
HAL Id: hal-00643305
https://hal.science/hal-00643305

Submitted on 21 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting poromechanics in the context of microporous
materials

Gilles Pijaudier-Cabot, Romain Vermorel, Christelle Miqueu, Bruno
Mendiboure

To cite this version:
Gilles Pijaudier-Cabot, Romain Vermorel, Christelle Miqueu, Bruno Mendiboure. Revisiting porome-
chanics in the context of microporous materials. Comptes Rendus Mécanique, 2011, 339, pp.770-778.
�10.1016/j.crme.2011.09.003�. �hal-00643305�

https://hal.science/hal-00643305
https://hal.archives-ouvertes.fr


Revisiting poromechanics in the context of microporous materials 

Poromécanique revisitée dans le contexte des matériaux microporeux 

 

Gilles Pijaudier-Cabot, Romain Vermorel1, Christelle Miqueu, and Bruno Mendiboure 

Laboratoire des Fluides Complexes et leurs Réservoirs (UMR 5150), Université de Pau et des 

Pays de l’Adour, Allée du Parc Montaury, F-64600 Anglet 

 

Abstract:  

Poromechanics offers a consistent theoretical framework for describing the mechanical 

response of porous solids fully or partially saturated with a fluid phase. When dealing with 

fully saturated microporous materials, which exhibit pores of the nanometer size, aside from 

the fluid pressure acting on the pore walls additional effects due to adsorption and 

confinement of the fluid molecules in the smallest pores must be accounted for. From the 

mechanical point of view, these phenomena result into volumetric deformations of the porous 

solid: the so-called “swelling” phenomenon. The present work investigates how the 

poromechanical theory should be refined in order to describe adsorption and confinement 

induced swelling in microporous solids. Firstly, we report molecular simulation results that 

show that the pressure and density of the fluid in the smallest pores are responsible for the 

volumetric deformation of the material. Secondly, poromechanics is revisited in the context of 

a microporous material with a continuous pore size distribution. Accounting for the 

thermodynamic equilibrium of the fluid phase in the overall pore space, the new formulation 

introduces an apparent porosity and an interaction free energy. We use a prototype 

constitutive relation relating these two quantities to the Gibbs adsorption isotherm, and then 
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calculate the induced deformation of the solid matrix. Agreement with experimental data 

found in the literature is observed. As an illustrating example, we show the predicted strains 

in the case of adsorption of methane on activated carbon.  
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Résumé: 

La poromécanique offre un formalisme théorique adapté à la description de la réponse 

mécanique des solides poreux, complètement ou partiellement saturés par une phase fluide. 

Dans le cas de matériaux microporeux comportant des pores de taille nanométrique, outre la 

pression du fluide s’exerçant sur les parois des pores, des effets additionnels dus à 

l’adsorption et au confinement du fluide dans les pores de plus petites tailles doivent être pris 

en compte. Du point de vue mécanique, ces phénomènes résultent en un gonflement du solide 

poreux. Ce travail s’intéresse à la manière dont le formalisme poromécanique doit être affiné 

dans le but de décrire les phénomènes de gonflement induits par l’adsorption et le 

confinement de fluide dans un matériau microporeux. Tout d’abord, nous rapportons des 

résultats de simulations moléculaires qui montrent que l’état de pression et de densité du 

fluide contenu dans les plus petits pores est responsable des déformations volumiques du 

milieu. Dans un deuxième temps, nous étendons le formalisme poromécanique au cas d’un 

matériau microporeux présentant une distribution continue de tailles de pores. En exprimant 

la condition d’équilibre thermodynamique du fluide dans tout le volume poreux, deux termes 

sont introduits dans le nouveau formalisme: la porosité apparente et l’énergie libre 

d’interaction. Nous proposons alors une relation constitutive simple, liant ces deux quantités à 

l’isotherme d’adsorption de Gibbs, et nous calculons les déformations résultantes du squelette 



poreux en bon accord avec les données expérimentales rencontrées dans la littérature. A titre 

d’exemple, nous montrons les déformations prévues dans le cas de l’adsorption de méthane 

dans des charbons actifs.  

