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Multireference Coupled Cluster Ansatz

Bogumil Jeziorski

Faculty of Chemistry, University of Warsaw,

Pasteura 1, 02-093 Warsaw, Poland

(Dated: September 9, 2010)

Abstract

The origin of the multireference coupled cluster Ansatz for the wave function and the wave

operator, discovered in Quantum Theory Project in 1981, is presented from the historical perspec-

tive. Various methods of obtaining the cluster amplitudes - both state-universal and state-selective

are critically reviewed and further prospects of using the multireference coupled cluster Ansatz in

electronic structure theory are briefly discussed.
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I. INTRODUCTION

In the late 1970’s it has become clear that the coupled cluster (CC) theory, initiated in

nuclear physics [1, 2] and developed after a while for quantum chemical applications [3–5], is

a very promising - formally attractive and potentially accurate - computational tool for the

electronic structure theory [6, 7]. For an enlightening, firsthand account of the origins of the

CC theory the reader is referred to Refs. 8–11. In 1978/1979 I was visiting the Department

of Physics, University of Utah, and became familiar with the coupled cluster work done in

Salt Lake City by Frank Harris [12] and Henk Monkhorst [13]. I was very impressed by

the mathematical beauty and power of the coupled cluster theory, and in particular by the

global insight it provided into - at that time - formidably complex structure of the many-

body perturbation theory (MBPT). In fact, shortly after I joined Harris’s group we used the

coupled cluster Ansatz to propose a simple scheme for generating an explicitly connected

form of the MBPT expansion in an order-by-order fashion [14, 15]. We realized at that time

that the success of the CC approach relies heavily on the availability of a single, preferably

closed-shell, reference determinant Φ, providing a reasonably good approximation to the

exact wave function Ψ. It was therefore clear to us that a development of an appropriate

generalization of the CC method to quasidegenerate/multireference situations is important

and very timely.

We were not the first to be aware of this challenge. A simple solution of the problem,

that suggests itself rather naturally, appears to be possible if the determinant Φ is replaced

by a multideterminantal approximation Ψ0 to Ψ obtained, e.g., from spin-symmetry consid-

erations, or from an MCSCF-type optimization. Thus, in the conventional CC Ansatz

Ψ = eT Φ, (1)

the single determinant Φ may be substituted by, say, an MCSCF wave function Ψ0, as

proposed by Banerjee and Simons [16]. The problem with this solution is that the form

of the cluster operator T relies strongly on the single-determinant form of Φ and on the

classification of orbitals defined by Φ. Specifically, T is a linear combination of single,

double, etc. excitation operators replacing a set of orbitals occupied in Φ by a set of virtual

orbitals (i.e., orbitals orthogonal to all orbitals occupied in Φ). These excitation operators are

usually expressed via the conventional fermion creation (a†r) and annihilation (aα) operators,
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e.g., the two-body part of T takes the form

T2 =
∑
α<β

∑
r<s

tαβ
rs a†r a†s aβ aα, (2)

where tαβ
rs are cluster amplitudes, but an equivalent first-quantized representation through

integral (“ket-bra”) operators is also possible [17], e.g.,

T2 =
∑
i<j

t̂2(ij), (3)

t̂2 =
∑
α<β

|ταβ〉〈φαφβ|, (4)

where i and j label electronic coordinates, including spin, φα, φβ are spinorbitals occupied in

Φ, and ταβ(ij) are pair functions expanded usually (but not always [17]) in terms products

of virtual orbitals φr(i)φs(j). Using either the first- or the second-quantized representation

of T one can easily show that T is uniquely defined by Ψ and that any wave function can

be represented in the form of Eq. (1). One can also show [16] that any wave function

which is orthogonal neither to Φ nor to Ψ0 can be represented as Ψ = eSΨ0 with S uniquely

defined by Ψ, but only if the excitation structure of S is the same as that of T , and is

defined via equations of the form of Eqs. (2) and (3), i.e., relative to a single determinant

Φ. It would be desirable, however, to define S in a way that would not be biased towards a

single determinant but would treat all determinants in Ψ0 on equal footing. Unfortunately,

it appears that no construction of the Ansatz of the form Ψ = eSΨ0 proposed so far: (i)

treats all basic determinants in a symmetric way, (ii) leads to cluster amplitudes uniquely

defined by Ψ, and (iii) is capable to represent the exact wave function. It should be noted

however, that multireference (MR) coupled cluster methods employing the Ansatz Ψ =

eSΨ0, and biased towards a single determinant, have been proposed [18–21] and used with

a considerable success in practical applications [22–26].

