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Abstract 8 

Tinnitus affects 15% of the population. Of these 1–2% are severely disabled by it. The role of 9 
the autonomic system in tinnitus is hardly being investigated. The aim of this study is to 10 
investigate the relationship between tinnitus distress and lateralization of the anterior insula, 11 
known to be involved in interoceptive awareness and (para)sympathetic changes. For this, 12 
Tinnitus Questionnaire scores are correlated to Heart Rate Variability markers, and related to 13 
neural activity in left and right anterior insula. Our results show that tinnitus distress 14 
is related to sympathetic activation, in part mediated via the right anterior insula. 15 

 16 



Introduction 17 

Tinnitus is a symptom that affects 15% of the population (Axelsson and Ringdahl, 1989). Most 18 

people who have tinnitus can effectively cope with it, however a small percentage of tinnitus 19 

sufferers demonstrate maladaptive coping (Budd and Pugh, 1996; Scott et al., 1990; Tyler et 20 

al., 2006): 1-2% of tinnitus sufferers are severely disabled by their tinnitus (Axelsson and 21 

Ringdahl, 1989). This maladaptive coping group suffers significantly more from associated 22 

somatic complaints such as headaches, neck and shoulder pain, low back pain, muscle 23 

tension, sleep and concentration problems (Hiller et al., 1997; Scott and Lindberg, 2000) and 24 

demonstrates cognitive inefficiency (Hallam et al. 2004), poor stress coping (Scott and 25 

Lindberg 2000) and depression (Dobie, 2003; Folmer and Shi, 2004; Harrop-Griffiths et al., 26 

1987; Scott and Lindberg, 2000; Sullivan et al., 1988).  27 

The amount of distress people experience related to tinnitus can be evaluated by the use of 28 

validated tinnitus questionnaires. Tinnitus distress is associated to a higher orthosympathetic 29 

(OS) tone (Datzov et al., 1999) and tinnitus suppression induces an increased 30 

parasympathetic (PS) tone (Matsushima et al., 1996). Previous functional imaging studies 31 

show that specific frontal cortical areas closely relate to emotion perception and interoception. 32 

The right anterior insula seems to be specifically involved in the representation of subjective 33 

feelings (Craig, 2003; Critchley et al., 2004). Based on human lesion and electrical stimulation 34 

studies it has also been suggested that the right insula controls cardiac OS activity whereas 35 

the left insula is predominantly associated to PS activity (Oppenheimer, 1993, 2006; 36 

Oppenheimer et al., 1992; Oppenheimer et al., 1996). Functional Magnetic Resonance 37 

Imaging (fMRI) studies of sympathetic skin conductance response seem to confirm this 38 

lateralization by revealing right insula activation (Critchley et al., 2000). Furthermore, when 39 

correlating dichotic visual stimuli with Heart Rate Variability (HRV) the same lateralization 40 

effect is found (Wittling et al., 1998a; Wittling et al., 1998b).  41 

Heart Rate Variability (HRV) is a simple and non-invasive quantitative marker of autonomic 42 

function. As a result of continuous variations of the balance between OS and PS neural 43 

activity influencing heart rate, intervals between consecutive heartbeats (RR intervals) show 44 

spontaneously occurring oscillations. For HRV spectral analysis three main underlying 45 

frequencies have been used in literature: the very-low-frequency range (VLF ≤ 0.04 Hz), the 46 

low-frequency range (LF: 0.04 – 0.15 Hz) and the high frequency range (HF: 0.15 – 0.4 Hz). 47 

The high frequency component of HRV is believed to be influenced by vagal activity and is 48 

also related to the frequency of respiration (Yasuma and Hayano, 2004). Low-frequency (LF) 49 

power is modulated by baroreceptor activities and fluctuations in heart rate in the LF range 50 

reflect OS as well as PS influences. Low-frequency power, therefore, cannot be considered to 51 

reflect pure OS activity. However if normalized units of LF and HF are considered, the OS and 52 

PS influences respectively are emphasized (Electrophysiology, 1996). In HRV frequency 53 

domain, normalized units (n.u.) of LF and HF components therefore reflect OS and PS 54 

influences respectively.  55 



The aim of this study is to investigate the relation between tinnitus distress and lateralisation 56 

of the anterior insula, known to be involved in interoceptive awareness and OS as well as PS 57 

changes. For this, tinnitus questionnaire (TQ) scores (Goebel and Hiller, 1994) are correlated 58 

to HRV markers, and related to neural activity in left and right anterior insula. 59 