 

Mots Clés: 

Milieux poreux; poromécanique; matériaux microporeux; gonflement; adsorption; 

confinement de fluide; poroélasticité. 

 

1. Introduction 

Poromechanics offers a consistent theoretical framework for describing the mechanical 

response of porous solids saturated, or partially saturated with a fluid phase. The theory is 

based upon the superposition of the solid and liquid phases. In the case of fully saturated 

porous solids, it is assumed that the fluid-solid interaction is restricted to the influence of the 

pressure on the inner surface of the porous material. In partially saturated porous solids, 

additional forces, i.e. capillary forces are introduced. Many authors have used this modern 

theoretical framework, which is thoroughly described e.g. in the textbooks by Coussy [1,2]. 

Microporous materials are, according to IUPAC standards, solids with pores of the nanometer 

size. Coal, activated carbons, zeolites, cement paste or tight rocks are among those materials 

which can be used in chemical engineering processes, in building construction, or may be 

encountered in the production of gas from very tight reservoirs or coal seams (Coal Bed 

Methane - CBM). Aside from the classical fluid-solid interaction observed in macroporous 

materials, there are additional effects that should be considered in the case of a material with 

very small pores filled with a fluid phase. Two features should be distinguished: adsorption 

and the fluid confinement: (i) adsorption becomes important because the inner surface of the 

pores is very large and surface forces cannot be neglected anymore; (ii) in very small pores, 



the molecules of fluid are confined. Interaction between molecules of fluid is modified, it 

cannot develop in the same way as if the fluid would be placed in a large container. This 

effect includes fluid-fluid and fluid-solid interactions.  

From the mechanical point of view, these phenomena result into volumetric deformations of 

the porous solid. Swelling is commonly observed during sorption-desorption of several gases 

such as carbon dioxide or methane in charcoal, see e.g. the paper by Levine [3] although 

seminal experimental works of Meehan [4] and Bangham and Fakhroury [5] date back to the 

1920s.  

For meso-porous materials (pores of size in the range of tenth of nanometers), Gor and 

Neimark [6] used Derjaguin theory of thin film equilibrium in order to devise a simple 

mechanical model describing the volumetric deformation of a porous solid during sorption-

desorption of nitrogen. Volumetric deformations were considered to be proportional to the so-

called solvation pressure, the difference between the adsorption-induced stress and the 

external pressure in the bulk fluid.  

CO2 swelling of coal and carbon absorbents has been recently analysed more thoroughly 

within the framework of poromechanics. Vandamme et al. [7] extended poromechanics to 

surface effects adding energy stored at the solid-fluid interface in the formulation. Although 

the model is laid down in a quite general perspective, the interaction stresses are later related 

to the Langmuir adsorption isotherm, which means that interactions are restricted to 

adsorption effects (mesopores). Molecular simulations are used for computing the adsorption 

isotherm for mesoporous and nanoporous materials. Results point out the influence of the 

nanopores on swelling but contradict, to some extend, the good agreement observed with the 

Langmuir isotherm where confinement effects are not accounted for. Mushrif and Rey [8] 

followed some similar reasoning as far as the poromechanics formulation is concerned. They 

computed the adsorption-induced strain directly from the chemical potential of the adsorbate, 



more specifically from the difference between the chemical potential of the fluid in the 

strained and unstrained absorbent. Good agreement with swelling data on activated carbon 

particles was observed.  

In the above approaches, the inner pressure applied by the fluid on the solid phase was left 

somehow unspecified. Let us consider a porous saturated solid placed in a container filled 

with the fluid at a bulk pressure (bulk solution). The pressure inside the pores computed is 

different from the bulk pressure, as a result of adsorption and confinement [9]. It is very 

seldom that the two quantities are distinguished. Furthermore, the difference should depend 

on the bulk pressure, on the temperature, and on the pore size. In a solid with a continuous 

pore size distribution, inner pressures are different from one pore size to another, and different 

from the bulk pressure if the pores are sufficiently small.  

