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Abstract

The theorem by Lewandowski et al. stating uniqueness of a diffeomorphism
invariant state on an algebra of quantum observables for background independent
theories of connections is based on some technical assumptions imposed on the
algebra and the diffeomorphisms. In this paper we present a class of diffeomor-
phism invariant states on an algebra of this sort, which exist when the algebra and
the diffeomorphisms satisfy alternative assumptions.

1 Introduction

As commonly known canonical quantization of a classical theory begins with a choice
of elementary classical observables, that is, functions on the phase space of the theory
which are supposed to have unambiguous quantum analogs. In the next step one uses
the classical observables to generate a ∗-algebra of elementary quantum observables.
Once a ∗-representation of the ∗-algebra on a Hilbert space is chosen the kinematics of
the corresponding quantum theory is thereby defined. Definition of dynamics requires
construction of a Hamilton operator on the Hilbert space, but often it has to be preceded
by defining constraint operators and finding all physical states (that is, states annihilated
by the constraint operators). In general, the choice of elementary classical observables
is not unique and there are also many ∗-representations of the algebra of quantum
observables. Moreover, the definition of the Hamiltonian and constraint operators is
also not always unique since it may e.g. involve regularizations. Thus, given a classical
theory, a quantum model resulting from canonical quantization procedure is far from
being unique.

In this paper we address some aspects of the issue of uniqueness of quantum mod-
els obtained by canonical quantization of diffeomorphism invariant theories of connec-
tions1. These aspects are (i) the choice of elementary classical observables and (ii) the

1A diffeomorphism invariant theory of connections means a theory in a Hamiltonian form such that (i)
its configuration space is a space of connections on a principal bundle P (Σ, G), where Σ is a base manifold,
and G is a Lie group (i.e. the structure group of the bundle and the connections), (ii) there exist Gauss
and vector constraints imposed on the phase space which ensures, respectively, gauge and diffeomorphism
invariance of the theory [1].
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choice of a ∗-representation of the corresponding algebra of quantum observables. Our
interest in this issue is motivated by the fact that the class of diffeomorphism invariant
theories of connections includes the Einstein’s theory of general relativity as its most
important member. Thus the results presented in this paper may turn out to be relevant
for the uniqueness issue of Loop Quantum Gravity (LQG) being an advanced attempt
to apply the rules of canonical quantization to general relativity [1, 2, 3].

The Ashtekar-Corichi-Zapata (ACZ) algebra [4] is commonly accepted as an alge-
bra of elementary classical observables for diffeomorphism invariant theories of con-
nections. The configuration part of the phase space of such a theory is the space A of
connections on a principle bundle P (Σ, G) (where Σ is the base manifold, and G—the
structure group), and the momentum part consists of vector densities on Σ valued in
the dual g∗ of the Lie algebra g of the Lie group G. The ACZ algebra consists of so
called cylindrical functions defined on the configuration space and derivative operators
called flux operators acting on the functions—the operators correspond to momentum
degrees of freedom. Each cylindrical function is associated with some paths embed-
ded in Σ, while each flux operator is specified by a choice of an oriented face S ⊂ Σ
with codimension 1 equipped with a smearing function f : S → g. It has to be em-
phasized that, given a theory, the ACZ algebra is still not unique, since there is some
freedom in specifying the class of paths, faces and smearing functions. For example,
given real-analytic Σ, the paths and the faces can be chosen to be either analytic or
semianalytic2. Moreover, one can choose the smearing functions on the faces to be
either smooth or continuous or one can require them to have compact supports or give
up this requirement.