An entirely different, and a much more general approach was proposed by Offermann,

et al [27, 28], Mukherjee et al [29]. and by Lindgren [30] (see also an early, insightful

attempt by Mukherjee et al [31, 32] and subsequent Fock-space formulations [33–37]). In

this approach the exponential Ansatz (most often in the so-called normal ordered form)

is used to represent not a single wave function, but a wave operator mapping a manifold

of simple multideterminantal functions (the model space) onto the exact solutions of the

Schrödinger equation. A special feature of this Ansatz is its valence universality [29] (VU),
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meaning that a single cluster operator applies to systems with different numbers of valence

electrons. With a proper choice of the model space this valence-universal Ansatz is exact

and the cluster amplitudes are uniquely defined by the FCI wave functions from several

layers (sectors) of the Fock space[38]. It also turns out that only in one layer of the Fock

space is the normal-ordered valence-universal Ansatz truly exponential, and in this layer

it coincides with the conventional Ansatz of Eq. (1). In other layers, corresponding to

systems with attached or removed electrons, the Ansatz becomes really linear [28, 38]. This

has the consequence that the cluster amplitudes can be obtained by diagonalization of an

appropriate matrix. In fact, the energies of ionized or excess-electron states obtained by

applying the VU Ansatz [i.e., using the VU-CC or Fock-space (FS-CC) theory] turned out

to be identical [39–42] with the energies of the IP-EOM-CC [43–45] and EA-EOM-CC [46–48]

theories. For the excitation energies there is no equivalence with the conventional EE-EOM-

CC method [49–51], but still, in view of the factual linearity of the Ansatz, the excited state

wave functions of the VU-CC method can be directly obtained from diagonalization of an

intermediate Hamiltonian [42, 52], or a suitable matrix representation of the Bloch equation

[53]. In conclusion, from the present-day perspective the VU-CC Ansatz is not really a

multireference CC Ansatz. Similarly as in the EOM-CC theory, this is a conventional single

reference Ansatz for the initial state, and a linear Ansatz for the ionized, excess-electron or

excited states. As shown in the next section, a genuine multireference CC Ansatz, capable of

correctly describing dissociation of a chemical bond, cannot be based on a single exponential

function.

II. FORMULATION OF THE MRCC ANSATZ FOR THE WAVE FUNCTION

AND THE WAVE OPERATOR

The fundamental feature of the coupled cluster Ansatz of Eq. (1) is the connected nature

of the cluster operator T . Physically, this means that that cluster amplitudes, e.g., a two-

body one tαβ
rs , vanish when the spinorbitals — φα, φβ, φr, and φs in this case — are localized,

and one or more of them moves away to infinity and cease to interact with the remaining

ones. Equivalently, when the whole system dissociates into two localized subsystems A and

B separated by a distance R, the cluster operator T becomes the sum of the cluster operators

4
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TA and TB of the fragments:

lim
R→∞

T = TA + TB. (5)

Eq. (5) may be viewed as a justification of the exponential Ansatz. If this equation did

not hold, the exponential Ansatz would not make sense. It is instructive to see the proof

of Eq. (5). We assume that when R → ∞, our N -electron system separates into an NA-

and NB-electron subsystems described by wave functions ΨA and ΨB, respectively. Each of

these wave functions can be represented with its own exponential Ansatz

ΨA = eTA ΦA ΨB = eTB ΦB, (6)

defined in terms of orbitals localized at A and B, respectively. The virtual and occupied

orbitals on each subsystem may be assumed to have zero differential overlap in the limit

R →∞. If we also assume that [54, 55]

lim
R→∞

Ψ(1, . . . , N) = AΨA(1, . . . , NA) ΨB(NA + 1, . . . , N), (7)

where A is the N -electron antisymmetrizer normalized such that A2 =
√

N !/(NA!NB!)A,

and use Eq. (6), then we can write

lim
R→∞

Ψ(1, . . . , N) = A eTA(1,...,NA)+TB(NA+1,...,N) ΦA(1, . . . , NA) ΦB(NA + 1, . . . , N). (8)

Since the orbitals used to define TA and ΦB are mutually orthogonal we can replace

TA(1, . . . , NA) in Eq. (8) by TA(1, . . . , N), where TA(1, . . . , N) is the natural extension

of TA(1, . . . , NA) to the whole N -electron Hilbert space, defined by second quantization, or

by equations of the form of Eq. (3). Extending TB(NA + 1, . . . , N) in a similar way one can

write

lim
R→∞

Ψ(1, . . . , N) = eTA(1,...,N)+TB(1,...,N)AΦA(1, . . . , NA) ΦB(NA + 1, . . . , N), (9)

since now the antisymmetrizer A commutes with the exponential. Noting also that Φ ≡