The purpose of this note is twofold: firtsly, the effect of the adsorption and confinement on 

the pressure and mass density of a fluid filling nanopores is illustrated from existing 

molecular simulations results. We show that small pores have indeed a large effect on 

swelling. Secondly, poromechanics is revisited in the context of a microporous material with 

a continuous pore size distribution. The fluid inside the pores is assumed to be in chemical 

equilibrium, thus the chemical potential is used in the formulation, which refers to the bulk 

reference pressure of the fluid. A prototype, linear constitutive relation is discussed. 

 

2. Poromechanics with results from molecular simulations 

According to classical poromechanics, the free (Helmoltz) energy of a porous solid saturated 

with a fluid is written as the sum of the free energy of the solid phase 

€ 

ψs  and of the specific 

energy of the fluid phase 

€ 

ψ f : 

€ 

ψ =ψs +mfψ f        (1) 



where 

€ 

mf  is the mass of fluid inside the pores. The entropy of the system is split according to 

the same principle. The mechanical dissipation rate is computed using the state laws of the 

fluid. In the reversible case, we obtain the free energy of the solid phase: 

    

€ 

dψs
dt

=σ : dε
dt

+ p dϕ
dt

− Ss
dT
dt

     (2) 

where 

€ 

σ  is the stress tensor, 

€ 

ε  is the strain tensor, p is the fluid pressure, 

€ 

ϕ  is the porosity, 

€ 

Ss  

is the entropy of the solid skeleton and T is the temperature. We further restrict considerations 

to infinitesimal reversible transformations at constant temperature in an isotropic material. 

The free energy potential is a function of the strain and of the porosity. Classically, the 

constitutive equations read: 

  

€ 

σij =
∂ψs

∂ε ij
= (K + b2N)ε kk − bNϕ[ ]δ ij + 2Geij ,   with ε ij = eij +

ε kk
3
δ ij

p =
∂ψs

∂ϕ
= −bNε kk + Nϕ

           (3) 

where K is the modulus of incompressibility, b is the Biot coefficient, and N is the Biot 

modulus. 

€ 

δ ij  is the Kronecker symbol. 

Consider now that the porous saturated solid is placed in a container filled with the saturating 

fluid at bulk pressure 

€ 

pb  . The hydrostatic stress applied by the fluid at bulk pressure on the 

solid is 

€ 

σij = −pbδ ij , but the pore pressure p is different from the bulk pressure due to 

adsorption and confinement effects. Eqs. 3, in their incremental form yield the volumetric 

deformation increment denoted as 

€ 

dε  as a function of the increments of pore and bulk 

pressures: 

            

€ 

dε = dεkk =
1
K

−dpb + bdp( ) =
dpb
K

b ∂p
∂pb

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                  (4) 

The derivative of the pore pressure with respect to the bulk has been introduced in the 

formulation, as the pore pressure is not expected to depend on other parameters (at constant 

temperature as for a given pore size distribution). It is this term that is going to be obtained 



from molecular simulations. We use here the results from Mendiboure and Miqueu [9] (see 

also Ref. [10]) and consider a slit pore of width 2R as shown in Fig. 1. Monte Carlo 

simulations are performed in the Grand Canonical ensemble. The fluid-fluid interactions are 

described with 12-6 Lennard-Jones potential and the solid-fluid interaction by the integrated 

10-4-3 potential. The pore pressure p is the component perpendicular to the surface of the 

pore. In confined fluids, the pressure is not a scalar and the tangent and normal pressure to the 

surface of the pore are different. The normal pressure p is computed as described by Varnik et 

al. [11]. In the calculation, the solid phase is graphite and the fluid phase is methane at 353 K. 

Figure 2 (a) shows the pore pressure versus the bulk pressure for several pore sizes. This is 

clearly a nonlinear relation which is very much dependent on the pore size R. For a bulk 

pressure equal to 2 MPa, the evolution of the pore pressure with the pore width is plotted in 

Fig. 2 (b). Oscillations corresponding to the structuration of the fluid into successive layers 

are observed. Note the range of variation of the pore pressure, with very high values for small 

pore sizes.  

