lang. Syst., 29:5:1�5:37, January2007.[5℄ Jesper Bengtson, Karthikeyan Bhargavan, Cédri
 Fournet, Andrew D. Gor-don, and Sergio Ma�eis. Re�nement types for se
ure implementations.ACM Trans. Program. Lang. Syst., 33:8:1�8:45, February 2011.[6℄ Jasmin Christian Blan
hette, Sas
ha Böhme, and Lawren
e C. Paulson.Extending sledgehammer with smt solvers. In Nikolaj Bjørner and Viori
aSofronie-Stokkermans, editors, CADE, volume 6803 of Le
ture Notes inComputer S
ien
e, pages 116�130. Springer, 2011.[7℄ Matthias Blume and David A. M
Allester. Sound and
omplete models of
ontra
ts. J. Fun
t. Program., 16(4-5):375�414, 2006.[8℄ Sylvain Con
hon, Evelyne Contejean, and Johannes Kanig. Ergo : a theo-rem prover for polymorphi
 �rst-order logi
 modulo theories, 2006.[9℄ Jean-François Cou
hot and Stéphane Les
uyer. Handling polymorphism inautomated dedu
tion. In Frank Pfenning, editor, CADE, volume 4603 ofLe
ture Notes in Computer S
ien
e, pages 263�278. Springer, 2007.[10℄ Christos Dimoulas, Robert Bru
e Findler, Corma
 Flanagan, and MatthiasFelleisen. Corre
t blame for
ontra
ts: no more s
apegoating. In Pro
eed-ings of the 38th annual ACM SIGPLAN-SIGACT symposium on Prin
iplesof programming languages, POPL '11, pages 215�226, New York, NY, USA,2011. ACM.[11℄ Manuel Fähndri
h and Fran
es
o Logozzo. Stati

ontra
t
he
king withabstra
t interpretation. In Bernhard Be
kert and Claude Mar
hé, editors,FoVeOOS, volume 6528 of Le
ture Notes in Computer S
ien
e, pages 10�30.Springer, 2010.[12℄ Robert Bru
e Findler and Matthias Blume. Contra
ts as pairs of pro-je
tions. In Fun
tional and Logi
 Programming, pages 226�241. SpringerBerlin / Heidelberg, 2006.[13℄ Robert Bru
e Findler and Matthias Felleisen. Contra
ts for higher-orderfun
tions. In ICFP '02: Pro
eedings of the seventh ACM SIGPLAN inter-national
onferen
e on Fun
tional programming, pages 48�59, New York,NY, USA, 2002. ACM Press.RR n° 7794

Hybrid Contra
t Che
king 44[14℄ Corma
 Flanagan. Hybrid type
he
king. In POPL '06: Conferen
e re
ordof the 33rd ACM SIGPLAN-SIGACT symposium on Prin
iples of program-ming languages, pages 245�256, New York, NY, USA, 2006. ACM Press.[15℄ Corma
 Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,James B. Saxe, and Raymie Stata. Extended stati

he
king for Java. InPLDI '02: Pro
eedings of the ACM SIGPLAN 2002 Conferen
e on Pro-gramming language design and implementation, pages 234�245, New York,NY, USA, 2002. ACM Press.[16℄ Corma
 Flanagan, Amr Sabry, Bru
e F. Duba, and Matthias Felleisen.The essen
e of
ompiling with
ontinuations. In Pro
eedings of the ACMSIGPLAN 1993
onferen
e on Programming language design and imple-mentation, PLDI '93, pages 237�247, New York, NY, USA, 1993. ACM.[17℄ Mi
hael Greenberg, Benjamin C. Pier
e, and Stephanie Weiri
h. Contra
tsmade manifest. In Pro
eedings of the 37th annual ACM SIGPLAN-SIGACTsymposium on Prin
iples of programming languages, POPL '10, pages 353�364, New York, NY, USA, 2010. ACM.[18℄ C. A. R. Hoare. An axiomati
 basis for
omputer programming. Commun.ACM, 12:576�580, O
tober 1969.[19℄ Kohei Honda, Martin Berger, and Nobuko Yoshida. Des
riptive and relative
ompleteness of logi
s for higher-order fun
tions. In Mi
hele Bugliesi, BartPreneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP (2), volume4052 of Le
ture Notes in Computer S
ien
e, pages 360�371. Springer, 2006.[20℄ Kohei Honda and Nobuko Yoshida. A
ompositional logi
 for polymorphi
higher-order fun
tions. In PPDP '04: Pro
eedings of the 6th ACM SIG-PLAN international
onferen
e on Prin
iples and pra
ti
e of de
larativeprogramming, pages 191�202, New York, NY, USA, 2004. ACM Press.[21℄ Ranjit Jhala, Rupak Majumdar, and Andrey Rybal
henko. Hm
: Verifyingfun
tional programs using abstra
t interpreters. In the 15th international
onferen
e on Computer Aided Veri�
ation CAV, pages 262�274, 2011.[22℄ Manfred Kerber. How to prove higher order theorems in �rst order logi
.In IJCAI, pages 137�142, 1991.[23℄ Yit Phang Khoo, Bor-Yuh Evan Chang, and Je�rey S. Foster. Mixing type
he
king and symboli
 exe
ution. In Pro
eedings of the 2010 ACM SIG-PLAN
onferen
e on Programming language design and implementation,PLDI '10, pages 436�447, New York, NY, USA, 2010. ACM.[24℄ Naoki Kobayashi. Types and higher-order re
ursion s
hemes for veri�
a-tion of higher-order programs. In Pro
eedings of the 36th annual ACMSIGPLAN-SIGACT symposium on Prin
iples of programming languages,POPL '09, pages 416�428, New York, NY, USA, 2009. ACM.[25℄ Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. Predi
ate abstra
-tion and
egar for higher-order model
he
king. In Pro
eedings of the 32ndACM SIGPLAN
onferen
e on Programming language design and imple-mentation, PLDI '11, pages 222�233, New York, NY, USA, 2011. ACM.RR n° 7794

Hybrid Contra
t Che
king 45[26℄ Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-
hange prin
iple for program termination. In Pro
eedings of the 28th ACMSIGPLAN-SIGACT symposium on Prin
iples of programming languages,POPL '01, pages 81�92, New York, NY, USA, 2001. ACM.[27℄ K. Rustan M. Leino and Philipp Rümmer. A polymorphi
 intermediateveri�
ation language: Design and logi
al en
oding. In Javier Esparza andRupak Majumdar, editors, TACAS, volume 6015 of Le
ture Notes in Com-puter S
ien
e, pages 312�327. Springer, 2010.[28℄ Bertrand Meyer. Ei�el: the language. Prenti
e-Hall, In
., Upper SaddleRiver, NJ, USA, 1992.[29℄ Matthew Might. Logi
-�ow analysis of higher-order programs. In Pro
eed-ings of the 34th annual ACM SIGPLAN-SIGACT symposium on Prin
iplesof programming languages, POPL '07, pages 185�198, New York, NY, USA,2007. ACM.[30℄ Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphismand separation in Hoare type theory. In John H. Reppy and Julia L. Lawall,editors, ICFP, pages 62�73. ACM, 2006.[31℄ C.-H. Luke Ong. On model-
he
king trees generated by higher-order re
ur-sion s
hemes. In LICS, pages 81�90. IEEE Computer So
iety, 2006.[32℄ C.-H. Luke Ong and Steven James Ramsay. Verifying higher-order fun
-tional programs with pattern-mat
hing algebrai
 data types. In Pro
eedingsof the 38th annual ACM SIGPLAN-SIGACT symposium on Prin
iples ofprogramming languages, POPL '11, pages 587�598, New York, NY, USA,2011. ACM.[33℄ Yann Régis-Gianas and François Pottier. A hoare logi
 for
all-by-valuefun
tional programs. In Philippe Audebaud and Christine Paulin-Mohring,editors, MPC, volume 5133 of Le
ture Notes in Computer S
ien
e, pages305�335. Springer, 2008.[34℄ Damien Sereni and Neil D. Jones. Termination analysis of higher-orderfun
tional programs. In Kwangkeun Yi, editor, APLAS, volume 3780 ofLe
ture Notes in Computer S
ien
e, pages 281�297. Springer, 2005.[35℄ Nikhil Swamy, Juan Chen, Cedri
 Fournet, Pierre-Yves Strub, KarthikeyanBhargavan, and Jean Yang. Se
ure distributed programming with value-dependent types. In Pro
eedings of the 16th ACM SIGPLAN international
onferen
e on Fun
tional programming, 2011.[36℄ Hongwei Xi and Frank Pfenning. Dependent types in pra
ti
al program-ming. In POPL '99: Pro
eedings of the 26th ACM SIGPLAN-SIGACTsymposium on Prin
iples of programming languages, pages 214�227, NewYork, NY, USA, 1999.[37℄ Dana N. Xu. Extended stati

he
king for haskell. In Pro
eedings of theACM SIGPLAN workshop on Haskell, pages 48�59, New York, NY, USA,2006.RR n° 7794