AΦA(1, . . . , NA) ΦB(NA + 1, . . . , N), we finally obtain

lim
R→∞

Ψ ≡ lim
R→∞

eT Φ = eTA+TB Φ, (10)

where all wave function arguments 1, . . . , N were suppressed for brevity reason. Eq. (10)

shows that indeed T → TA + TB when R →∞, i.e., the validity of Eq. (5).
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The validity of the proof given above depends upon the validity of Eq. (7). This equation

holds when a closed-shell system dissociates into closed-shell fragments, or in the case of

dissociation of high-spin systems when the product ΨAΨB is in a pure spin state. Eq. (7)

does not hold, however, when a singlet state dissociates into two doublet states, i.e., in the

case of breaking the simplest chemical bond. In such a case Eq. (5) is not valid, and the

exponential Ansatz is not useful at large R.

In general, when a low-spin system dissociates into high-spin ones, Eq. (7) must be

modified by inserting a spin-projection operator Π̂ in front of the antisymmetrizer A. In the

simplest case, when a singlet dissociates into two doublets one can easily show (by inspecting

relevant spin functions) that both at the correlated or independent-particle level the spin-

projection can be effected by the projection operator Π̂ = 1
2
(1 + R̂π/2), where the operator

R̂π/2 rotates the spin functions α and β by 90o, i.e., performs the operation α → β, β → −α.

Substituting Π̂A for A in Eq. (7), and following the reasoning presented between Eqs.

(7) and (10), we find that now the asymptotic, large-R form of the wave function Ψ is

lim
R→∞

Ψ =
1

2
(1 + R̂π/2) eTA+TB Φ =

1

2
eT Φ +

1

2
eT ′

Φ′, (11)

where Φ′ = R̂π/2 Φ, T = TA+TB, and T ′ = R̂π/2 T R̂π/2. It should be noted that the function

2−1/2(Φ + Φ′) represents the conventional independent particle approximation to open-shell

singlet, and that the operator T ′ is defined in the standard way but relative to the vacuum

Φ′. Eq. (11) shows that for the dissociation to open-shell fragments a single exponential

cannot be adequate, since asymptotically, at large R, the wave function does not factorize

in the conventional way, given by Eq. (7). Only if we represent the wave function as a

sum of exponentials, we have a chance that at large R the cluster operators will separate as

TA + TB, with TA and TB equal or simply related to fragment’s cluster operators.

Generalizing Eq. (11) to more complicated spin projections, and to even more general

situations, when the asymptotics cannot be obtained by projection [56, 57], we can conjecture

that a general quasidegenerate/multireference wave function can be written in the form

Ψ =
M∑

µ=1

cµ eT µ

Φµ, (12)

where Φµ, µ = 1, . . . ,M are determinants needed to obtain a correct zeroth-order approxi-

mation to Ψ, and each of the cluster operators T µ is defined with respect to its own vacuum

6
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Φµ. Eq. (12) is just the multireference coupled cluster Ansatz which Henk Monkhorst and

myself proposed [58] during my first visit to QTP in 1981.

When Eq. (12) is formally applied to a set of quasidegenerate states, one obtains the

following exponential Ansatz for the wave operator U

U =
M∑

µ=1

eT µ

Pµ, (13)

where Pµ =| Φµ〉〈Φµ | and the operators T µ are universal for all exact states Ψν in the range

of U . The wave operator U is usually intermediately normalized such that PU = P and

UP = U , where

P =
M∑

µ=1

Pµ. (14)

With this normalization, U may be viewed an the inverse of P if the domains of U and P are

restricted to the manifolds spanned by the set of Ψν ’s and Φµ’s, respectively. One can easily

show [58] that U is a non-orthogonal projector, U2 = U , and that it satisfies the so-called

Bloch equation [59]

HU = UHU, (15)

where H is the Hamiltonian of the system. Because of the universal character of T µ oper-

ators, the applications of Eq. (13) are usually referred to as the state-universal (SU) CC

theories. Using Eq. (12), geared specifically to treat a single quantum state, leads to the

state-selective (SS) MRCC methods.

The usefulness of Eq. (12), or Eq. (13), depends on the possibility of providing a proof

that the amplitudes of T µ’s are connected and, in the final instance, on the quality of

numerical results obtained using the Ansätze of Eqs. (12) and (13). The existence of the

connectedness proof depends, in turn, on the specific method chosen to define approximate

cluster amplitudes and is not guaranteed by Eqs. (12) and (13) themselves.