The ∗-algebra of elementary quantum observables generated by the ACZ algebra is
called holonomy-flux algebra. Here we are concerned with the issue of uniqueness of
its ∗-representations on Hilbert spaces. Of course, the question has to be narrowed to
the class of irreducible or cyclic representations, but even then there seem to exist many
inequivalent representations. Therefore one has to apply some other criteria in order
to restrict the number of admissible representations. An inescapable criterion is that of
(suitably defined) covariance of a representation with respect to gauge transformations
of the theory which are generated by the Gauss and vector constraints3. If it is com-
bined with the requirement that a representation is generated via the GNS construction
from a state on the holonomy-flux algebra then covariance of the representation follows
from invariance of the state with respect to the transformations. Then one can prove
the following uniqueness theorem [5]:

Theorem 1.1. Assume that the base manifold Σ is semianalytic. Let the paths and the
faces defining elements of the ACZ algebra be semianalytic, and the smearing functions
on the faces are of compact support. Then on the resulting holonomy-flux algebra there
exists a unique state invariant with respect to the gauge transformations which include
semianalytic diffeomorphisms of Σ.

A claim that this theorem completely solves the uniqueness problem of the kine-
matical framework of quantum models under consideration would be rather unjustified.
There are two main objections against such a claim:

2Semianalytic means roughly piecewise analytic. For a precise definition see e.g. [5].
3From the viewpoint of bundle theory the gauge transformations are generated by automorphisms of the

principal bundle. If the bundle is trivial then the group of bundle automorphisms is generated by the group
of Yang-Mills gauge transformations (generated by the Gauss constraint) and the group of diffeomorphisms
of the base manifold (generated by the vector constraint).
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1. as pointed out by Varadarajan [6] the theorem concerns invariant states and con-
sequently uniqueness is established only among covariant GNS representations
of the holonomy-flux algebra.

2. the theorem is based on the assumption of compact support of smearing func-
tions, which seems to be rather technical.

It was shown in [5] that in the case of a principle bundle with a two-dimensional ori-
ented base manifold and the structure group U(1) Theorem 1.1 loses its validity once
we extend the ACZ algebra by admitting smearing functions with non-compact sup-
port: the state given by Theorem 1.1 admits then non-unique extensions. The authors
of [5] rise also a question whether these non-unique extensions are a peculiarity of the
dimension of the base manifold equal 2.

The goal of our research [7] was to check whether in the case of a base manifold
of dimension greater than 2 the uniqueness theorem holds once we give up the require-
ment of compact support of smearing functions. In the present paper we show that if
the ACZ algebra is built over the bundle P = R

D × U(1), D ≥ 3 and if

1. we allow the smearing functions to be supported also on some non-compact sets,

2. paths and faces defining elementary observables are analytic

then on the resulting holonomy-flux algebra there exists many distinct states invariant
with respect to the gauge transformations which do not include any other diffeomor-
phisms of R

D than analytic ones. Our construction is perhaps valid also in the category
of semianalytic paths and faces (and, consequently, semianalytic diffeomorphisms) but
a proof is still lacking in this case.

The paper is organized as follows. In Section 2 we remind the construction of the
ACZ and holonomy-flux algebras. In Section 3 we introduce an ansatz for a functional
on holonomy-flux algebras, investigate its properties and finally prove that it actually
defines diffeomorphism invariant states on an appropriately constructed holonomy-flux
algebra. Section 4 contains a short discussion of the result.

2 Elementary classical and quantum observables

In the present section we shall briefly recall the construction of algebras of elementary
and quantum observables, that is, the ACZ algebra and the holonomy-flux ∗-algebra,
respectively [4, 3, 5]. For the sake of simplicity we assume theG-bundle P to be trivial

P = Σ×G,

with a semianalytic Σ and a compact connected Lie group G.

2.1 Cylindrical functions

The properties of connections on a given principal bundle P provide us with some
natural algebra of functions separating points of the classical configuration space A.
To define these functions we use edges embedded in Σ:

3



Definition 2.1. (i) A semianalytic edge e is a one-dimensional semianalytic embedded
C1 submanifold4 of Σ with 2-point boundary. (ii) An edge is a one-dimensional ori-
ented embedded C0 submanifold of Σ with 2-point boundary given by a finite union of
semianalytic edges.

We say that two edges are independent if and only if they either (i) have no common
point or (ii) every common point of them is an endpoint of both edges.

Definition 2.2. A graph γ is a finite set γ = {e1, . . . , en} of pairwise independent
edges.