Substitution of these results into Eq. (4) yields the corresponding volumetric deformation of 

the solid phase. This substitution may be performed with and without step-by-step correction 

for the variation of porosity due to the skeleton deformation. Fig. 4 shows the results for a 

monodisperse porous material with pore radii equal to 0.348 and 1.252 nm. The dotted curve 

is the calculation without step-by-step correction for the variation of porosity. We took K = 3 

GPa, b=0,95 and the initial porosity 

€ 

ϕ 0 = 0.88, which corresponds to typical values for 

activated carbon. Due to the large variations of pore pressure as a function of the pore radius, 

the volumetric deformations may be very different. In the present case, experiments on 

charcoal exhibit deformations of the order of 0.1%. This can only be achieved by taking into 

account contribution from very small pores (a few tenths of nanometers) (Fig. 3 (a)). For 

pores of the nanometer range (Fig. 3 (b)), the volumetric deformations are much less than the 



expected values. Of course, the present results are indicative and order of magnitude should 

be regarded only, but the same conclusion was also observed in Ref. [7] in which the 

adsorption isotherm rather than the pore pressure was derived from molecular simulations. 

 

3. Linear poromechanics of microporous solids 

Extending poromechanics to the case of microporous material means that adsorption and 

confinement effects ought to be included in the formulation. Thus, a difficulty is faced: in a 

solid with a continuous pore size distribution, the pore pressure is not unique and depends on 

the geometry of the pore. In each pore, however, the interstitial fluid is in equilibrium with the 

fluid contained in adjacent connected pores. This equilibrium condition means that the fluid in 

each pore is at the same chemical potential 

€ 

µ f . Same as in the previous section, we shall 

consider a saturated porous solid immersed in a fluid at a bulk pressure 

€ 

pb  and mass density 

€ 

ρb . Equilibrium means: 

    

€ 

µ f =ψ f +
p
ρ

= µ fb =ψ fb +
pb
ρb

     (5) 

where the chemical potential 

€ 

µ f  (

€ 

µ fb) of the interstitial fluid (bulk solution) is expressed as a 

function of the specific fluid free energy 

€ 

ψ f  (

€ 

ψ fb ), pressure 

€ 

p  (

€ 

pb ), and density 

€ 

ρ  (

€ 

ρb ) of the 

interstitial fluid (bulk solution). 

3.1 Free energy of the microporous saturated skeleton 

In the general expression of the mechanical dissipation 

€ 

φs (see the derivation in Ref. [1]), the 

chemical potential replaces the free specific enthalpy of the fluid: 

    

€ 

dφs
dt

=σ : dε
dt

+ µ f
dm f

dt
− S dT

dt
−
dψ
dt

    (6) 

where S is the total entropy (solid and fluid), 

€ 

mf  is the mass of fluid in the system and 

€ 

ψ  is 

the total free energy. Substitution of Eqs. (1,5) in Eq. (6) and restriction to isothermal 

transformations yields: 



    

€ 

dφs
dt

=σ : dε
dt

+ ψ fb +
pb
ρb

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
dm f

dt
−
dψs
dt

−
d m fψ f( )

dt
   (7) 

It is further possible to express the free energy of the fluid inside each pore as a function of 

quantities related to the bulk phase. For this, we use again Eq. (5): 

    

€ 

ψ f =ψ fb +
pb
ρb

−
p
ρ

      (8) 

This equation is valid for each pore size. In order to obtain the total specific free energy of the 

fluid, we need to perform the summation over the lagrangian material volume 

€ 

Ω0: 

    

€ 

mfψ f =
1
Ω0

ψ fb +
pb
ρb

−
p(R)
ρ(R)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Ω0
∫ ρ(R)ϕ(R)dΩ0   (9) 

We have introduced in the above expression 

€ 

ϕ (R) , the relative volume of pores of size R 

(volume divided by the total volume of pores). Eq. (9) may be further simplified: 

   

€ 

mfψ f = ψ fb +
pb
ρb

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ρ(R)ϕ(R) dΩ0

Ω0Ω0∫ − p(R)ϕ(R) dΩ0

Ω0Ω0∫

= mfψ fb + mf
pb
ρb

− p(R)ϕ(R) dΩ0

Ω0Ω0∫
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = mfψ fb +ψ int

           (10) 

where 

€ 

ψint  is the term in the free energy resulting from adsorption and confinement. We may 

now substitute this equation in the expression of the dissipation in the solid skeleton Eq. (7). 