Hybrid Contra
t Che
king 46[38℄ Dana N. Xu. Hybrid
ontra
t
he
king. INRIA resear
h report, 2011.[39℄ Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Stati

ontra
t
he
king for Haskell. In Pro
eedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Prin
iples of programming languages, POPL '09,pages 41�52, New York, NY, USA, 2009. ACM.[40℄ Na Xu. Stati
 Contra
t Che
king for Haskell. Ph.D. thesis, August 2008.A Proof for the main theoremThe proof in this Se
tion is similar to the one in [40℄ but for a
all-by-valuelanguage.
|.| :: Contract → Int

|{x | p}| = 1
|x : t1 → t2| = |t1|+ |t2|+ 1
|(t1, t2)| = |t1|+ |t2|+ 1
|Any| = 1Figure 17: Size of Contra
tAs some of the proofs involve the stru
tural indu
tion on the size of
ontra
t,we de�ne it in Figure 17. To make the proof look less
lustered, we use thefollowing shorthands:

cf :
rash-free
ss : syntati
ally safedefn : de�nition
cl :
losed
tl : total

T2

L3 L8 L4L15

t = t 1

T13 T12 L7

L18

L17

t = t 1

L14 L20 L19

L21 L22

T14

T15

L16

T16

Figure 18: Dependen
y of Theorems and Lemmas in Appendix ATo make the dependen
y of theorems and lemmas
lear, a dependen
y dia-gram is shown in Figure 18. For many theorems and lemmas, we prove themby indu
tion on the size of
ontra
t t. The dashed dire
ted edge shows thatthe size of the
ontra
t de
reases, i.e. for a fun
tion
ontra
t x : t1 → t2, weRR n° 7794

Hybrid Contra
t Che
king 47
all another lemma (or theorem) with t = t1 or t = t2. The solid dire
ted edgeshows the size of the
ontra
t is preserved. This makes the proof well-foundedeven though there are
y
les in the dependen
ies (examined in Se
tion A.3).Theorem 2 (Soundness and Completeness of Contra
t Che
king (grandtheorem)) For all
losed expression eτ ,
losed and total
ontra
t tτ ,
(e ⊲ t) is
rash-free ⇐⇒ e ∈ tThere are two dire
tions to be proved:� e ∈ t ⇒ e ⊲ t is
rash-free. The di�
ulty lies in the proof for dependentfun
tion
ontra
ts. We appeal to a key lemma (Lemma 14p53 [Key lemma℄in Se
tion A.2).� e⊲t is
rash-free ⇒ e ∈ t. The di�
ulty also lies in the proof for dependentfun
tion
ontra
ts. We appeal to three things:� de�nition and properties of
rashes-more-often (De�nition 7p14, Lemma 7p15).� proje
tion pair property of ⊲ and ⊳ (Theorem 15p55 in Se
tion A.5);�
ongruen
e of
rashes-more-often (Theorem 14p55 in Se
tion A.4).Proof. The notation eτ and tτ mean that both the expression e and the
ontra
t

t are well-typed and they have the same type τ . The proof begins by dealingwith two spe
ial
ases:� Case e →∗ BAD: We prove the two dire
tions separately.(⇒)
e ⊲ t is
f

⇒ (By Lemma 3p13 (preservation of
rash-freeness)and Lemma 8p21(b) (about Any))
t = Any

⇒ (By defn of ∈, every expression satis�es Any)
e ∈ t(⇐)
e ∈ t

⇒ (By Lemma 3p13 (preservation of
rash-freeness)and Lemma 8p21(a) (about Any))
t = Any

⇒ (By defn of ⊲)
e ⊲ Any is
rash-free� Case e ↑: By inspe
ting the de�nition of ⊲ and ∈, for all t, if e ↑, then

(e ⊲ t)↑ and e ∈ t. Thus, we are done.Hen
e, for the rest of the proof, we assume that e →∗ val 6∈ {BAD, UNR}.The rest of the proof is by indu
tion on the size of t.
RR n° 7794

Hybrid Contra
t Che
king 48� Case t is {x | p}:
e ⊲ {x | p} is cf

⇐⇒ (By defn of ⊲)








let x = e inmat
h p with
| true → x
| false→ BAD 







is cf
⇐⇒ (Sin
e e →∗ val 6∈ {BAD, UNR})

e is cf and p 6→∗ {BAD, false}
⇐⇒ (By defn of ∈)

e ∈ {x | p}� Case t is x : t1 → t2: we want to prove that
(e ⊲ x : t1 → t2) is
f ⇐⇒ e ∈ x : t1 → t2We have the following indu
tion hypotheses:

∀cl e1, e1 ⊲ t1 is
f ⇐⇒ e1 ∈ t1 [IH1]
∀cl e2, cl tl e′. e2 ⊲ t2[e′/x] is
f ⇐⇒ e2 ∈ t2[e

′/x] [IH2]We have the following proof:
e ⊲ x : t1 → t2 is
f.

⇐⇒ (By defn of ⊲)let y = e in λx1.(y (x1 ⊳ t1)) ⊲ t2[(x1 ⊳ t1)/x] is
f.
⇐⇒ (Sin
e e →∗ val 6∈ {BAD, UNR})

λx1. (e (x1 ⊳ t1)) ⊲ t2[(x1 ⊳ t1)/x] is
f.
⇐⇒ (By Lemma 4p13 (
rash-free fun
tion))
(†) ∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is
f.Now the proof splits into two. In the reverse dire
tion, we start with theassumption e ∈ x : t1 → t2:
e ∈ x : t1 → t2

⇐⇒ (By defn of ∈)
∀ e1 ∈ t1. (e e1) ∈ t2[e1/x]

⇒ (By Lemma 14p53 (Key lemma), let e1 = e′ ⊳ t1)
∀cf e′. (e (e′ ⊳ t1)) ∈ t2[(e

′ ⊳ t1)/x])

⇐⇒ (By [IH2℄)
(†) ∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is
f.Now we have rea
hed the desired
on
lusion (†). The key step is the useof Lemma 14p53 (Key lemma) (see Se
tion A.2).
RR n° 7794

Hybrid Contra
t Che
king 49In the forward dire
tion, we start with (†):
∀cf e′. (e (e′ ⊳ t1)) ⊲ t2[(e

′ ⊳ t1)/x] is
f.
⇒ (By [IH1℄, e1 ∈ t1 ⇒ (e1 ⊲ t1) is cf so we repla
e e′ by e1 ⊲ t1)

∀e1 ∈ t1. (e ((e1 ⊲ t1) ⊳ t1)) ⊲ t2[(e1 ⊲ t1 ⊳ t1)/x] is
f
⇒ (By (Theorem 15p55 (proje
tion pair) andTheorem 14p55 (
ongruen
e of �) andLemma 7p15 (
) (property of �)) twi
e)

∀e1 ∈ t1. (e e1) ⊲ t2[e1/x]) is
f
⇒ (By [IH2℄)

∀ e1 ∈ t1. (e e1) ∈ t2[e1/x])

⇐⇒ (by de�nition of ∈)
e ∈ x : t1 → t2There are two key steps: one is to
hoose a parti
ular
rash-free e′, namely

(e1 ⊲ t1) where e1 ∈ t1; the other one is the appeal to Theorem 15p55, theproje
tion pair property of ⊲ and ⊳ (see Se
tion A.5).� t is (x : t1, t2): We have the following indu
tion hypotheses:
∀cl e1. e1 ⊲ t1 is
f ⇐⇒ e1 ∈ t1 [IH1]
∀cl e2, cl tl e′. e2 ⊲ t2[e′/x] is
f ⇐⇒ e2[e

′/x] ∈ t2[e
′/x] [IH2]We prove it as follows.

e ⊲ (x : t1, t2) is cf
⇐⇒ (By defn of ⊲)mat
h e with {(x1, x2) → (x1 ⊲ t1, x2 ⊲ t2[x1 ⊳ t1/x])} is cf
⇐⇒ (By [E-mat
h℄ and defn of
f)

e →∗ (e1, e2) and e1 and e2 are cf and
(e1 ⊲ t1) is cf and (e2 ⊲ t2[e1 ⊳ t1/x]) is cf

⇐⇒ (By [IH1℄)
(†) e →∗ (e1, e2) and e1 and e2 are cf and

e1 ∈ t1 and (e2 ⊲ t2[e1 ⊳ t1/x]) is cfNow the proof splits into two. In the forward dire
tion, we start with (†):
(†) e →∗ (e1, e2) and e1 and e2 are cf and

e1 ∈ t1 and e2 ⊲ t2[e1 ⊳ t1/x] is cf
⇒ (By Lemma 16p57 (Conditional proje
tion) (a) andTheorem 14p55 (
ongruen
e of �) andLemma 7p15 (
) (property of �))

e →∗ (e1, e2) and e1 ∈ t1 and e2 ⊲ t2[e1/x] is cf
⇐⇒ (By [IH1℄ and [IH2℄)

e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2[e1/x]