Since 1981 there appeared a large number of applications of Eqs. (12) and (13). The

literature presenting these applications, or formal discussion of the Ansätze (12) and (13)

includes now about 500 positions and is still growing. It is impossible to cite this literature

here or even to acknowledge most of the significant contributions to the field of MRCC theory

based on the Ansätze (12) or Eq. (13). Fortunately, there are two excellent reviews devoted

specifically to this subject and the reader is referred to these reviews for bibliographical

information. The 2002 review by Piecuch and Kowalski [60] is devoted to state-universal
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approaches and contains very competent presentation of theoretical developments until 2001,

as well as an extensive, almost complete presentation of applications published until the same

time. The very recent review by Paldus, Pittner and Čársky [61] has a broader scope. It

can be recommended especially for the extensive and insightful discussion of state-selective

MRCC approaches, sometimes only indirectly related to Eq. (12). In the two remaining

sections of this perspective article I shall concentrate on the main features of state-universal

and state-selective MRCC approaches which rely directly upon the application of Eq. (12)

or Eq. (13).

III. STATE-UNIVERSAL CC THEORY

The SU-CC theory is formally simplest if one assumes that the model space M0, spanned

by all determinants Φµ, is complete, i.e., invariant under unitary transformations of active

orbitals (orbitals occupied in some but not in all Φµ’s). In such a case the operators T µ do not

contain amplitudes with exclusively active labels. One can show that the knowledge of the

operator U of the form of Eq. (13) is equivalent to the knowledge of all M full configuration

interaction (FCI) solutions for the states Ψµ and that the cluster amplitudes defining T µ

operators can be uniquely expressed via the linear coefficients of these FCI solutions and vice

versa [38, 62]. To obtain equations from which T µ’s can be directly computed, we insert Eq.

(13) into Eq. (15), multiply the resulting equations from the right by |Φµ〉, premultiply by

exp(−T µ) from the left and project against all excited states from the space M⊥
0 orthogonal

to M0. The resulting SU-CC equation is

〈 δT µ Φµ | e−T µ

H eT µ

Φµ〉 =
M∑

ν 6=µ

Heff
νµ 〈 δT µ Φµ | e−T µ

eT ν

Φν〉, (16)

where Heff
νµ is the effective Hamiltonian matrix [59]

Heff
νµ = 〈Φν | e−T µ

HeT µ

Φµ〉 (17)

and δT µ is an arbitrary variation of T µ, i.e., in practice, an arbitrary excitation operator

contributing to T µ. The SU-CC energies are obtained by diagonalizing the (nonsymmetric)

matrix Heff
νµ . The l.h.s. of Eq. (16) has the same form as the single-reference CC equation

and is usually referred to as the direct term. The r.h.s. is referred to as the coupling term

and is characteristic of the MR theory.
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Assuming the completeness of the model space M0, one can prove [58] that the pertur-

bation expansion of Heff
νµ and of the amplitudes of T µ contains only connected diagrams, i.e,

that the effective Hamiltonian and the cluster operators are connected objects. It should be

noted that to represent the effective Hamiltonian in the explicitly connected form (17) one

has to assume that

(T µ)† Φν = 0. (18)

This equation holds only if the model space M0 is complete.

Kucharski and Bartlett [63, 64] proposed another form of the SU-CC equation. For the

complete model spaces their equation

〈 δT µ Φµ | (H −Heff
µµ) eT µ

Φµ〉 =
M∑

ν 6=µ

Heff
νµ 〈 δT µ Φµ | eT ν

Φν〉, (19)

is equivalent to Eq. (16). The subtraction of Heff
µµ from H on the l.h.s. leads to cancellation of

numerous disconnected (and unlinked terms) but some disconnected ones (which, however,

are linked) remain in the direct term. The coupling term in Eq. (19) is significantly simpler

to code than the one in Eq. (16). For this reason the Kucharski-Bartlett form has been often

used in practical applications [65–73]. Equation (19) is manifestly finite, what may not be

immediately clear in the case of Eq. (16), especially when the Baker-Campbell-Hausdorff

formula is used to expand the product of exponentials in terms of commutators.

In practical applications the cluster operators are expanded either in terms of spinorbital

excitations, as in Eq. (2), or using the unitary group generators [74, 75] to preserve the

spin symmetry of reference functions. Among early applications the former approach was

adopted, e.g., in Refs. 65–69, 72, 73, 76, while the latter in Refs. 77–84. These early

applications, carried out for very small model spaces and usually at the CCSD level of

theory, have shown that the SU-CC method is capable of providing very accurate results,

as long as no intruder states are present, in particular when reference determinants are

degenerate or almost degenerate. As an example one can mention excellent results for the

dissociation of the Li2 molecule [66], for the singlet-triplet splitting in methylene [73, 83] or

for the lowest singlet-singlet energy gap in methylene [81].