We use the state laws of the fluid in the bulk phase and obtain the expression: 

   

€ 

dφs
dt

=σ : dε
dt

+ pb

d ρ(R)ϕ(R)
ρb

dΩ0

Ω0Ω0∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

dt
−
dψs

dt
−
d ψ int( )
dt

  (11) 

We may now define the apparent porosity 

€ 

ϕ *  of the microporous material: 

                

€ 

ϕ* = ρ(R)ϕ(R)
ρb

dΩ0

Ω0Ω0∫      (12)  

and in the case of reversible transformation, the free energy of the skeleton reads: 

    

€ 

dψs
dt

=σ : dε
dt

+ pb
d ϕ *( )
dt

−
d ψint( )
dt

    (13) 



This expression differs from the standard expression in porous materials (Eq. 2). The bulk 

pressure of the saturating fluid appears, but the porosity is modified in order to account for the 

effect of confinement and adsorption on mass density. Same as in Ref. 7, a interaction energy 

is introduced. In the present case, we have related this energy to the “true” pore pressure 

distribution (Eq. 10).  

 

3.2 Simplified model 

In order to proceed, the interaction term in the free energy of the skeleton needs to be further 

investigated, e.g. by relating the internal pore pressure to the state variables (strain, apparent 

porosity…) or using results from molecular simulations. We shall leave this issue for further 

studies and switch to a more phenomenological simplified modeling. The interaction energy 

is set as a function of the apparent porosity of the material only.  

    

€ 

d ψ int( ) = pintdϕ*   where  pint =
∂ψ int

∂ϕ*
  (14) 

where

€ 

pint  is an interaction pressure. The deformation of the skeleton is considered to have a 

negligible influence. Assuming that the free energy of the skeleton is now a function of the 

strain and of the apparent porosity, we may derive the state laws following the same steps as 

in standard poromechanics. We obtain in the reversible regime (

€ 

pint  is a linear function of 

€ 

ϕ*): 

  

€ 

σij =
∂ψs

∂ε ij
= (K + b2N)ε kk − bNϕ*[ ]δ ij + 2Geij ,   with ε ij = eij +

ε kk
3
δ ij

pb − pint =
∂ψs

∂ϕ*
= −bNε kk + Nϕ*

 (15) 

Note that the coefficients entering in the constitutive relations are not necessarily the same as 

those in section 2. More specifically, they must depend on the bulk pressure if 

€ 

pint  is not a 

linear function of 

€ 

ϕ*. We may also compute the volumetric deformation resulting from the 

immersion of the microporous solid in the saturation fluid at bulk pressure: 



      

€ 

dε =
1
K

b−1( )dpb −
dpint
K

     (16) 

We need now to compute the interaction pressure. We shall relate this quantity to the Gibbs 

excess isotherm as observed experimentally in early papers [4,5]. By definition, the Gibbs 

excess isotherm 

€ 

Γ(pb ,T ) is providing the difference between the quantity of fluid molecules 

inside the porous material and the quantity of fluid molecules occupying the same volume at 

the bulk pressure: 

    

€ 

Γ(pb,T) =
1

Mρapp
ρ(R)ϕ(R) dΩ0

Ω0Ω0∫ − ρbϕ(R)
dΩ0

Ω0Ω0∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

=
1
M

ρb
ρapp

ϕ* − ϕ(R) dΩ0

Ω0Ω0∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
M

ρb
ρapp

ϕ* −ϕ( )
  (17) 

where M is the molar mass of the adsorbed gas and 

€ 

ρapp  the apparent density of the porous 

material. This excess results from adsorption and confinement effects. If the excess is zero, it 

means that adsorption and confinement effects are negligible. Consequently, the interaction 

energy and interation pressure should also vanish and the standard poromechanical 

formulation should be recovered. Thus, we shall assume in the present simplified approach 

that the interaction pressure is proportional to the Gibbs excess isotherm: 

    

€ 

pint = −kΓ(pb ,T) = −
k
M

ρb
ρapp

ϕ* −ϕ( )  (18) 

where k is a model parameter. It is not necessarily a constant (and might depend on the bulk 

pressure for instance) and it should be fitted from swelling test data.  