In the case of the trivial bundle P each parallel transport (holonomy) Ae along an
edge e given by a connection A ∈ A can be unambiguously described by an element
he(A) of the structure group G. Let us denote as Ae ⊂ G the subset of G obtained as
holonomies of all smooth connections A ∈ A along the edge e. Since G is connected
Ae � G [8].

Definition 2.3. Given a graph γ = {e1, . . . , en} and a smooth function ψ : Gn → C

we define a smooth cylindrical function Ψ : A → C as

Ψ(A) := ψ(he1(A), . . . , hen(A)) ≡ h∗γψ(A). (2.1)

We say that Ψ is compatible with the graph γ. We denote by Cyl∞ the set of all smooth
cylindrical functions.

One can easily see from the definition that any cylindrical function Ψ is compati-
ble with infinitely many graphs γ. In particular, given Ψ1,Ψ2, there exists a graph γ
compatible with both, i.e Ψ1 = h∗γψ1 and Ψ2 = h∗γψ2.

It turns out thatCyl∞ with the natural linear structure and the natural multiplication
is an algebra. Elements of this algebra, that is, cylindrical functions are chosen to
be classical configuration observables. Later we will see that, roughly speaking, the
algebra Cyl∞ forms the ’holonomy part’ of the holonomy-flux algebra.

One can also easily prove [9] that Cyl∞ can be equipped with a structure of a
normed ∗-algebra with an involution

Ψ∗(A) := Ψ(A) (2.2)

and a norm
||Ψ|| := sup

(g1,...,gn)∈Gn

|ψ(g1, . . . , gn)|, (2.3)

where Ψ = h∗γψ. It can be further completed in the norm to a C∗-algebra. The Gelfand
spectrum A of the C∗-algebra have an important algebraic characterization as the set
Hom(P , G) of morphisms from an appropriately defined groupoid P of edges in Σ
to the gauge group G [3]. Thanks to this characterization one can embed the space of
connectionsA in the spectrumA. Moreover it was shown that this embedding is dense
[10]. In the sequel we will use a measure on A as a part of a construction of some
states on a holonomy-flux algebra.

4For the definition of a semianalytic embedded submanifold see [5].
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2.2 Flux operators

The second step in defining the ACZ algebra is a choice of classical observables asso-
ciated with the momentum part of the phase space. As explained in [4] functionals on
the phase space linear in the momentum variable define via the Poisson bracket deriva-
tion operators on Cyl∞. In particular, a flux of the momentum field across an oriented
face in Σ of codimension 1 is linear in the momentum field. The corresponding deriva-
tion operator on Cyl∞ is called a flux operator. Let us now proceed towards a precise
definition of the operator.

Definition 2.4. A graph γ is adapted to a semianalytic embedded submanifold S if for
each edge ei ∈ γ one of the following conditions is true:

(i) ei ⊂ S;

(ii) ei ∩ S is the source of the oriented edge ei;

(iii) ei ∩ S = ∅.

A graph γ′ is adaptable to S if there exists a graph γ adapted to S such that both γ′

and γ share the same points in Σ.

Denote D ≡ dim Σ.

Definition 2.5. A face S is a connected, (D− 1)-dimensional semianalytic embedded
C1 submanifold of Σ with compact closure and a fixed orientation of its normal bundle
such that every graph in Σ is adaptable5 to S.

The orientation allows us to distinguish ”upper” U+ and ”bottom” U− parts of a
sufficiently small neighborhood U open in Σ of an arbitrary point x ∈ S.

Let us fix a face S, a smearing function f : S → g of compact support on S and
a cylindrical function Ψ. There exists a graph γ compatible with Ψ and adapted to S.
Denote by s the source of an edge e ∈ γ. Let

θt(he(A)) :=

⎧
⎪⎨

⎪⎩

he(A) exp(tf(s)) if e ∩ S = s and e lies ’up’ the face S

he(A) exp(−tf(s)) if e ∩ S = s and e lies ’down’ the face S

he(A) in the remaining cases

where ’up’ and ’down’ refer to the orientation of S.