These early calculations have also shown [78, 80, 85], however, that the SU-CCSD equa-

tions may have unphysical solutions, that the physical solutions are hard to converge, and

that a solution, which is physical in the degenerate region, may become unphysical in other

9
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regions of nuclear geometries. It appears particularly troublesome that, as the homotopy

theory calculations show [86], the number unphysical solutions is very large, by far larger

than the number of solutions of the FCI equations or even the Bloch equation [87]. This is

of course a consequence of the highly nonlinear form of the SU-CC equations. Some of the

unphysical solutions may be related to the intruder states causing divergence of the mul-

tireference MBPT expansion but the number of the perturbed level crossings responsible for

this divergence is smaller than the number of unphysical solutions [86]. This is certainly not

a situation conducive to black-box type applications of the SU-CC theory. There is some

hope, however, that the inclusion of higher than doubly-excited clusters will help to reduce

the number of multiple solutions [60, 87, 88] and will alleviate problems with converging the

SU-CC equations in physically relevant applications.

Clearly, the problems discussed above will get even more severe when the model space

is larger, which will necessarily happen when the number of active orbitals is larger than

two and the completeness of the model space is required. It is, thus, desired to relax

the completeness requirement. Equation (13) is valid for incomplete, general model spaces

(GMS) but, unfortunately, the connectedness proof given in Ref. 58 cannot be carried out

in this case. In fact, one can show [58] that if the intermediate normalization is assumed

(PU = U) in the GMS case, then the perturbation expansion of the effective Hamiltonian

does contain some disconnected contribution, also in the case of a fully degenerate model

space (in contradiction to the conjecture [89] based on diagrammatic arguments).

There are two ways to overcome this difficulty. One is to abandon the intermediate nor-

malization and use the resulting freedom to eliminate disconnected terms. This solution was

chosen by Meissner, Kucharski and Bartlett [64, 90, 91] and employed in practice by Balková

et al [67]. Another approach was taken by Li and Paldus [92–97]. These authors maintain the

intermediate normalization but show, both analytically and numerically [93, 94], that with

a proper choice of the GMS one can obtain size-consistent (correctly dissociating) solutions

of SU-CC equations. To achieve that one has to correctly handle the internal excitations

(into the model space M0), which have to be included in the cluster operators to guarantee

the convergence of the method to the FCI limit. Specifically, in the case of an GMS the

cluster operators T µ in Eq. (13) have to be replaced by the operators [58]

Xµ = W µ + Sµ + T µ, (20)
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where W µ excites into M0, Sµ excites into states from M⊥
0 belonging also to the smallest

complete model space Mc containing M0, and T µ excites into determinants from M⊥
c .

Similarly as before, T µ does not contain excitations labeled by active orbitals only. The

intermediate normalization PU = P implies that

P eXµ

Φµ = Φµ, (21)

and, consequently,

〈Φν | eW µ+Sµ

Φµ〉 = 0 (22)

for ν 6= µ. After expanding the exponential and inspecting the lowest-order terms, one finds

[58] that W µ
1 = 0 and

〈Φν | W µ
2 Φµ〉 = −1

2
〈Φν | Sµ

1 Sµ
1 Φµ〉 (23)

〈Φν | W µ
3 Φµ〉 = −〈Φν | Sµ

1 Sµ
2 + Sµ

1 W µ
2 +

1

6
Sµ

1 Sµ
1 Sµ

1 Φµ〉. (24)

These are the so-called C-conditions derived independently and presented in a different form

by Li and Paldus [92]. These conditions show that the amplitudes of internal excitations

(contained in W µ) can be completely expressed via amplitudes of external excitations con-

tained in the Sµ operator. It is difficult to say now which approach to incomplete model

spaces is better but it appears that the intermediately normalized approach of Li and Pal-

dus is more developed at the moment, e.g., triple excitations can be included [97, 98] in a

noniterative way. It enables one to handle relatively large model spaces and yields excellent

results in practical applications [96, 99], also for excited states [100, 101].

IV. STATE-SELECTIVE THEORIES

Since in majority of applications one is interested in a single quantum state, it is tempting

to neglect other, possibly quasidegenerate states, and to concentrate on the chosen one,

using the Ansatz of Eq. (12). One then immediately faces the difficulty that the number

of free parameters in Eq. (12) is much larger than the number of FCI coefficients for

a single state (even if we limit ourselves to, say, the CCSD approximation, the number of

independent equations is smaller than the number of unknown amplitudes). Three solution of

this problem, known as state-selective MRCC theories, have been developed thus far. These

are the so-called Brillouin-Wigner (BW)[102–106] and Mukherjee (Mk)[107–111] approaches,
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and the Hanrath method [112, 113]. In this section I shall briefly present the main features

of these state-specific theories.