⇐⇒ (By de�nition of ∈)
e ∈ (x : t1, t2)The key step is the use of Lemma 16p57 (a) (see Se
tion A.6).RR n° 7794

Hybrid Contra
t Che
king 50Now we prove the reverse dire
tion. We use the fa
t that (x : t1, t2) istotal. By de�nition of total
ontra
t, t1 is total and for all e ∈ t1, t2[e/x]is total.We have:
e ∈ (x : t1, t2)

⇐⇒ (By de�nition of ∈)
e →∗ (e1, e2) and e1 ∈ t1 and e2 ∈ t2[e1/x]

⇐⇒ (By Lemma 14p53 (Key lemma), let e1 = e′ ⊳ t1)
e →∗ (e1, e2) and e1 ∈ t1 and ∃cf e′, e2 ∈ t2[e

′ ⊳ t1/x]

⇐⇒ (By [IH1℄)
e →∗ (e1, e2) and e1 ⊲ t1 is cf and ∃cf e′, e2 ∈ t2[e

′ ⊳ t1/x]

⇒ (e1 ⊲ t1 is
f and by [IH2℄)
e →∗ (e1, e2) and e1 ⊲ t1 is cf and e2 ⊲ t2[e1 ⊲ t1 ⊳ t1/x] is cf

⇐⇒ (By Lemma 15p56 (Idempoten
y)Theorem 14p55 (
ongruen
e of �) andLemma 7p15 (
) (property of �))
e →∗ (e1, e2) and e1 ⊲ t1 is cf and e2 ⊲ t2[e1 ⊲ t1 ⊳ t1 ⊳ t1/x] is cf

⇐⇒ (By Theorem 15p55 (Proje
tion pair), e1 ⊲ t1 ⊳ t1 � e1,Theorem 14p55 (
ongruen
e of �) andLemma 7p15 (
) (property of �))
e →∗ (e1, e2) and e1 ⊲ t1 is cf and e2 ⊲ t2[e1 ⊳ t1/x] is cfThe key steps are using Lemma 14p53 (Key lemma), apply Lemma 15p56(Idempoten
y) and use Theorem 15p55 (Proje
tion pair).� t is Any: We have:

e ⊲ Any is cf
⇐⇒ (By de�nition of ⊲)UNR is cf
⇐⇒ (By de�nition of ∈, and UNR ∈ Any)

e ∈ AnyA.1 Teles
oping PropertyThe teles
oping property is adapted from [7℄ and we found that this propertymakes the proofs of many lemmas shorter. However, it is not used in any proofin [7℄.Lemma 13 (Teles
oping Property). For all expression e, and total
ontra
t t,
(e

r1
⊲⊳
r2

t)
r3
⊲⊳
r4

t = e
r1
⊲⊳
r4

tProof. Before we start the proof, by de�nition of let, [E-exn℄ and [E-mat
h℄,we know two fa
ts:RR n° 7794

Hybrid Contra
t Che
king 51[Fa
t1℄ ∀e′. (let x = BAD in e′) → BAD[Fa
t2℄ ∀alts, (mat
h BAD with alts) → BADThe proof begins by dealing with two spe
ial
ases.� Case e →∗ BAD: Based on [Fa
t1℄ and [Fa
t2℄, for all t 6= Any, by in-spe
ting the de�nition of ⊲⊳, we know (e
ri
⊲⊳
rj

t) →∗ BAD for all i, j. SoLHS=RHS=BAD for t 6= Any. In the
ase t = Any, we have:
(e

r1
⊲⊳
r2

Any) r3
⊲⊳
r4

Any
= r2

r3
⊲⊳
r4

Any
= r4

= e
r3
⊲⊳
r4

Any� e↑. Similar to the arguments in the
ase e →∗ BAD.Hen
e for the rest of the proof we assume that e →∗ val 6∈ {BAD, UNR}.The rest of the proof is by indu
tion on the size of t.� t is {x | p}:
(e

r1
⊲⊳
r2

{x | p})
r3
⊲⊳
r4

{x | p}

= (By de�nition of ⊲⊳)let x =
(let x = e in if p then x else r1

)in if p then x else r3
= (We �oat let x = e out)let x = e in if p then (let x = x in if p then x else r3)else (let x = r1 in if p then x else r3)
= (This is not let re
, so inline x in the then bran
h.By [E-beta℄ and [Fa
t1℄.)let x = e in if p then (if p then x else r3)else r1
= (propagating the true value of p to sub-bran
hes)let x = e in if p then xelse r1
= (By defn of ⊲⊳)

e
r1
⊲⊳
r4

t� t is x : t1 → t2: We have the following indu
tion hypotheses:
∀e, tl t1, (e

r1
⊲⊳
r2

t1)
r3
⊲⊳
r4

t1 = e
r1
⊲⊳
r4

t1 [IH1℄
∀e, e′ ∈ t1, tl t2[e

′/x], (e
r1
⊲⊳
r2

t2[e
′/x])

r3
⊲⊳
r4

t2[e
′/x] = e

r1
⊲⊳
r4

t2[e
′/x] [IH2℄

RR n° 7794

Hybrid Contra
t Che
king 52We have the following proof:
(e

r1
⊲⊳
r2

x : t1 → t2)
r3
⊲⊳
r4

x : t1 → t2

= (By defn of ⊲⊳)let y = e
r1
⊲⊳
r2

x : t1 → t2 in λx1. (y (x1
r4
⊲⊳
r3

t1))
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x]

= (By defn of ⊲⊳ again)let y = e in let y = λx2. ((y (x2
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x2
r2
⊲⊳
r1

t1)/x]) in
λx1. ((y (x1

r4
⊲⊳
r3

t1))
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x])

= (By β-redu
tion)let y = e in
λx1. ((y ((x1

r4
⊲⊳
r3

t1)
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r3

t1
r2
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x]

= (By indu
tion hypothesis with t = t1)let y = e in λx1. ((y (x1
r4
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r3

t1)/x]

= (By
all-by-value, ri in t2 (for all i) are not rea
hable, repla
e r3 by r1)let y = e in λx1. ((y (x1
r4
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x]

= (By indu
tion hypothesis [IH2℄: t = t2[(x1
r4
⊲⊳
r1

t1)/x]

t2[(x1
r4
⊲⊳
r1

t1)/x] is tl be
ause ri in t2 (for all i) are not rea
hable)let y = e in λx1. (y (x1
r4
⊲⊳
r1

t1))
r1
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x]

= (By defn of ⊲⊳)
e

r1
⊲⊳
r4

x : t1 → t2Although the β-redu
tion is done in the body of a let-expression, it isvalid be
ause we know e →∗ val /∈ {BAD, UNR} and it does not violate
all-by-value exe
ution.� t is (x : t1, t2): We have the following indu
tion hypotheses:
∀e, tl t1, (e

r1
⊲⊳
r2

t1)
r3
⊲⊳
r4

t1 = e
r1
⊲⊳
r4

t1 [IH1℄
∀e, e′ ∈ t1, tl t2[e

′/x], (e
r1
⊲⊳
r2

t2[e
′/x])

r3
⊲⊳
r4

t2[e
′/x] = e

r1
⊲⊳
r4

t2[e
′/x] [IH2℄

RR n° 7794

Hybrid Contra
t Che
king 53We have the following proof:
(e

r1
⊲⊳
r2

(x : t1, t2))
r3
⊲⊳
r4

(x : t1, t2)

= (By defn of ⊲⊳)

(mat
h e with (x1, x2) → (x1
r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x]))
r3
⊲⊳
r4

(x : t1, t2)

= (By defn of ⊲⊳ again)mat
h (mat
h e with (x1, x2) → (x1
r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])) with
(x3, x4) → (x3

r3
⊲⊳
r4

t1, x4
r3
⊲⊳
r4

t2[(x3
r4
⊲⊳
r3

t1)/x])

= (By simpl rule [mat
h-mat
h℄ and [E-mat
h℄)mat
h e with
(x1, x2) → ((x1

r1
⊲⊳
r2

t1)
r3
⊲⊳
r4

t1, (x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r1
⊲⊳
r2

t1
r4
⊲⊳
r3

t1)/x])

= (By indu
tion hypothesis [IH1℄.mat
h e with
(x1, x2) → (x1

r1
⊲⊳
r4

t1, (x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r1
⊲⊳
r3

t1)/x])

= (Due to x1
r1
⊲⊳
r4

t1, for all i, j, the ri, rj in [x1
ri
⊲⊳
rj

t1/x]
annot be rea
hed.)mat
h e with
(x1, x2) → (x1

r1
⊲⊳
r4

t1, (x2
r1
⊲⊳
r2

t2[(x1
r4
⊲⊳
r1

t1)/x])
r3
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x])

= (By indu
tion hypothesis [IH2℄: t = t2[(x1
r4
⊲⊳
r1

t1)/x].)mat
h e with
(x1, x2) → (x1

r1
⊲⊳
r4

t1, x2
r1
⊲⊳
r4

t2[(x1
r4
⊲⊳
r1

t1)/x])