Definition 2.6. A flux operator XS,f acts on the cylindrical function Ψ = h∗γψ, where
γ = {e1, . . . , en} is adapted to S, as follows:

(XS,fΨ)(A) =
d

dt
ψ( θt(he1(A)), . . . , θt(hen(A)) )

∣
∣
∣
t=0

.

5In the literature (see eg. [5, 14]) one can find statements which seem to mean that every (semi)analytic
graph is adaptable to every (semi)analytic face. This is however not true — see Appendix A for a counterex-
ample.
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2.3 ACZ algebra and the holonomy-flux algebra

The ACZ algebra (which plays the role of an algebra of elementary classical observ-
ables) is defined as a real linear space of pairs (Ψ, X), where Ψ is a cylindrical function
and X a differential operator on Cyl∞ generated by a finite number of flux operators:

X = [XS1,f1 , [XS2,f2 , . . . , [XSn−1,fn−1 , XSn,fn ], . . . , ]],

where [·, ·] denotes the commutator. The algebra is equipped with a Lie bracket

[(Ψ, X), (Ψ′, X ′)] = (X ′Ψ−XΨ′, [X,X ′])

corresponding to the Poisson structure on the phase space. Note that we constructed the
algebra using (i) cylindrical functions defined by means of graphs with semianalytic
edges and (ii) flux operators given by semianalytic faces and smearing functions of
compact support, i.e. the algebra defined here is precisely the ACZ algebra considered
in [5]. Let us emphasize once again that this is not the only choice: we can consider e.g.
only analytic edges and faces and also allow some smearing functions of noncompact
support.

Once the ACZ algebra is given a strictly defined procedure [5] leads from it to the
holonomy-flux algebra A as a ∗-algebra of elementary quantum observables. One can
think of the algebra A as an algebra over C generated by elements {Ψ̂, X̂S,f} which
correspond to cylindrical functions and flux operators and commute to

[Ψ̂, X̂S,f ] = iX̂S,f(Ψ). (2.4)

We have also an involution

Ψ̂∗ = Ψ̂∗ X̂∗
S,f = X̂S,f , (2.5)

where Ψ∗ is given by (2.2). The algebra possesses a unit given by the constant cylin-
drical function of value equal to 1. It turns out that every element of A is a finite sum
of elements of the following form [5]:

Ψ̂, Ψ̂1X̂S11,f11 , Ψ̂2X̂S21,f21X̂S22,f22 , . . . , Ψ̂kX̂Sk1,fk1 . . . X̂Skk,fkk
, . . . (2.6)

2.4 Representations of the holonomy-flux algebra

Canonical quantization requires us to find a ∗-representation of the algebra of elemen-
tary quantum observables on a Hilbert space. Such a ∗-representation can be defined
as follows [11]:

Definition 2.7. Let L(H) be a space of linear operators on a Hilbert spaceH. We say
that a map π : A→ L(H) is a ∗-representation of A on the Hilbert spaceH if:

1. there exists a dense subspace D ofH such that

D ⊂
⋂

a∈A

[ D(π(a)) ∩D(π(a)∗) ],

where D(π(a)) denotes the domain of the operator π(a);

2. for every a, b ∈ A and λ ∈ C the following conditions are satisfied on D:

π(a+ b) = π(a) + π(b), π(λa) = λπ(a),
π(ab) = π(a)π(b), π(a∗) = π(a)∗.
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As emphasized in the introduction we are interested in those ∗-representations of
A on a Hilbert space which are covariant with respect to gauge transformations of a
theory under consideration. Since we have assumed that the bundle underlying the
theory is trivial we will restrict our interest to the gauge transformations generated by
diffeomorphisms of the base manifold Σ and will consider diffeomorphism covariant
∗-representations of A. Before we will give a meaning to the notion of diffeomorphism
covariance we have to define an action of the diffeomorphisms on A.