A. Brillouin-Wigner CC theory

The Brillouin-Wigner method is computationally simplest and is the most developed for

chemical applications, see. e.g., Ref. 114–117. The original derivation was based on the

wave operator theory [102–104]. However, the working BW-CC equation can be very easily

derived by simple manipulations directly from Eq. (12). Assuming that the wave function

Ψ of Eq. (12) is exact and satisfies the Schrödinger equation (H − E)Ψ = 0, we can write

M∑
µ=1

cµ (H − E) eT µ

Φµ = 0, (25)

where E is the exact energy. Projecting Eq. (25) against model functions Φν shows that,

if the operators T µ are known, the energy can be obtained by diagonalizing the effective

Hamiltonian matrix

Heff
νµ = 〈Φν | HeT µ

Φµ〉. (26)

This form of Heff
νµ , valid also for incomplete model spaces, becomes equivalent to Eq. (17)

when the model space is complete. If we now project Eq. (25) on the excited space M⊥
0

with the operator Q = 1− P , and employ the sufficiency condition [61, 109], we find that

Q (H − E) eT µ

Φµ = 0. (27)

In other words, the fulfillment of Eq. (27), with E being an eigenvalue of the matrix (26),

guarantees that Ψ of Eq. (12) satisfies the Schrödinger equation (25). It should be stressed

that the sufficiency condition cannot be applied directly to Eq. (25) (before projection with

Q), because the resulting equation would not have a solution if the intermediate normal-

ization 〈Φν | eT µ
Φµ〉 = δνµ is enforced or would be trivially equivalent to the Schrödinger

equation otherwise. Equation (27) is just the basic equation of the BW-CC theory. Further

projection with the set of individual excited determinants brings this equation to the more

familiar form,

〈 δT µ Φµ | (H −Heff
µµ) eT µ

Φµ〉 = (E −Heff
µµ) 〈 δT µ Φµ | eT µ

Φµ〉, (28)
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somewhat similar to the Kucharski-Bartlett form of the SU-CC equations. The l.h.s. of this

equation contains connected and disconnected (but linked) terms. Now these disconnected

terms do not cancel against the disconnected ones on the r.h.s. and, consequently, the BW-

CC method is not size-consistent. One can also premultiply Eq. (27) with exp(−T µ) and,

after some manipulation (involving the substitution of Q with 1−P ), obtain an apparently

more connected form of the BW-CC equation

〈 δT µ Φµ | e−T µ

H eT µ

Φµ〉 =
M∑

ν=1

(Heff
νµ − E δµν) 〈 δT µ Φµ | e−T µ

Φν〉. (29)

The l.h.s. is now fully connected but the r.h.s. is disconnected, as it must be since for

complete model spaces Eq. (29) is equivalent to Eq. (28). Approximate a posteriori size-

consistency corrections to the BW-CC energies have been developed [105, 106, 118]. Some

of these corrections [105] have turned out to give good results in practical applications [114–

117]. The good accuracy achieved in recent applications of the BW-CC method was possible

also due to the development of codes accounting for triple excitations [119–121]. Analytic

gradients for the BW-CC method have also been developed [122].

B. Mukherjee’s MkCC theory

Formally more satisfactory but computationally more demanding SS-MRCC theory was

proposed by Mukherjee and collaborators [107–111]. The wave function in this method is

also given by the MRCC Ansatz of Eq. (12) and the energy is obtained by diagonalizing

the matrix (26). Also the derivation of equations for the cluster operators is based on Eq.

(25) and on the sufficiency conditions but before these conditions are applied, one inserts

the following resolution of identity in front of the µth term in Eq. (25)

1 = eT µ

P e−T µ

+ eT µ

Qe−T µ

. (30)

After expanding P as the sum of one-dimensional projectors | Φν〉〈Φν |, one obtains

M∑
µ=1

cµ eT µ

Qe−T µ

(H − E) eT µ

Φµ +
M∑

µ=1

M∑
ν=1

cµ (Heff
νµ − E δµν) eT µ

Φν = 0, (31)

where Heff
νµ is now given by Eq. (17), i.e., is in the explicitly connected form, even for

incomplete model spaces. To apply the sufficiency conditions to Eq. (31), Mukherjee et
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al changed the summation order in the second term and relabeled the summation indexes