We consider first the experiments performed by Levine on the adsorption of supercritical 

methane on charcoal [3].  We use the measured Gibbs excess isotherm shown in Fig. 4 (a) to 

calculate the strain from Eq. (16) and Eq. (18). Comparison between the calculated strain and 

experimental data is shown in Fig. 4 (b). We took K = 3 GPa, b = 0,95, 

€ 

ρapp= 500 kg.m-3, and 

M =16.043 g.mol-1 corresponding to microporous coal. The model parameter k was set 

constant, k = 13.8 GPa.g.mol-1. The theoretical predictions of swelling are in good agreement 



with experimental data (Fig. 4b). In Eq. (16) we can reformulate the coefficient of the first 

right hand member as 

€ 

(1− b) = K /Ks (see Ref. [1]), where 

€ 

Ks  is the incompressibility 

modulus of the coal solid matrix itself. For microporous coal, the order of magnitude of 

€ 

Ks  is 

90 GPa [7], which results in 

€ 

K /Ks <<1. This means that the contribution of the bulk pressure 

in Eq. (16) can be neglected, and thus the incremental strain is almost proportional to the 

increment of interaction pressure 

€ 

pint . The proportionality between the volumetric 

deformation and the adsorption isotherm was observed experimentally by Levine [3]. 

Bangham and Fakhroury [5] argued that a square root relationship between the adsorbed 

quantity and the volumetric deformation provided better results but they considered chemical 

sorption of water in charcoal.  In the case of physi-sorption, the proportionality set in Eq. (18) 

is a crude, yet  credible, simplifying assumption. 

 As a second illustrating example, let us now consider the case of an activated carbon 

(Ecosorb). Typical Gibbs excess isotherms are shown in Fig. 5 (a). They have been measured 

with a manometric technique depicted in Ref. [12]. Figure 5 (b) shows the volumetric strain 

obtained from Eq. (16) and (18) with k = 13.8 GPa.g.mol-1. The volumetric deformation falls 

in the range of experimental results on activated carbon [8] and charcoal [3]. Of course, more 

accurate fits could be obtained by considering that this parameter depends on the solid 

skeleton properties, on the skeleton PSD, and on the nature of the adsorbed gas. In the present 

simplified model, orders of magnitude are targeted, prior to more detailed future 

investigations of the interaction energy. 

 

4. Summary and conclusions 

(1) Adsorption and confinement effects in microporous materials induce a variation of the 

pore pressure acting inside the solid skeleton. This pore pressure may reach very high 

values and it is an oscillating function of the pore size. The introduction of such a pore 



pressure in standard poromechanics shows the important influence of very small pores 

on the swelling of such materials, measured when the skeleton is saturated with the 

fluid. 

(2) In order to account for adsorption and confinement effects, the thermodynamics based 

formulation of the porous solid saturated with the fluid needs to be modified. In each 

pore, independently of its size, the fluid is in equilibrium with that contained into 

connected adjacent pores. Their chemical potentials are equals and the free energy of 

the interstitial fluid is rewritten accordingly: 

                                                   

€ 

mfψ f = mfψ fb +ψ int                                 (19) 

where a interaction energy 

€ 

ψ int  appears, which results from adsorption and 

confinement effects in the micropores. Accounting for the continuous pore size 

distribution 

€ 

ϕ(R) of the microporous material, the interaction energy is related to the 

true pore pressure distribution 

€ 

p(R)  as follows 

                                          

€ 

ψ int = mf
pb
ρb

− p(R)ϕ(R) dΩ0

Ω0Ω0∫  .                   (20) 

By substituting the expression of the fluid free energy in the skeleton dissipation, and 

considering isothermal reversible transformations, the free energy of the skeleton 

writes as  

                                            

€ 

dψs
dt

=σ : dε
dt

+ pb
d ϕ *( )
dt

−
d ψint( )
dt                      

(21)  

where the corrected porosity 

€ 

ϕ*, which takes account for fluid confinement effects is 

defined as
 

                                                
 