In fact, there is a natural automorphism αϕ of the holonomy-flux algebra A cor-
responding to a diffeomorphism ϕ of Σ, defined on the generators of A as follows
[3, 5]:

αϕΨ̂ := ϕ̂∗Ψ, αϕX̂S,f := X̂ϕ(S),(ϕ−1)∗f , (2.7)

where ϕ∗Ψ := h∗ϕ−1(γ)ψ provided Ψ = h∗γψ and the orientation of the face ϕ(S) is
induced from S by the diffeomorphism ϕ. We have also the identity

αϕ1 ◦ αϕ2 = αϕ1◦ϕ2 , (2.8)

which means that the map ϕ �→ αϕ is a representation of the group of diffeomorphisms
of Σ on A.

Following [6] we formulate

Definition 2.8. We say that a ∗-representation π : A → L(H) of the holonomy-flux
algebra on a Hilbert spaceH is diffeomorphism covariant if on the Hilbert space there
exists a unitary representation ϕ �→ Uϕ of the group Diff of diffeomorphisms of Σ such
that

(i) for every ϕ ∈ Diff the operator Uϕ preserves the common domain D ⊂ H (see
Definition 2.7) i.e.

UϕD ⊂ D;

(ii) for every ϕ ∈ Diff and for every a ∈ A

Uϕπ(a)U−1
ϕ = π(αϕ(a)). (2.9)

A class of diffeomorphism covariant representations of A can be generated via the
GNS construction (see e.g. [12, 5]) from diffeomorphism invariant states on A. Recall
that a state ω on a (unital) ∗-algebra is a linear ∗-preserving functional on the algebra
valued in complex numbers which maps the unit of the algebra to 1 and is positive, i.e.
for every element a of the algebra

ω(a∗a) ≥ 0.

We say that a state ω on the holonomy-flux ∗-algebra A is diffeomorphism invariant if
for every diffeomorphism ϕ ∈ Diff and every a ∈ A

ω(a) = ω(αϕ(a)). (2.10)

Given a state ω on A the GNS construction provides us with a triple (H, π,Ω) such
that (i) π is a cyclic ∗-representation of A on the Hilbert space H (in the sense of
Definition 2.7) with the cyclic vector Ω and (ii) for every a ∈ A

ω(a) = 〈Ω|π(a)Ω〉.
Assume now that (2.10) holds for all a ∈ A and a ϕ ∈ Diff . Then there exists a
unique unitary operator Uϕ on H such that (2.9) is satisfied for all a and UϕΩ =
Ω [12]. If ω is diffeomorphism invariant then the map ϕ �→ Uϕ turns out to be a
unitary representation of Diff onH and the GNS representation π is a diffeomorphism
covariant representation of A.
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3 New diffeomorphism invariant states

Let us recall that our goal is to show that in the case of a U(1)-bundle with a three-
or more dimensional base manifold Σ there are many distinct diffeomorphism invari-
ant states on a holonomy-flux algebra provided we have constructed the algebra by
allowing flux operators {XS,f} to be defined also by some smearing functions with
noncompact support. In other words we are going to show existence of many distinct
diffeomorphism invariant states on a modified holonomy-flux algebra. On the other
hand it should be emphasized that we are not going to find all diffeomorphism invari-
ant states on such an algebra but only some of them. Therefore we will construct them
by a slight modification of formulae describing the state given by Theorem 1.1 called
the standard state and denoted by ω0 thereafter.

Let us first describe how we are going to define new non-standard states, then this
will suggest how to modify the holonomy-flux algebra (of course, sticking to the for-
malism presented in Section 2 we will suitably modify the ACZ algebra, which will
result in the desired modification of the holonomy-flux algebra).

3.1 The ansatz for nonstandard states

The construction of nonstandard states we are going to present follows closely the
construction of a nonstandard state described in [5].

Let us begin by recalling formulae [5] describing the values of the standard state
on the elements (2.6):

ω0(Ψ̂) = μAL(Ψ), for all Ψ ∈ Cyl∞; (3.1)

ω0(Ψ̂X̂S1,f1 . . . X̂Sm,fm) = 0 for all Ψ ∈ Cyl∞ and all X̂Si,fi . (3.2)

In the first formula μAL(Ψ) stands for the value of an integral of Ψ given by the
Ashtekar-Lewandowski measure dμAL on the space A (each smooth cylindrical func-
tion, though defined on the space A of smooth connections, can be naturally seen as a
function on A). If a cylindrical function Ψ = h∗γψ, where ψ is a function on Gn, then

μAL(Ψ) :=
∫

A
Ψ dμAL =

∫

Gn

ψ dμH (3.3)

where dμH is the normalized Haar measure on Gn.
In particular, the condition (3.2) means that

ω0(X̂S,f ) = 0 for all X̂S,f .