= (By defn of proje
tion)
e

r1
⊲⊳
r4

(x : t1, t2)� t is Any:LHS
(e

r1
⊲⊳
r2

Any) r3
⊲⊳
r4

Any
= r2

r3
⊲⊳
r4

Any
= r4RHS

e
r3
⊲⊳
r4

Any
= r4Sin
e LHS ≡ RHS, we are done.A.2 Key LemmaLemma 14 (Key lemma). For all
rash-free e and total
ontra
t t, su
h that

⊢ e :: τ and ⊢c t :: τ ,
e ⊳ t ∈ tRR n° 7794

Hybrid Contra
t Che
king 54Proof. First, we have the following derivation (named D1).
(e ⊳ t) ⊲ t

= (By defn of ⊳ and ⊲)

(e
UNR
⊲⊳BAD t) BAD

⊲⊳UNR t
= (By Lemma 13p50 (Teles
oping Property))

e
UNR
⊲⊳UNR tNow, we have the following proof.

e is
f
⇒ (Sin
e t is total, t ≡ ⌊t⌋. By the defn of ⊲⊳, the
ontext (• UNR

⊲⊳UNR ⌊t⌋)is synta
ti
ally safe. By defn of
f, we have below)
e

UNR
⊲⊳UNR t is
f

⇐⇒ (By derivation D1)
(e ⊳ t) ⊲ t is
f

⇐⇒ (By Theorem 2p18 (grand theorem))
(e ⊳ t) ∈ tA.3 Examination of Cy
li
 Dependen
iesRe
all the dependen
y graph in Figure 18, there are two
y
les:(1) T2 → L15 → T2(2) T2 → L17 → L19 → T2

T2 L15
t = t 1

T2

L17t = t 1

L19
y
le (1)
y
le (2)Figure 19: Cy
li
 Dependen
y of Three LemmasEa
h
y
le is shown in Figure 19. The dashed dire
ted edge indi
ates ade
rease in size of t while the solid dire
ted edge shows a preservation of thesize of t. We
an see that, in ea
h
y
le, there is an edge that de
reases the size of
t. Cy
le (1) is well-founded be
ause the size of t (where t = x : t1 → t2) de
reases(to t1) when Theorem 2p18
alls Lemma 14p53. Cy
le (2) is well-founded be
ausethe size of t (where t = x : t1 → t2) de
reases (to t1) when Theorem 2p18
allsLemma 16p57. Although there are
y
li
 dependen
ies among these theoremsand lemmas, on ea
h
y
li
 path, there is a de
rease in the size of t. Thus, ourproof on indu
tion of the size of t is well-founded.RR n° 7794

Hybrid Contra
t Che
king 55A.4 Congruen
e of Crashes-More-OftenTheorem 14 (Congruen
e of Crashes-More-Often).
∀e1, e2. e1 � e2 ⇐⇒ ∀C, C[[e1]] � C[[e2]]Proof. We prove two dire
tions separately:(⇒) For an arbitrary B, we prove B[[e1]] � B[[e2]]. We have the followingproof:

e1 � e2

⇐⇒ (By de�nition 7)
∀C.C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD

⇒ ∀C,D. (C = D[[B[[•]]]]) ⇒ (C[[e2]] →∗ BAD ⇒ C[[e1]] →∗ BAD)
⇒ ∀D. D[[B[[e2]]]] →∗ BAD⇒ D[[B[[e1]]]] →∗ BAD
⇒ ∀B.B[[e1]] � B[[e2]]Note that we assume for all i = 1, 2:

⊢ C[[ei]] :: bool, ⊢ D[[ei]] :: bool and ⊢ E [[ei]] :: bool(⇐) It is trivially true, be
ause we
an
hoose an empty
ontext (i.e. C =
•).A.5 Proje
tion Pair and Closure PairRe
all the de�nition of proje
tion pair. Let D and E be
omplete partial order's.If f : D → E and g : E → D are
ontinuous fun
tions su
h that f ◦ g ⊆ id,then (f ,g) is
alled a proje
tion pair. If id ⊆ f ◦ g, then (f ,g) is
alled a
losurepair. In this se
tion, we are not going to explore the theory in depth. We onlynoti
e that in some way (• ⊲ t ⊳ t � id) and (id � • ⊳ t ⊲ t) mat
h the de�nitionof proje
tion pair and
losure pair respe
tively.Theorem 15 (A proje
tion pair). For all expression e and
ontra
t t, su
h that
∃Γ. Γ ⊢ e :: τ and Γ ⊢c t :: τ ,

(e ⊲ t) ⊳ t � eProof. We have the following proof:
(e ⊲ t) ⊳ t

= (By defn of ⊲ and ⊳)

(e
BAD
⊲⊳UNR t) UNR

⊲⊳BAD t
= (By Lemma 13p50)

e
BAD
⊲⊳BAD t

≪{BAD} (By Lemma 19p58)
eBy de�nition of ≪{BAD}, we get the desired result.RR n° 7794

Hybrid Contra
t Che
king 56Theorem 16 (A Closure Pair). For all expression e and
ontra
t t, su
h that
∃Γ. Γ ⊢ e :: τ and Γ ⊢c t :: τ ,

e � (e ⊳ t) ⊲ tProof. We have the following proof:
(e ⊳ t) ⊲ t

= (By defn of ⊳ and ⊲)

(e
UNR
⊲⊳BAD t) BAD

⊲⊳UNR t
= (By Lemma 13p50)

e
UNR
⊲⊳UNR t

≪{UNR} (By Lemma 19p58)
eBy de�nition of ≪{UNR}, we get the desired result.A.6 Contra
ts are Proje
tionsRe
all the de�nition of proje
tion, a proje
tion p is a fun
tion that has twoproperties:1. p = p ◦ p2. p ⊆ 1The �rst one is
alled the retra
t property and says that proje
tions are idempo-tent on their range. The se
ond one says that the result of a proje
tion
ontainsno more information than its input.We would like to show that if e ∈ t, then (• ⊳ t) is an error proje
tion while

(• ⊲ t) is a safe proje
tion. By error proje
tion, we mean e ⊳ t either behavesthe same as e or returns BAD. Similarly, by safe proje
tion, we mean e ⊲ t eitherbehaves the same as e or returns UNR.Findler and Blume [12℄ are the �rst to dis
over that
ontra
ts are pairsof proje
tions. However, they assume that the e is a non-
rashing term andthe only error raised are
ontra
t violations. We assume that a program may
ontain errors and may
rash. We give error a
ontra
t Any. Moreover, we provedi�erent theorems from [12℄.Theorem 17 (Error Proje
tion). For all
losed e and
losed t, if e ∈ t, (• ⊳ t)is a proje
tion.Proof. By Lemma 15p56 (a) (Idempoten
y) and Lemma 16p57 (a).Theorem 18 (Safe Proje
tion). For all
losed e and
losed t, if e ∈ t, (• ⊲ t)is a proje
tion.Proof. By Lemma 15p56 (b) (Idempoten
y) and Lemma 16p57 (b).Lemma 15 (Idempoten
e). For all
losed e, t,
e

r1
⊲⊳
r2

t
r1
⊲⊳
r2

t = e
r1
⊲⊳
r2

tRR n° 7794

Hybrid Contra
t Che
king 57Proof. It follows dire
tly from Lemma 13p50 (teles
oping property).Lemma 16 (Conditional proje
tion). For all
losed e,
losed and total t, if
e ∈ t, then

(a) e ⊳ t � e (b) e � e ⊲ tProof. We prove ea
h of them separately.(a) Given e ∈ t, we have:
e ⊳ t

= (By defn of ⊲ in Figure 6)
e

UNR
⊲⊳BAD t

≡s (By Lemma 18p57 (Ex
eption III))
e

BAD
⊲⊳BAD t

� (By Lemma 19p58 (Behaviour of proje
tion) and De�nition 6p14 (≪))
e(b) Given e ∈ t, we have:
e ⊲ t

= (By defn of ⊲ in Figure 6)
e

BAD
⊲⊳UNR t

≡s (By Lemma 18p57 (Ex
eption III))
e

UNR
⊲⊳UNR t

� (By Lemma 19p58 (Behaviour of proje
tion) and De�nition 6p14 (≪))
eLemma 17 (Ex
eption I). ∀C. (C[[UNR, BAD]] is
f⇒ ∀r1, r2 ∈ {BAD, UNR}. C[[UNR, r1]] ≡s

C[[UNR, r2]])Proof. The intuition is that the BAD in the hole
annot be rea
hed, so we
anrepla
e it by any ex
eptional value. This reasoning in turn relies on the absen
eof a "
at
h" primitive that
an transform BAD into something non-BAD.Formally, we
an prove the lemma by
ase splitting on whether C[[UNR, BAD]]terminates, and if it does, by indu
tion on the number of steps of redu
tion.Lemma 18 (Ex
eption III). ∀e, t. e ∈ t ⇒ ∀r. e
BAD
⊲⊳
r
t ≡s e