µ ↔ ν. The resulting equations, sufficient for the fulfillment of Eq. (25), are

cµ eT µ

Qe−T µ

(H − E) eT µ

Φµ +
M∑

ν=1

cν (Heff
µν − E δµν) eT ν

Φµ = 0. (32)

Premultiplication with exp(−T µ) and projections against excited states δT µΦµ leads to the

conventional from of the amplitude equation in the Mukherjee’s theory:

cµ 〈δT µΦµ |e−T µ

H eT µ

Φµ〉+
M∑

ν 6=µ

cν Heff
µν 〈δT µΦµ |e−T µ

eT ν

Φµ〉 = 0. (33)

Equation (33) bears some similarity to the SU-CC equation (16) but there are essential

formal differences. Firstly, Eq. (33) involves the combining coefficients cµ for the state of

interest, so that the process of solving it is not independent of the stage of diagonalization

the effective Hamiltonian, which must be done in each iteration. Secondly, the structure of

the coupling term is significantly simpler [123] because the bra and ket vectors are expressed

with respect of the same vacuum. Mukherjee et al proved [107–109] that their method is

size-extensive and size-consistent, when localized active orbitals are used. It is also resis-

tant to intruder states as long as the target energy E is well separated from the energies

of states evolving from M⊥
0 . A number of applications of Mukherjee’s theory have been

already reported in the literature [99, 123–131], most of them carried out by Evangelista

and collaborators [123, 125, 126, 128, 131], who introduced the abbreviation MkCC for

this version of the MRCC theory. These applications, accounting also for triple excitations,

showed that the MkCC method performs very well and usually gives better results than

the SU-CC and BW-CC approaches. On should add that also the analytical gradient of

the MkCC energies was also developed [129]. Very recently a study of the MkCC method,

based on a new string-based [132, 133] implementation, has been presented [134]. This very

informative study discusses also convergence problems which hamper the transformation of

the MkCC method into an efficient black-box procedure.

One should also mention that a linked (not explicitly connected) formulation of the MkCC

method is possible and has been recently presented [135]. In this formulation Eq. (32) is

not premultiplied with e−T µ
but is directly projected against δT µΦµ. The resulting “linked”

form of the MkCC equation [61, 135],

cµ 〈δT µΦµ |(H −Heff
µµ) eT µ

Φµ〉+
M∑

ν=1

cν Heff
µν 〈δT µΦµ |eT ν

Φµ〉 = 0, (34)
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is equivalent to Eq. (33) if the model space is complete. In such a case we can use Eq.

(18) to substitute 1− | Φµ〉〈Φµ | for Q in Eq. (32) and obtain the first term in Eq. (34).

This term is identical with the l.h.s. of the Kucharski-Bartlett form of the BW-CC equation

(28). The advantage of using Eq. (34) stems from the fact that the coupling term involves

a single exponential and is easier to code. By employing Eq. (34), the MkCC codes can be

obtained by a modification of the BW-CC codes.

C. Hanrath’s MRexpT theory

A very original solution to the problem of the redundant amplitudes in a state-specific

application of Ansatz (12) has been proposed by Hanrath [112, 113]. Generally speaking the

idea of the Hanrath method, referred to by him as the MRexpT method, is to parametrize

all T µ operators with a single set of amplitudes, uniquely assigned to excited determinants

rather than to excitation operators. Let us consider, for example, the case of single and

double excitations out of the model space M0. The linear span of all determinants from

M⊥
0 , which can be obtained by replacing a single spinorbital in one of Φµ functions, will be

denoted by M1. The subspace of double excitations M2 is defined similarly as the subspace

ofM⊥
0 	M1 spanned by the determinants that can be obtained by double substitutions from

determinants in M0. The orthogonal sum M1 ⊕M2 is just the MRCISD excitation space.

Hanrath employs Eq. (12) for the wave function and assumes that the cluster operators

have the form

T µ = e−i arg(cµ)
∑
I

µ tI Ĝµ
I , (35)

where the superscript µ at the summation sign indicates that the sum runs over those

determinants ΦI from M1⊕M2 which are singly or doubly excited relative to Φµ. For each

I and µ, the excitation operator Ĝµ
I is uniquely defined by

ΦI = Ĝµ
I Φµ. (36)

Thus, each T µ is a sum of all single and double excitation operators but the single set of

amplitudes tI is used to parametrize all T µ’s. The phase factor e−i arg(cµ) in Eq. (35) was

introduced to guarantee the potential completeness of the proposed wave-function Ansatz