We will set the value of a new state on some flux operators to be nonzero numbers—
these operators will be defined by smearing functions with noncompact support.

We choose the following simple ansatz for a nonstandard state:

ω(Ψ̂) = μ(Ψ), for all Ψ ∈ Cyl∞;

ω(X̂S,f) �= 0 (in general);

ω(Ψ̂X̂S1,f1 . . . X̂Sm,fm) = ω(Ψ̂)ω(X̂S1,f1) . . . ω(X̂Sm,fm) for all Ψ̂ and X̂S,f ,
(3.4)

where μ(Ψ) is given by an integral of Ψ defined by a normalized measure dμ on A.
It is obvious that to obtain a diffeomorphism invariant state the assignment

Ψ̂ �→ ω(Ψ̂), X̂S,f �→ ω(X̂S,f) (3.5)
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has to be diffeomorphism invariant. Therefore the measure dμ on A used to define
the value ω(Ψ̂) also has to be diffeomorphism invariant. To make the value ω(X̂S,f)
invariant with respect to diffeomorphisms we will set it to be equal to a limit of the
smearing function f : S → u(1) ∼= R at a point distinguished in a diffeomorphism
covariant manner. The idea is to remove an isolated point x0 from a face S̃. Then the
assignment

(S, f) �→ lim
x→x0

f, (3.6)

where S := S̃ \ {x0}, is diffeomorphism invariant (provided the limit exists). Note
that in order to get a nonzero limit the support of the function f cannot be compact.

There is however a difficulty here: although there is nothing wrong with (3.6) the
resulting assignment X̂S,f �→ limx→x0 f is ambiguous: the identity X̂S,f = X̂−S,−f ,
where −S is obtained from S by the change of its orientation, gives

lim
x→x0

f ←� X̂S,f = X̂−S,−f �→ − lim
x→x0

f.

This means that to get rid of the ambiguity we have to distinguish one of the orien-
tations of the face. It is clear that usually we cannot distinguish any orientation of a
face in a diffeomorphism invariant manner which is necessary in our construction. For-
tunately, we can do this if the face is e.g. a cone—we can assign to a cone with the
vertex removed and with a fixed orientation the value of the limit (3.6) setting x0 to be
the vertex of the cone. This assignment is unambiguous, diffeomorphism invariant and
nontrivial (i.e. it gives nonzero value, in general).

Thus to a flux operator based on a cone or a face of analogous properties we will
assign the value of the limit (3.6), and in remaining cases we will set ω(X̂S,f) = 0.

The idea of constructing new nonstandard states seems to be rather simple. How-
ever, there is much more to be done: one has to show that the ansatz can be extended
by linearity to a state on the algebra. The task is non-trivial not only because one has to
prove the positivity of the resulting map—note that, although the elements (2.6) used
in the formulae (3.4) span (any modification of) the holonomy-flux algebra, they do not
form a basis of the algebra, therefore one also has to prove that the ansatz respect the
linear dependence between the elements (2.6).

3.2 Some properties of the ansatz

As just mentioned the elements (2.6) span any holonomy-flux algebra irrespectively of
details concerning the principle bundle, its structure group, the class of graphs, faces
and smearing functions underlying a particular construction. Now we are going to
describe some properties of the ansatz which are also independent on these details.

Lemma 3.1. Suppose that ω is a linear functional on a holonomy-flux algebra A which
satisfies (3.4). Then ω is real, i.e. ω(a∗) = ω(a)∗ for all a ∈ A if and only if ω(Ψ̂) =
μAL(Ψ) for all cylindrical functions and ω(X̂S,f) = ω(X̂S,f)∗ for all flux operators.