UNR
⊲⊳
r
t

RR n° 7794

Hybrid Contra
t Che
king 58Proof. For all expression e,
ontra
t t, we have:
e ∈ t

⇐⇒ (By Theorem 2p18 (Grand Theorem))
e ⊲ t is
f

⇐⇒ (By defn of ⊲ and
f)
∀C, BAD 6∈ C. C[[e

BAD
⊲⊳
r
t]] 6→∗ BAD

⇐⇒ (By Lemma 17p57 (Ex
eption I))
∀C, BAD 6∈ C. C[[e

BAD
⊲⊳
r
t]] ≡s C[[e

UNR
⊲⊳
r
t]]

⇒ (Let C = •)

e
BAD
⊲⊳
r
t ≡s e

UNR
⊲⊳
r
tWe are done.A.7 Behaviour of Proje
tionsWe have seen that in Se
tion A.5, we make use of the property of behaves-the-same (≪) (Lemma 19p58). In this se
tion, we give its detailed proof. Lemma 19p58says that an expression wrapped with a
ontra
t behaves either the same as theoriginal expression or returns one of the ex
eptions whi
h
an be either BAD orUNR.Lemma 19 (Behaviour of proje
tion). For all r1, r2, e, total t, su
h that ⊢ e :: τand ⊢c t :: τ , and r1, r2 ∈ {BAD, UNR},

e
r1
⊲⊳
r2

t ≪{r1,r2} eProof. The proof begins by dealing with two spe
ial
ases: e ↑, e →∗ BAD. Inboth
ases, by De�nition of ⊲⊳, we know e
r1
⊲⊳
r2

t ≡s e and we are done.Hen
e, for the rest of the proof we assume that e →∗ val 6∈ {BAD, UNR}. Weprove it by indu
tion on the size of t. Let R be {r1, r2}.� t is {x | p}: we have
e

r1
⊲⊳
r2

{x | p} = let x = e in mat
h p[e/x] with
| true → e
| false→ r1Sin
e t is total, p[e/x] 6→∗ BAD. So there are two
ases to
onsider:� If p[e/x] →∗ false, then e

r1
⊲⊳
r2

{x | p} →∗ r1 and we are done.� If p[e/x] →∗ true, e r1
⊲⊳
r2

{x | p} →∗ e and we are done.� t is x : t1 → t2: We have
e

r1
⊲⊳
r2

x : t1 → t2 = let y = e in λv. ((y (v
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x])RR n° 7794

Hybrid Contra
t Che
king 59Sin
e e →∗ val 6∈ {BAD, UNR}, e →∗ λx.e′ and (e
r1
⊲⊳
r2

x : t1 → t2) →∗

λv. ((e (v
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x]).We want to show that ∀C. C[[e]] →∗ r ∈ R ⇒ C[[λv. ((e (v
r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x]]]) →∗ r. We prove it by indu
tion on
ontexts. There are 3
ases to
onsider:1. C = [[•]];2. C = D[[mat
h • with alts]];3. C = D[[• e3]].Case 1 and 2 are trivially true by inspe
ting the operational semanti
s ofmat
h. For Case 3, sin
e we prove it by indu
tion on the size of
ontext,we have the following indu
tion hypothesis:
∀D[[e]] →∗ r ⇒ D[[• e3]] →

∗ r [IH℄So all we need to prove is that for all e3,
(λv. ((e (v

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(v
r2
⊲⊳
r1

t1)/x])) e3 ≪R e e3By β-redu
tion, it means we want to show
(e (e3

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(e3
r2
⊲⊳
r1

t1)/x] ≪R (e e3) (∗)By indu
tion hypotheis where t = t2[(e3
r2
⊲⊳
r1

t1)/x], we have
(e (e3

r2
⊲⊳
r1

t1))
r1
⊲⊳
r2

t2[(e3
r2
⊲⊳
r1

t1)/x] ≪R (e (e3
r2
⊲⊳
r1

t1)) (1)By indu
tion hypothesis where t = t1, we have
e3

r2
⊲⊳
r1

t1 ≪R e3By Lemma 20p60 (Congruen
e of ≪R), we have
e (e3

r2
⊲⊳
r1

t1) ≪R e e3 (2)By (1) and (2) and Lemma 21p60 (Transitivity of≪R), we get (*). By [IH℄,we have the desired result ∀C. C[[e]] →∗ r ∈ R ⇒ C[[e
r1
⊲⊳
r2

x : t1 → t2]] →∗ r.� t is (x : t1, t2): We have
e

r1
⊲⊳
r2

(t1, t2) = mat
h e with
(x1, x2) → (x1

r1
⊲⊳
r2

t1, x2
r1
⊲⊳
r2

t2[(x1
r2
⊲⊳
r1

t1)/x])If e →∗ val 6∈ {BAD, UNR}, then e →∗ {e1, e2}. By the indu
tion hypotheseswhere t = t1 and t = t2 respe
tively, we know e1
r1
⊲⊳
r2

t1 ≪R e1 and
e2

r1
⊲⊳
r2

t2 ≪R e2. Therefore, by De�nition 6p14, we have e
r1
⊲⊳
r2

(t1, t2) ≪R e.RR n° 7794

Hybrid Contra
t Che
king 60� t is Any: Sin
e we have e
r1
⊲⊳
r2

Any = r2, we know e
r1
⊲⊳
r2

Any →∗ r2. ByDe�nition 6p14, we are done.Lemma 20 (Congruen
e of Behaves-the-same). If e1 ≪R e2, then ∀C, C[[e1]] ≪R

C[[e2]].Proof. we have the following proof:
e1 ≪R e2

⇐⇒ (By de�nition 6)
∀C, C[[e2]] →∗ r ∈ R ⇒ C[[e1]] →∗ r

⇒ (Choose C be D[[C[[E]]•]])
∀D, ∀E , D[[E [[e2]]]] →∗ r ∈ R ⇒ D[[E [[e1]]]] →∗ r

⇐⇒ (By de�nition 6)
∀C, C[[e1]] ≪R C[[e2]]Note that we assume for all i = 1, 2:

⊢ C[[ei]] :: (), ⊢ D[[ei]] :: () and ⊢ E [[ei]] :: ()Lemma 21 (Transitivity of ≪R). If e1 ≪R e2 and e2 ≪R e3, then e1 ≪R e3.Proof. By De�nition 6p14, we have
(1) ∀C. C[[e2]] →∗ r ∈ R ⇒ C[[e1]] →∗ r
(2) ∀C. C[[e3]] →

∗ r ∈ R ⇒ C[[e2]] →
∗ rFor all C, assuming C[[e3]] →∗ r ∈ R, we want to show C[[e1]] →∗ r. We have thefollowing proof:

∀C. C[[e3]] →∗ r ∈ R

⇒ (By (2))
C[[e2]] →∗ r ∈ R

⇒ (By (1))
C[[e1]] →

∗ rB Corre
tness of SL ma
hineB.1 Corre
tness of Logi
izationTheorem 11 (Logi
ization for axioms) Given a de�nition f = eτ , the logi
alformula ∀fv(e), ∃f : τ.[[e]]f is valid.Proof. We prove it by stru
tural indu
tion on the size of the (possiblly open)expression e. As UNR is for internal usage, we do not have UNR in e.� Case e is BADl. We have [[BADl]]f = true, whi
h is valid.RR n° 7794

Hybrid Contra
t Che
king 61� Case e is x. We have ∃f.f = x. Let f be x, we have x = x, whi
h is valid.� Case e is n. We have ∃f.f = n. Let f be n, we have n = n, whi
h is valid.� Case e is eτ1⊕eτ2 . It is semanti
ally equivalent to let x1 = e1 in let x2 =
e2 in x1 ⊕ x2. From x1 = e1, by indu
tion hypothesis, (1) [[e1]]x1

isvalid. From x2 = e1, by indu
tion hypothesis, (2) [[e2]]x2
is valid. Let theexistentially quanti�ed f be x1⊕x2, we have (3) x1⊕x2 = x1 ⊕x2. From(1), (2), (3), we know ∃f : τ.∃x1 : [[τ]], ∃x2 : [[τ]], ([[e1]]x1
∧ [[e2]]x2

∧ f =
x1 ⊕ x2) is valid.� Case e is eτ1⊙eτ2 . It is semanti
ally equivalent to let x1 = e1 in let x2 =
e2 in x1 ⊙ x2. From x1 = e1, by indu
tion hypothesis, (1) [[e1]]x1

isvalid. From x2 = e1, by indu
tion hypothesis, (2) [[e2]]x2
is valid. If

eτ11 ⊙ eτ22 evaluates to true, x1 ⊙ x2 is valid and not(x1 ⊙ x2) is invalid.So ∃f : τ, ∃x1 : [[τ]], [[e1]]x1
∧ ∃x2 : [[τ]], [[e2]]x2

∧ ((x1 ⊙ x2 ∧ f = true) ∨
(not(x1 ⊙ x2) ∧ f = false)) dedu
es to ∃f : τ, ∃x1 : [[τ1]], [[e1]]x1