Methods   60 

Ten patients with strictly right-sided unilateral tinnitus are analyzed. EEG and ECG signals 61 

are recorded simultaneously over 5 min in supine position using a 32 channel digital EEG 62 

(Neuroscan, Compumedics, Houston, TX) in a dimly illuminated and soundproof room 63 

(sampling rate = 500Hz, band passed 0.15-100Hz). Electrodes are referenced near the vertex 64 

and impedances checked to remain below 5 k�. To minimize respiratory influences on HRV, 65 

respiration is controlled at 12 beats per minute using auditory cues. All patients complete a 66 

validated Dutch version of the TQ (Meeus et al., 2007), which reflects the amount of tinnitus 67 

related distress perceived by the patient (Goebel and Hiller, 1994).  68 

 69 

ECG analyses 70 

ECG signals are processed by time and frequency domain methods as recommended by the 71 

Task force (Electrophysiology, 1996): QRS complexes are recognized from the short-term 72 

artifact-free ECG recordings from which peaks (R-waves) are detected and from which 73 

intervals between two consecutive peaks (RR intervals) are calculated. Once HRV time series 74 

are extracted they are analyzed in the time and frequency domain using HRV Analysis 75 

Software 1.1 for windows developed by The Biomedical Signal Analysis Group, Department 76 

of Applied Physics, University of Kuopio, Finland. Pearson correlations between OS (LF n.u.) 77 

and PS (HF n.u.) markers of HRV and TQ-scores are performed.  78 

 79 

EEG analyses 80 

EEG segments contaminated by artifacts are rejected offline by visual inspection. The 81 

remaining data are analyzed in the frequency domain by means of Fast Fourier Transform 82 

(FFT) analysis. Two regions of interest (ROI) corresponding to the right and left anterior insula 83 

are selected in the MNI atlas (Fig. 1). A spatial filter approach known as beamforming 84 

(Congedo, 2006) targeting these two ROIs is applied in order to obtain current density 85 

estimations within these ROIs by the eLORETA method (Pascual-Marqui 2007). The log-86 

current density is correlated with the TQ-scores, in all 1Hz spaced discrete Fourier 87 

frequencies in the range 1Hz-60Hz. Significant trends are formulated with a p < 0.05. 88 

Fig. 1: about here. 89 

Results  90 

TQ-scores (M = 40.2; SD = 13.7) correlate positively with the OS marker, the Low Frequency 91 

normalized units (r = 0.58), and negatively with the PS marker, the High Frequency 92 

normalized units (r = -0.58).  93 



In addition, current density analyses show that increased cortical activity in the left anterior 94 

insula at 11Hz (r = 0.56; alpha band) and decreased activity at 4Hz (r = -0.63; theta band) and 95 

in the high gamma band frequencies (54Hz, r = -0.58; 59Hz, r = -0.74) relates to increased 96 

TQ-scores. In the right anterior insula increasing TQ-scores were found with increased activity 97 

in delta band frequencies (2Hz, r = 0.67) and gamma band frequencies (32Hz, r = 0.74; 39Hz, 98 

r = 0.56) no significant decreases are noted in this area.  99 

Discussion  100 

Our results show a positive relation between OS load and tinnitus distress as measured by 101 

the TQ (Goebel and Hiller, 1994). In addition the right anterior insula, an area related to OS 102 

influence, shows increased delta and gamma activity related to increased tinnitus distress. On 103 

the other hand decreased theta and gamma activity are found in the left anterior insula, an 104 

area related to PS influence.  105 

At a resting state the sensory cortices are characterized by alpha activity, which has been 106 

proposed to be an idling rhythm or a rhythm reflecting active inhibitory mechanisms (Klimesh 107 

et al., 2007). Gamma band activity is noted focally and waxes and wanes as it arises as a 108 

response to external stimuli, both in the visual (Crick & Koch, 1990), auditory (Joliot et al., 109 

1994) and somatosensory (Gross et al., 2007) system and thus reflects the activation of a 110 

cortical area. We suggest this mechanism can be extended to the autonomic nervous system. 111 