Proof. Assume first that ω is real. Since X̂∗
S,f = X̂S,f the condition ω(X̂S,f) =

ω(X̂S,f)∗ follows immediately.
Consider now an element Ψ̂X̂S,f +X̂∗

S,fΨ̂∗. It is preserved by the involution, hence

ω(Ψ̂X̂S,f + X̂∗
S,fΨ̂∗) ∈ R. On the other hand using (3.4) and (2.4) we get

ω(ΨX̂S,f + X̂∗
S,fΨ∗) = ω(Ψ + Ψ∗)ω(X̂S,f)− iω(X̂S,f(Ψ)) ∈ R.

9



Thus for every Ψ ∈ Cyl∞ and for every flux operator

0 = ω(X̂S,f(Ψ)) = μ(XS,f (Ψ)).

It was proven in [11, 13] that in such a case μ = μAL (note that we assumed that the
measure dμ is normalized).

Let us assume now that ω(Ψ̂) = μAL(Ψ) and ω(X̂S,f) = ω(X̂S,f)∗. It is clear
that ω is real on the subalgebra generated by cylindrical functions. Thus what remains
to be done is to show the reality of ω on the elements

Ψ̂X̂S1,f1 . . . X̂Sk,fk
.

In the remaining part of the proof in order to make the notation more transparent we
will denote X̂k ≡ X̂Sk,fk

.
We begin with proving that

ω(X̂1 . . . X̂kΨ̂X̂k+1 . . . X̂n) = ω(Ψ̂X̂1 . . . X̂n). (3.7)

Indeed,

ω(X̂1 . . . X̂kΨ̂X̂k+1 . . . X̂n) = ω(X̂1 . . . (−iX̂k(Ψ))X̂k+1 . . . X̂n)+

+ ω(X̂1 . . . X̂k−1Ψ̂X̂k . . . X̂n) = ω(Ψ̂X̂1 . . . X̂n) + ω(a sum of other terms)

where each of the other terms is of the form X̂ ′
0(Φ)X̂ ′

1 . . . X̂
′
m, whereX ′

0(Φ) ∈ Cyl∞.
But

ω(X̂i(Φ)) = μAL(Xi(Ψ)) = 0,

hence taking into account the last property of (3.4)

ω(a sum of other terms) = 0

and (3.7) follows.
Applying (3.7) we obtain:

ω((Ψ̂X̂1 . . . X̂k)∗) = ω(X̂∗
k . . . X̂

∗
1 Ψ̂∗) = ω(X̂k . . . X̂1Ψ̂∗) = ω(Ψ̂∗X̂k . . . X̂1) =

= ω(Ψ̂∗)ω(X̂1) . . . ω(X̂k) = ω(Ψ̂)∗ω(X̂1)∗ . . . ω(X̂k)∗ =

= ω(Ψ̂X̂1 . . . X̂k)∗.

which completes the proof.

Lemma 3.2. Let ω be a real linear functional on a holonomy-flux algebra. Ifω satisfies
(3.4) then it is positive. Moreover, it is a state on the algebra.

Proof. It follows from the previous lemma that μ = μAL. Our task now is to prove
that ω(a∗a) ≥ 0 for every element a of the algebra. Such an element can be expressed
as a finite sum of elements of the form (2.6):

a =
∑

i

Ψ̂iX̂1i . . . X̂kii

10



(note that we again denoted flux operators without indicating faces and smearing func-
tions explicitely). Thus we get:

ω(a∗a) = ω((
∑

j

X̂∗
kjj . . . X̂

∗
1jΨ̂

∗
j )(

∑

i

Ψ̂iX̂1i . . . X̂kii)) =

= ω(
∑

ij

X̂kjj . . . X̂1jΨ̂∗
j Ψ̂iX̂1i . . . X̂kii) =

=
∑

ij

ω(Ψ̂∗
jΨ̂iX̂kjj . . . X̂1jX̂1i . . . X̂kii) =

=
∑

ij

μAL(Ψ̂∗
j Ψ̂i)ω(X̂kjj) . . . ω(X̂1j)ω(X̂1i) . . . ω(X̂kii)

where we used (3.7) and the last property of (3.4). Denote

βi = ω(X̂1i) . . . ω(X̂kii).