∧ ∃x2 :
[[τ2]], [[e2]]x2

∧ (x1 ⊙ x2 ∧ f = true). Let the existentially quanti�ed f betrue. From (1), (2) and true = true, we know [[eτ1 ⊙ eτ2]]f is valid. If
eτ11 ⊙ eτ22 evaluates to false, we apply the similar reasoning as above withthe exitentially quanti�ed f being false.� Case e is λxτ1 .eτ22 . We have ∃f : τ1 → τ2, ∀x : [[τ]], [[e]](apply(f,x)). Letthe existentially quanti�ed f be λx.e2.� Case e is let xτ1 = e1 in eτ22 . It is semanti
ally equivalent to let xτ1 =
e1 in let xτ2

2 = e2 in x2. We have [[let xτ1 = e1 in let xτ2
2 =

e2 in x2]]f = ∃x : [[τ]], [[e1]]x ∧ ∃x2 : [[τ]], [[e2]]x2
∧ f = x2. From de�-nitions xτ = e1 and xτ2

2 = e2, by indu
tion hypothesis, (1) ∃x : τ1, [[e1]]xis valid and (2) ∃x2 : τ2, [[e2]]x2
is valid. Let x2 be f . From (1), (2) and

f = f , we know ∃f : τ2, ∃x : [[τ]], [[e1]]x ∧∃x2 : [[τ]], [[e2]]x2
∧f = x2 is valid.� Case e is (eτ11 eτ22). It is semanti
ally equivalent to let x1 = e1 in let x2 =

e2 in x1 x2. We have [[let x1 = e1 in let x2 = e2 in x1 x2]]f =
∃x1 : τ1, [[e1]]x1

∧ ∃x2 : τ2, [[e2]]x2
∧ f = apply(x1, x2). From de�nitions

x1 = e1 and x2 = e2, by indu
tion hypothesis, (1) ∃x1 : τ1, [[e1]]x1
isvalid and (2) ∃x2 : τ2, [[e2]]x2

is valid. Let the existentially quanti�ed f be
apply(x1, x2). From (1), (2) and apply(x1, x2) = apply(x1, x2), we know
∃x1 : τ1, [[e1]]x1

∧ ∃x2 : τ2, [[e2]]x2
∧ f = apply(x1, x2) is valid.� Case e is Kτ eτ11 . . . eτnn . It is semanti
ally equivalent to let x1 = e1 in . . .let xn = en in K x1 . . . xn. We have [[let x1 = e1 in . . . let xn =

en in K x1 . . . xn]]f = ∃x1 : τ1, [[e1]]x1
∧ · · · ∧ ∃x1 : τ1, [[e1]]x1

∧ f =
K(x1, . . . , xn). From de�nitions xi = ei for 1 ≤ i ≤ n, by indu
-tion hypothesis, we know (i) ∃xi.[[ei]]xi

is valid. Let f be K(x1, . . . , xn).From (i) and K(x1, . . . , xn) = K(x1, . . . , xn), we know ∃f : τ, ∃x1 :
τ1, [[e1]]x1

∧ · · · ∧ ∃x1 : τ1, [[e1]]x1
∧ f = K(x1, . . . , xn) is valid.� Case e is mat
h eτ00 with −−−−−−−−→

K
−→
xτx → eτ . It is semanti
ally equivalent tolet xτ0

0 = e0 in mat
h x0 with−−−−−−−−−−−−−−−−−−→K
−→
xτx → let y = e in y. We have [[let xτ0

0 =

e0 in mat
h x0 with −−−−−−−−−−−−−−−−−−→
K

−→
xτx → let y = e in y]]f = ∃x0 : τ0, [[e0]]x0

∧RR n° 7794

Hybrid Contra
t Che
king 62
(
∧

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ]], (x0 = K −→x) ⇒ ∃y : τ, [[e]]y ∧ f = y). From de�nitions x0 = e0and y = e, by indu
tion hypothesis, (1) ∃x0 : τ0, [[e0]]x0

is valid and (2)
∃y : τ, [[e]]y is valid. Let y be f . From (2) and f = f , the RHS of
⇒ in the logi
al formula is valid. Together with (1), we know ∃x0 :

τ0, [[e0]]x0
∧ (

∧

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−→
x : [[τ]], (x0 = K −→x) ⇒ ∃y : τ, [[e]]y ∧ f = y) is valid.Theorem 12 (Logi
ization for goals: validity preservation) For all (possiblyopen) expression eτ , if ∃f : τ, [[e]]f is valid and e → e′ for some e′, then [[e′]]f isvalid.Proof. We prove it by stru
tural indu
tion on the size of e. The lemma holdsva
uriously for expressions BAD, UNR, x, n, e1⊕ e2. We fo
us on two
ases wherea redex o

urs. The rest of the
ases
an be proved easily by applying indu
tionhypotheses.� Case e is (λxτ .e1) e2. We have

[[(λxτ .e1)
τ1 eτ22]]f is valid

⇐⇒ (By de�nition of [[.]]f)
∃x1 : [[τ1]], [[(λx

τ .e1)]]x1
∧ ∃x2 : [[τ2]], [[e2]]x2

∧
f = apply(x1, x2) is valid

⇐⇒ (By de�nition of [[.]]x1
)

∃x1 : [[τ1]], ∀xτ , [[e1]](apply(x1,x))
∧ ∃x2 : [[τ2]], [[e2]]x2

∧

f = apply(x1, x2) is valid
⇐⇒ (By Logi
: P ∧ ∃x,Q(x) ⇐⇒ ∃x, P ∧Q(x) where x is not in P)

∃x1 : [[τ1]], ∃x2 : [[τ2]], ∀x
τ , [[e1]](apply(x1,x))

∧ [[e2]]x2
∧

f = apply(x1, x2) is valid
⇒ (Let x be x2)

∃x1 : [[τ1]], ∃x2 : [[τ2]], [[e1]](apply(x1,x2))
[x2/x] ∧ [[e2]]x2

∧

f = apply(x1, x2) is valid
⇐⇒ (Sin
e f = apply(x1, x2), repla
e apply(x1, x2) by f)

∃x1 : [[τ1]], ∃x2 : [[τ2]], [[e1]]f [x2/x] ∧ [[e2]]x2
is valid

⇐⇒ (Rename x2 to x)
∃x1 : [[τ1]], ∃x : [[τ2]], [[e1]]f ∧ [[e2]]x is valid

⇐⇒ (By Logi
: ∃x, P ⇐⇒ P where x is not in P)
∃x : [[τ2]], [[e1]]f ∧ [[e2]]x is valid

⇐⇒ (By de�nition of [[.]]f)
[[let x = e2 in e1]]f is valid

⇐⇒ (let x = e2 in e1 is semanti
ally equivalent to e1[e2/x])
[[e1[e2/x]]]f is valid

RR n° 7794

Hybrid Contra
t Che
king 63� Case e is mat
h K −→ai with −−−−−−−→
K

−→
xτ → ei. We have

[[mat
h (K
−→
val)τ0 with −−−−−−−→

K −→x → ei]]f is valid
⇐⇒ (By de�nition of [[.]]f)

∃x0 : [[τ0]], [[K
−→
val]]x0

∧ (
∧

−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−−→
x : [[τ]], (x0 = K −→x) ⇒ [[ei]]f) is valid

⇐⇒ (By de�nition of [[.]]x0
)

∃x0 : [[τ0]],
−−−−−−−−−−→
∃
−−−−→
y : [[τ]], [[val]]y ∧ x0 = K −→y ∧

(
∧

−−−−−−−−−−−−−−−−−−−−−−→
∀
−−−−→
x : [[τ]], (x0 = K −→x) ⇒ [[ei]]f) is valid

⇒ (Let −→x be −→y)

∃x0 : [[τ0]],
−−−−−−−−−−→
∃
−−−−→
y : [[τ]], [[val]]y ∧ x0 = K −→y ∧

(
∧

−−−−−−−−−−−−−−−−−−−→
(x0 = K −→y) ⇒ [[ei]]f [

−−→
y/x]) is valid

⇐⇒ (By Logi
: P ∧ (P ⇒ Q) ∧ (¬P ⇒ R) ⇐⇒ P ∧Q)

∃x0 : [[τ0]],
−−−−−−−−−−→
∃
−−−−→
y : [[τ]], [[val]]y ∧ x0 = K −→y ∧ [[ei]]f [

−−→
y/x] is valid

⇒ (By Logi
: ∃x, ∃y, P (y) ∧ P (x, y) ⇐⇒ ∃y, P (y) ∧ ∃x, P (x, y))
−−−−−−−−−−→
∃
−−−−→
y : [[τ]], [[val]]y ∧ ∃x0 : [[τ0]], x0 = K −→y ∧ [[ei]]f [

−−→
y/x] is valid

⇐⇒ (Let x0 be K −→y . By Logi
: true ∧ P ⇐⇒ P)
−−−−−−−−−−→
∃
−−−−→
y : [[τ]], [[val]]y ∧ [[ei]]f [