[112, 113]. The total number of coefficients cµ and the amplitudes tI is the same as the

number of MRCI coefficients, so the redundancy problem is resolved. The cµ coefficients
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and the energy are obtained by diagonalizing the effective Hamiltonian (17) and the tI

coefficients by solving the MRexpT equations of the form

M∑
µ=1

cµ 〈ΦI |(H − E) eT µ

Φµ〉 = 0, (37)

where ΦI are determinants spanningM1⊕M2. Hanrath has shown that the energy obtained

by solving these equations is size consistent [112] and core but not “valence” [136, 137] ex-

tensive. Hanrath argues [138] that the set of active, i.e. “valence” orbitals is typically not

large, so this limitation should not be too restrictive. Several applications of the Hanrath

method, performed thus far small model systems [112, 139–142], indicate that the MRexpT

method has a potential to be very accurate. A theoretical rationalization of a more satisfac-

tory performance of this method, as compared to other state-selective MRCC approaches,

has been given recently by Kong [143]. A drawback of the MRexpT method is that, due

to the determinantal indexing, the resulting amplitude equations are extraordinarily com-

plex and cannot be derived and solved using standard techniques developed during the last

decades by the coupled cluster community. A new, efficient implementation of the general

(arbitrary excitation order) coupled cluster code [144] can be expected to help to circumvent

this difficulty.

V. CONCLUDING REMARKS

Despite the enormous progress made in the understanding and implementation of the

MRCC Ansatz of Eq. (12), none of the proposed methods is close to routine black-box type

applications. Such applications would require, e.g., an availability of analytical gradients

and very little has been done in this area, both in the state-universal [122, 145–148] and

state-specific [122, 129] subfields.

There are two major sources of difficulties which still need to be seriously addressed. The

first one is the excessively large number of amplitudes, especially when the full extensivity of

the theory is required, and the second, is the difficulty in converging the MRCC equations,

resulting from their highly nonlinear structure. The MRexpT method of Hanrath [112, 139–

142] and the C-conditions method of Li and Paldus [92–97] seem to offer a promising solution

of the first problem. On should also point out that the incomplete model spaces and the

C-conditions can also be used in the state-selective framework – in the BW-CC [119] and
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MkCC [149, 150] approaches. Another possibility was chosen by Kowalski and Piecuch

[60, 151], who approximated the core-virtual bi-excited amplitudes by perturbation theory

and obtained very good results with a greatly reduced number of variables in the nonlinear

CC equations. In fact, this core-virtual bi-excited amplitudes are, through the first order

of perturbation theory, independent of µ and one may contemplate to determine them non-

perturbatively from MRCC equation assuming that they are the same for all µ’s through

all orders [152]. One should also mention that the number of amplitudes per considered

quantum state is usually much smaller in the SU-CC applications, as compared to the

applications of the SS-MRCC theories. From this perspective, the results of applying the

SU-CC Ansatz in such a way that each T µ includes excitation to all determinants from the

MRCISD space M1 ⊕M2 would be very informative.

The difficulties to converge the solutions of MRCC equations may be overcome by using

better convergence acceleration or equation regularization techniques [134], or by including

higher excitations in T µ, which should reduce the number of unphysical solutions [60, 86]

hampering convergence to the physical ones. A promising way of solving these convergence

difficulty, successfully applied in the context of the Fock space CC theory [42], is to use the

intermediate-Hamiltonian approach to reformulate the SU-CC equations [153].

Another difficulty of the MRCC approaches relying on the Ansatz (12), is the lack of

invariance to rotations of active orbitals [134, 154, 155] (this Ansatz and the resulting SU-CC,

BW-CC, MkCC, and MRexpT approaches are, however, fully invariant to separate rotations

of core and virtual orbitals). This lack of invariance is less severe if the M1 ⊕M2 space

is chosen as the range of all T µ operators [131], but it is to be determined how significant

this lack of invariance is in practice (probably is not very significant in applications of the

general model space method of Li and Paldus [92–97]).

One should also mention that is it possible to improve the results of SU-CCSD calculations

by approximately accounting for higher than double excitations. This has been done using

appropriate generalization [156, 157] of the method of moments [158] or by merging the

SU-CC method [159] with the reduced multireference (RMR) coupled cluster approach of

Li and Paldus [160, 161].

In conclusion, during the last decade we have witnessed a remarkable progress in the

development of MRCC methods relying on the Ansatz (12). It is very impressive how much

ingenuity and insight has been invested in this development. Although a black-box MRCC
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method is not in sight, I believe that these developments have brought us much closer to

the situation when the MRCC methods will be routinely used in the hands of competent

theoretical chemists to solve well defined classes of multireference problems of experimental

interest.
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