 

€ 

ϕ* = ρ(R)ϕ(R)
ρb

dΩ0

Ω0Ω0∫ .                          (22)
 



(3) In a simplified model, the interaction energy is a function of the corrected porosity 

only. An interaction pressure derives from the interaction energy, considered as a 

potential through the following relation: 

                                                            

€ 

pint =
∂ψ int

∂ϕ*
 .                                  (23) 

As a result, the incremental volumetric strain depends on the interaction pressure as 

follows 

                                                  

€ 

dε =
1
K

b −1( )dpb −
dpint
K
.                      (24)  

The interaction pressure is further related to the Gibbs excess isotherm data through 

the following empirical linear constitutive relation:  

                                                        

€ 

pint = −kΓ(pb ,T)                                (25) 

Comparison of the model predictions with swelling test data from the literature 

exhibits the consistency of this approach. Illustration on an activated carbon shows 

that the model may provide the correct order of magnitude of the volumetric 

deformation as a function of the fluid bulk pressure. 
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Fig. 1: Model of graphite parallel slit pore used in GCMC simulations.  

Fig. 1: Modèle de pore plan de graphite utilisé dans les simulations GCMC.  

 

 

 

Fig. 2: (a) Component of the pore pressure perpendicular to the pore wall versus bulk 

pressure, for different pore sizes (methane into graphitic slit pores at 353K); (b) Component 

of the pore pressure perpendicular to the pore wall versus the pore size, for a bulk pressure 

equal to 2 MPa (methane into graphitic slit pores at 353K). Dots stand for the molecular 

simulations results; solid lines stand for the interpolated data.  

Fig. 2: (a) Pression perpendiculaire à la paroi du pore en fonction de la pression bulk, pour 

différentes tailles de pores (méthane dans des pores plans en graphite à 353K); (b) Pression 

perpendiculaire à la paroi du pore en fonction de la taille des pores, pour une pression bulk 



égale à 2 MPa (méthane dans des pores plans en graphite à 353K). Les points représentent les 

résultats des simulations moléculaires; les lignes en trait plein montrent les données 

interpolées.  

 

 

 

Fig. 3: Volumetric deformation of a monodisperse porous graphite containing methane at 353 

K. Pore radii equal to 0.348 nm (a) and 1.252 nm  (b). Dashed lines stand for the direct strain 

calculus; solid lines stand for the strain calculus with step-by-step correction of the porosity.  

 

Fig. 3: Déformation volumique de graphite monodisperse contenant du méthane à 353 K. Les 

rayons de pores représentés sont 0.348 nm (a) et 1.252 nm  (b). Les lignes en trait mixte 

représentent le calcul de déformation direct; Les lignes en trait plein représentent le calcul de 

déformation avec correction pas à pas de la porosité.  



 

Fig. 4: (a) CH4 adsorption isotherm on Illinois charcoal (after [3]). (b) Evolution of the 

volumetric strain with the bulk pressure. Comparison between experimental data from Ref. 

[3] and the theoretical model prediction with the adjustable parameter k = 13.8 GPa.g.mol-1. 

 

Fig. 4: (a)  Isotherme d’adsorption de CH4  dans du charbon d’Illinois (d’après [3]). (b) 

Déformation volumique en fonction de la pression bulk. Comparaison entre les données 

expérimentales de Ref. [3] et les prédictions du modèle théorique avec le paramètre ajustable 

k = 13.8 GPa.g.mol-1. 

 

 



 

 

Fig.5: (a) CH4 adsorption isotherms on Ecosorb activated carbon. (◇) 323.15 K; (○) 353.15 

K; (□) 383.15 K (after [10]). (b) Volumetric strain obtained from adsorption isotherms, with 

the adjustable parameter k = 13.8 GPa.g.mol-1. 

 

Fig.5: (a) Isothermes d’adsorption de CH4  dans du charbon actif Ecosorb. (◇) 323.15 K; (○) 

353.15 K; (□) 383.15 K (d’après [10]). (b) Déformation volumique obtenue à partir des 

isothermes d’adsorption, avec le paramètre ajustable k = 13.8 GPa.g.mol-1. 

 

 