−−→
y/x] is valid

⇐⇒ (Rename −→y to −→x)
−−−−−−−−−−→
∃
−−−−→
x : [[τ]], [[val]]x ∧ [[ei]]f is valid

⇐⇒ (By de�nition of [[.]]f)
[[let −−−−−→

x = val in ei]]f

⇐⇒ (let −−−−−→
x = val in ei is semanti
ally equivalent to ei[

−−−→
val/x])

[[ei[
−−−→
val/x]]]f is validB.2 Transition rulesThe SL ma
hine does not inline top-level fun
tions. We do not have lo
allet re
 in our language and we only inline trivial values. Moreover, we seta stop-bound for the SMT solver Alt-ergo with an option �-stop <n>� (whi
hrestri
t the total amount of time) or �-steps <n>� (whi
h restri
t the totalnumber of steps) so that the SMT solver always terminates. Thus, there is noelement in the SL ma
hine
ausing non-termination.Theorem 8 (SL ma
hine terminates) For all H, e,S,L, there exists an ex-pression a su
h that 〈H || e || S ||

lgc〉 ∗ a.Proof. The rebuilding rules either lead to the end state ([R-done℄) or redu
e thenumber of sta
k frames ([R-r℄, [R-lam℄, [R-beta℄, [R-app℄, [R-K℄, [R-K-mat
h℄,[R-s-mat
h℄, [R-s-save℄) or redu
e the size of the sta
k frame on top of the sta
k([R-fun℄. [R-mat
h℄, [R-let-save℄).RR n° 7794

Hybrid Contra
t Che
king 64The simpli�
ation rules either lead dire
tly to a rebuild rule ([R-
onst℄, [R-exn℄, [R-var1℄, [R-var2℄) or lead to a simpli�
ation rule that redu
es the size ofthe expression under simpli�
ation ([S-lam℄, [S-app℄, [S-mat
h℄, [S-K℄) or leadto a simpli�
ation rule that redu
es the size of the sta
k ([S-letL℄, [S-mat
hL℄,[S-letR℄, [S-mat
hR℄, [S-mat
h-mat
h℄, [S-mat
h-let℄).For the
ases that
orresponding to simpli�
ation rules in Figure 11, we usethe fa
t: [EqFa
t℄ e1 ≡s e2 if ∃e3, e1 →∗ e3 and e2 →∗ e3. Moreover, if any ofthe subexpression is an ex
eption r, it is easy to show that both sides evaluateto the same r. So we only
onsider the
ase that none of the subexpression isan ex
eption r.Theorem 9 (Corre
tness of SL ma
hine) For all
losed expression e, if
〈∅ || e || [] || ∅〉 ∗ a, then e ≡s a.Proof. We prove it by indu
tion on the number of transition steps. We have thefollowing indu
tion hypothesis: for allH, e,S,L, there existsH2, e2,S2,L2, su
hthat 〈H || e || S || L〉 〈H2 || e2 || S2 || L2〉 or 〈H || e || S || L〉 〈〈H2 || e2 || S2 || L2〉〉,

〈H2 || e2 || S || L2〉 ∗ a ∧ e2 ≡s a [IH℄By Lemma 22p68 (Corre
tness of rebuilding), we know
〈〈H2 || e2 || S2 || L2〉〉 ∗ a ∧ e2 ≡s a [RB℄For
ases [S-
onst℄, [S-exn℄, [S-var1℄ [S-var2℄, by indu
tion hybothesis, we getthe desired result. We now fo
us on slightly non-obvious transitions.� Case [S-lam℄. We �rst have:
〈H || λxτ .e || [] || ∅〉

 (By [S-lam℄)
〈H || e || (λx.•) :: [] || ∀x : τ〉

 ∗ (By [IH℄, 〈H || e || (λx.•) :: S || L, ∀x : τ〉 ∗ a ∧ e ≡s a)
〈〈H || a || (λx.•) :: [] || ∀x : τ〉〉

 (By [R-lam℄)
〈〈H || λx.a || [] || ∀x : τ〉〉

 (By [R-done℄)
λx.aWe now have:

e ≡s a

⇐⇒ (By De�nition 1p11 ≡s)
∀C, r, C[[e]] →∗ r ⇐⇒ C[[a]] →∗ r

⇐⇒ (C = D[[λx.•]])
∀D, r,D[[λx.e]] →∗ r ⇐⇒ D[[λx.a]] →∗ r

⇐⇒ (By De�nition 1p11 ≡s)
λx.e ≡s λx.a

RR n° 7794

Hybrid Contra
t Che
king 65� Case [S-app℄. If e1 is r, it is easy. By [S-app℄ and [R-r-fun℄, we get
〈H || r e2 || [] || ∅〉 ∗ r, whi
h is semanti
ally equivalent to r e2. We now
onsider the
ase where e1 is not r. We have:

〈H || e1 e2 || [] || ∅〉
 (By [S-app℄)

〈H || e1 || (• e2) :: [] || ∅〉
 ∗ (By [IH℄, 〈H || e1 || (• e2) :: [] || ∅〉 ∗ a1 ∧ e1 ≡s a1)

〈〈H || a1 || (• e2) :: [] || ∅〉〉
 (By [R-fun℄)

〈H || e2 || (a1 •) :: [] || ∅〉
 ∗ (By [IH℄, 〈H || e2 || (a1 •) :: [] || ∅〉 ∗ a2 ∧ e2 ≡s a2)

〈〈H || a2 || (a1 •) :: [] || ∅〉〉
 (By [R-app℄)

〈〈H || a1 a2 || [] || ∅〉〉
 (By [R-done℄)

a1 a2Given e1 ≡s a1 and e2 ≡s a2, by
ongruen
e of≡s, we know e1 e2 ≡s a1 a2.� Case [S-mat
h℄.
〈H || mat
h e0 with alts || [] || ∅〉

 (By [S-mat
h℄)
〈H || e0 || (mat
h • with alts) :: [] || ∅〉

 ∗ (By [IH℄, 〈H || e0 || (mat
h • with alts) :: [] || ∅〉 ∗ a0 ∧ e0 ≡s a0)
(†) 〈〈H || a0 || (mat
h • with alts) :: [] || ∅〉〉There are two sub
ases: either [R-s-mat
h℄ or [R-s-save℄ is applied. Let
alts be −−−−−−−→

K
−→
xτ → ei.� there exists a bran
h (K

−→
xτ) su
h that L ⇒ (∃

−−−−→
x : [[τ]], [[a0]](K −→x)).We
ontinue from (†):

〈〈H || a0 || (mat
h • with −−−−−−−→
K

−→
xτ → ei) :: [] || ∅〉〉

 (By [R-s-mat
h℄)
〈H || ei || [] || ∃

−→
xτ , [[a0]]K −→x 〉

 ∗ (By [IH℄, 〈H || ei || [] || ∃
−→
xτ , [[a0]](K −→x)〉

∗ ai ∧ ei ≡s ai)

〈〈H || ai || [] || ∃
−→
xτ , [[a0]](K −→x)〉〉

 (By [R-done℄)
aiGiven L ⇒ (∃

−−−−→
x : [[τ]], [[a0]](K −→x)), by Theorem 12p36, we know a0 ≡s

K
−→
xτ for some −→

xτ . Together with e0 ≡s a0 and ei ≡s ai, by
ongru-en
e of ≡s, we have mat
h e0 with −−−−−−−→
K

−→
xτ → ei ≡s ai.� there is no bran
h (K −→x) su
h that L ⇒ [[a0]](K −→x).RR n° 7794

Hybrid Contra
t Che
king 66We
ontinue from (†):
〈〈H || a0 || (mat
h • with −−−−−−−→

K
−→
xτ → ei) :: [] || ∅〉〉

 (By [R-s-save℄)
−−→

〈H || ei || (mat
h a with K
−→
xτ → (•,S,L)) :: [] || L, ∃

−−−−→
x : [[τ]],

[[a]](K −→x)

〉

 ∗ (By [IH℄, −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→〈H || ei || (mat
h a with K
−→
xτ

→ (•,S,L)) :: []
|| L, ∃

−−−−→
x : [[τ]],

[[a]](K −→x)

〉 ∗ ai

∧ei ≡s ai)
−−−→

〈〈H || ai || (mat
h a with K
−→
xτ → (•,S,L)) :: [] || L, ∃

−−−−→
x : [[τ]],

[[a]](K −→x)

〉〉

 (By [R-mat
h℄)
〈〈H || mat
h a0 with −−−−−−−→

K −→x → ai || [] || L, ∃
−−−−→
x : [[τ]], [[a]](K −→x)〉〉

 (By [R-done℄)mat
h a0 with −−−−−−−→
K −→x → aiFrom e0 ≡s a0 and ei ≡s ai, by
ongruen
e of ≡s, we havemat
h e0 with −−−−−−−→

K −→x → ei ≡s mat
h a0 with −−−−−−−→
K −→x → ai.� Case [S-K℄. The proof is similar to the
ase [S-app℄. Simpli�
ation ofea
h
omponent ei to ai is semanti
ally preserving. After applying indu
-tion hypothesis, we apply [R-K℄. Given ei ≡s ai, by
ongruen
e of ≡s,

K e1 . . . en ≡s K a1 . . . an.� Case [S-letL℄. We want to show that (let x = e1 in e2) e ≡s let x =
e1 in e2 e. We have:

(let x = e1 in e2) e
→ (let x = val1 in e2) e
→ e2[val1/x] e
→ (λy.a[val1/x]) e
→ (λy.a[val1/x]) val
→ a[val1/x, val/y]and let x = e1 in e2 e
→∗ let x = val1 in e2 e
→ (e2 e)[val1/x]
→ ((λy.a) e)[val1/x]
→∗ ((λy.a) val)[val1/x]
→∗ a[val/y, val1/x]
= a[val1/x, val/y]By [EqFa
t℄, we are done.