Gamma frequencies in this study increase or decrease together with low frequencies in the 112 

right or left anterior insula respectively, suggesting some type of nesting or coupling of high 113 

frequencies on low frequencies. Low frequencies (delta and theta) are widely distributed and 114 

activate larger networks (Gollo et al., 2010) and the nesting of gamma on theta or delta allows 115 

synchronization of widely distributed focal gamma activations, providing a mechanism for 116 

effective communication between these distributed areas (Canolty et al., 2006). 117 

Increasing distress, as measured by the TQ, is associated with an increase of alpha in the left 118 

insula and a decrease in theta and gamma, suggesting the left insula is actively inhibited by 119 

increasing distress, by the same alpha oscillation based mechanism encountered in other 120 

(sensory) cortices (Weisz et al., 2011). The delta and gamma activity in the right insula 121 

suggests this area is activated and associated with increasing distress. 122 

The right insula has been related to interoception (Craig, 2003; Critchley et al., 2004; Taylor 123 

et al., 2008) and OS control (Oppenheimer, 1993, 2006; Oppenheimer et al., 1992). Damage 124 

to the left insula in humans can shift cardiovascular balance towards increased basal OS tone 125 

(Oppenheimer et al., 1996) and stimulation of the human right insula increases OS 126 

cardiovascular tone, whereas left insula stimulation increases parasympathetic (PS) tone 127 

(Oppenheimer, 1993). The right insula could therefore very well generate the subjective 128 

feelings of distress, i.e. the anxiety, associated with autonomic activity.  129 

Many patients mention that tinnitus has developed in a stressful life episode and that it is 130 

worsened by stressful situations (Budd and Pugh, 1996; Hebert and Lupien, 2007). Tinnitus 131 

shares common pathophysiological, clinical and treatment characteristics with pain (De 132 



Ridder et al., 2007; Moller, 2000; Tonndorf, 1987) and the same observation is made in 133 

patients suffering from pain (Price, 2000). 134 

In patients suffering posttraumatic stress disorder (PTSD) the prevalence of tinnitus is 50% 135 

(Hinton et al., 2006) and in soldiers presenting tinnitus 34% also suffer from PTSD (Fagelson, 136 

2007). This prevalence is much higher than in the normal population, where it is 10-15% 137 

(Axelsson and Ringdahl, 1989) suggesting a relation between tinnitus and some types of 138 

stress related disorders. 139 

Former studies have also shown that stellate ganglion blocks can sometimes improve tinnitus 140 

transiently (Adlington and Warrick, 1971; Matoba et al., 1984; Warrick, 1969). The stellate 141 

ganglion is a sympathetic ganglion, thus suggesting the OS system could be a possible target 142 

for tinnitus treatment. Exploring potential central mechanisms of sympathetically mediated 143 

modulation of tinnitus therefore seems mandated. 144 

At a cortical level, a Magnetoencephalographic (MEG) study demonstrated that tinnitus 145 

related distress is associated with a right sided connectivity increase between the anterior 146 

cingulate and the frontal cortex and parietal cortex (Schlee et al., 2008). However due to the 147 

technique used in this study it cannot be discerned which area of the frontal cortex is 148 

involved. On the other hand, a recent EEG study also showed that tinnitus distress involves a 149 

network which encompasses the amygdala, anterior cingulate, insula and parahippocampal 150 

area (Vanneste et al., 2010) although no lateralization effect was investigated.  151 

In conclusion, this study suggests that tinnitus distress is related to OS activation, in part 152 

mediated via the right anterior insula, via spontaneous gamma and delta band activity as well 153 

as PS influence. Left insular alpha activity, suggesting PS inactivation, is correlated with with 154 

associated decreased theta and gamma activity. These data extend the concept that tinnitus 155 

distress is related to autonomic changes in the sympathetico-vagal balance, mediated at least 156 

in part by right sided anterior insular activity. The coupled low-high frequency changes 157 

suggest that the left insular gamma decrease and right insular gamma increase might be part 158 

of a larger theta based central autonomic nervous system network. This is also consistent 159 

with previous MEG and EEG studies investigating the neural correlates of tinnitus distress.  160 
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 276 

Fig. 1: Regions of interest: Right anterior insula (upper pannel) and left anterior insula 277 

(lower pannel). Displayed sections are the axial (left), sagittal (middle), and coronal 278 

(right) sections. 279 
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