RR n° 7794

Hybrid Contra
t Che
king 67� Case [S-mat
hL℄. We want to show that if fv(e)∩−→x = ∅, then (mat
h e0 with
−−−−−−−→
K −→x → ei) e ≡s mat
h e0 with −−−−−−−−−−→

K −→x → (ei e). We have:
(mat
h e0 with −−−−−−−→

K −→x → ei) e

→∗ (mat
h K
−−→
valx with −−−−−−−→

K −→x → ei) e

→ ei[
−−−−→
valx/x] e

→∗ (λy.e2[
−−−−→
valx/x]) e

→∗ (λy.e2[
−−−−→
valx/x]) val

→ e2[
−−−−→
valx/x, val/y]and mat
h e0 with −−−−−−−−−−→

K −→x → (ei e)

→∗ mat
h K
−−→
valx with −−−−−−−−−−→

K −→x → (ei e)

→ (ei e)[
−−−−→
valx/x]

→∗ (λy.e2 e)[
−−−−→
valx/x]

→∗ (λy.e2 val)[
−−−−→
valx/x]

→∗ e2[
−−−−→
valx/x, val/y]By [EqFa
t℄, we are done.� Case [S-letR℄. We want to show that if x 6∈ fv(e), then λy.e (let x =

e1 in e2) ≡s let x = e1 in λy.e e2. We have:
λy.e (let x = e1 in e2)

→∗ λy.e (let x = val1 in e2)
→ λy.e (e2[val1/x])
→∗ λy.e (val2[val1/x])
→ e[val2[val1/x]/y]
= e[val2/y][val1/x]and let x = e1 in (λy.e) e2
→∗ let x = val1 in (λy.e) e2
→ ((λy.e) e2)[val1/x]
→∗ ((λy.e) val2)[val1/x]
→ e[val2/y][val1/x]By [EqFa
t℄, we are done.� Case [S-mat
h-mat
h℄. We want to show that if fv (alts) ∩ −→x = ∅, thenmat
h (mat
h e0 with −−−−−−→
K −→x → e) with alts ≡smat
h eo with −−−−−−−−−−−−−−−−−−−−→

K −→x → mat
h e with alts. We have:mat
h (mat
h e0 with −−−−−−→
K −→x → e) with alts

→∗ mat
h (mat
h K
−−→
val0 with −−−−−−→

K −→x → e) with alts

→ mat
h e[
−−−−→
val0/x] with alts

RR n° 7794

Hybrid Contra
t Che
king 68and mat
h eo with −−−−−−−−−−−−−−−−−−−−→
K −→x → mat
h e with alts

→∗ mat
h K
−−→
val0 with −−−−−−−−−−−−−−−−−−−−→

K −→x → mat
h e with alts

→ (mat
h e with alts)[
−−−−→
val0/x]

= (By fv(alts) ∩−→x = ∅)mat
h e[
−−−−→
val0/x] with altsBy [EqFa
t℄, we are done.� Case [S-mat
h-let℄. We want to show if x /∈ fv (alts), then mat
h (let x =

e1 in e2) with alts ≡s let x = e1 in mat
h e2 with alts. We have:mat
h (let x = e1 in e2) with alts
→∗ mat
h (let x = val1 in e2) with alts
→ mat
h e2[val1/x] with altsand let x = e1 in mat
h e2 with alts
→∗ let x = val1 in mat
h e2 with alts
→ (mat
h e2 with alts)[val1/x]
= (By x /∈ fv (alts))mat
h e2[val1/x] with altsBy [EqFa
t℄, we are done.Lemma 22 (Corre
tness of rebuilding). For all H, a1,S,L, if 〈〈H || a1 || s ::

S || L〉〉 ∗ a, then a1 ≡s a.Proof. We prove it by indu
tion on the number of transition steps. We have thefollowing indu
tion hypothesis: for all H, a1,S,L, there exists H2, a2,S2,L2,su
h that 〈〈H || a1 || S || L〉〉 〈H2 || a2 || S2 || L2〉 or 〈〈H || a1 || S || L〉〉
〈〈H2 || a2 || S2 || L2〉〉,

〈〈H2 || a2 || S2 || L2〉〉 ∗ a ∧ a2 ≡s a [IH℄The base
ase is [R-done℄. As two expressions a at both LHS and RHS of aresynta
ti
ally the same, they are semanti
ally equivalent, so we have the desiredresult. By [E-exn℄, [E-
tx℄, de�nition of
ontexts and indu
tion hypothesis [IH℄,we get the desired result for [R-r-mat
h℄, [R-r-let℄, [R-r-fun℄, [R-r-arg℄, [R-r-K℄.The • in a sta
k frame indi
ates the original position of the expression beingsimpli�ed. It is easy to
he
k that [R-lam℄, [R-fun℄, [R-app℄ and [R-K℄ justput the simplifed expression ba
k to the • so they are
orre
t. By [E-beta℄and [S-var1℄, [R-beta℄ is
orre
t. We now
onsider those slightly non-obvioustransitions.� Case [R-K-mat
h℄. This transition implements the simpli�
ation rule [K-mat
h℄ in Figure 11. We want to show that mat
h K a1 . . . an with
{. . . ;K x1 . . . xn → e; . . . } ≡s let x1 = a1 in . . . let xn = an in e.We have: mat
h K a1 . . . an with {. . . ;K x1 . . . xn → e; . . . }

→∗ mat
h K val1 . . . valn with {. . . ;K x1 . . . xn → e; . . . }

→ e[
−−−→
val/x]RR n° 7794

Hybrid Contra
t Che
king 69and let x1 = a1 in . . . let xn = an in e
→∗ let x1 = val1 in . . . let xn = valn in e

→ e[
−−−→
val/x]By [EqFa
t℄, we are done.� Case [R-s-mat
h℄. Given L ⇒ ∃

−−−−→
x : [[τ]], [[a]]K −→x is valid and a →∗ Ki

−→
valfor some −→

val, by Theorem 12p36, L ⇒ ∃−→x , [[Ki

−→
val]]K −→x is valid. FromFigure 15, we know Ki = K. By [E-mat
h℄, we get the body e in thebran
h K. Sin
e L ⇒ ∃−→x , [[a]]K −→x implies L ∧ ∃−→x , [[a]]K −→x , [R-s-mat
h℄is
orre
t.� Case [R-s-save℄. This transition simpli�es ea
h bran
hes with the as-sumption that ∃−→x , [[a]](K −→x). Given L ∧ ∃

−−−−→
x : [[τ]], [[a]]K −→x is valid and

a →∗ Ki

−→
val for some −→

val, by Theorem 12p36, L ∧ ∃−→x , [[Ki

−→
val]]K −→x isvalid. From Figure 15, we know Ki = K. By [E-mat
h℄, we get the body

e in the bran
h K. So [R-s-save℄ is
orre
t.� Case [R-mat
h℄. This rule just put ba
k ea
h simpli�ed bran
h to itsoriginal position indi
ated by the •. The S and L keep the sta
k andlogi
al store before ea
h bran
hes are simpli�ed. So [R-mat
h℄ is
orre
t.� Case [R-let-save℄. The lo
al let de�nes x, by Theorem 11p36, ∃x : [[τ]], [[a]]xis valid. So [R-let-save℄ is
orre
t.

RR n° 7794

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Overview
	The language
	Syntax
	Type checking rules for expression
	Operational semantics
	Crashing
	Behaves-the-same
	Crashes-more-often

	Contracts
	Type checking for contracts
	A semantics for contract satisfaction
	The wrappers
	Open expressions and contracts
	Terminating contracts
	Contract Any
	Contract ordering
	Predicate Contract Ordering
	Dependent Function Contract Ordering
	Dependent tuple contract ordering

	Contract equivalence

	Static contract checking and residualization
	The SL machine
	Logicization
	Discussion and preliminary experiments

	Hybrid contract checking
	Related work
	Conclusion
	Proof for the main theorem
	Telescoping Property
	Key Lemma
	Examination of Cyclic Dependencies
	Congruence of Crashes-More-Often
	Projection Pair and Closure Pair
	Contracts are Projections
	Behaviour of Projections

	Correctness of SL machine
	Correctness of Logicization
	Transition rules