Because of reality of ω we have β∗
i = βi. This property and assumed reality of ω gives

us

∑

ij

μAL(Ψ∗
jΨi)ω(X̂1j) . . . ω(X̂kjj)ω(X̂1i) . . . ω(X̂kii) =

=
∑

ij

μAL(Ψ∗
jΨi)β∗

j βi =
∑

ij

μAL(β∗
j Ψ∗

jβiΨi) = μAL(Φ∗Φ) ≥ 0,

where Φ ≡
∑

i βiΨi ∈ Cyl∞.
Thus we proved positivity of ω. Let us recall that the unit 1̂ of any holonomy-

flux algebra is given by a constant cylindrical function of value equal to 1. Since the
Ashtekar-Lewandowski measure is normalized we have

ω(1̂) = μAL(1) = 1.

This together with positivity of ω means that ω is a state on the algebra.

3.3 Modified algebras

Consider the principle bundle P = R
D × U(1) with D ≥ 3. We will treat R

D as a
real-analytic manifold. Consequently, we will build the ACZ algebra from cylindri-
cal functions and flux operators based on, respectively, graphs of analytic edges and
analytic faces.

Let us make precise the notion of “a point removed from a face” used in the de-
scription of the idea of constructing new nonstandard states:

Definition 3.3. We say that x ∈ ∂S := S \ S 6 is an isolated boundary point of S if
there exists a neighborhood U , open in R

D , such that ∂S ∩ U = {x}.

The set of all isolated boundary points of S will be denoted by I∂S . It is clear that
every such a set has the ”diffeomorphic covariance” property, that is, for any diffeo-
morphism ϕ of R

D:
I∂ϕ(S) = ϕ(I∂S). (3.8)

6It follows from the definition of S as an embedded submanifold that S coincides with its own interior
with respect to the (induced) topology of S.
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In the sequel we will often make use of a completion S̃ defined as a sum of a face S
and its isolated boundary points:

S̃ := S ∪ I∂S . (3.9)

The completion S̃ may possess isolated boundary points7.
Now we are able to describe precisely a class of smearing functions suitable for our

construction.

Definition 3.4. The smearing function f on a face S, f : S → R is allowable if there
exists a compactly supported continuous function f̃ on S̃ such that f̃ restricted to S
coincides with f .

Now we are at a point to define the modified algebras:

Definition 3.5. (i) The modified ACZ algebra is an algebra of elementary classical
observables constructed according to the description in Section 2.3 from cylindrical
functions based on graphs with analytic edges and flux operators based on analytic
faces and smearing functions given by Definition 3.4. (ii) The ∗-algebra of quantum
observables generated by the modified ACZ algebra will be called modified holonomy-
flux algebra and denoted by Ã.

3.4 Cone-like faces

As described above new nonstandard states will assign nonzero values to flux operators
based on cones and other similar faces. In the present subsection we shall give a precise
definition of these faces and describe their properties.

Definition 3.6. A generalized cone of type d ≥ 1 (a d-cone) is an image under an
analytic diffeomorphism of R

D of the set

{ (x1, . . . , xD) ∈ R
D | (x1)2 + . . .+ (xD−1)2 − (xD)2d = 0 and 0 < xD < H },

(3.10)
where (x1, . . . , xD) are canonical coordinates on R

D and H > 0.

It is clear that the set of isolated boundary points of any d-cone consists of one
point which will be called the vertex of the cone.

Every d-cone is an analytic embedded submanifold of R
D. For every d-cone Cd

we can find an analytic embedded connected (D − 1)-dimensional submanifold Cd
M

such that (i) Cd ⊂ Cd
M and (ii) if Cd

M is contained in an analytic embedded connected
(D− 1)-dimensional submanifoldC then Cd

M = C. We will call the manifoldCd
M the

maximal analytic extension of Cd. Cd
M can be shown to be an image of

{ (x1, . . . , xD) ∈ R
D | (x1)2 + . . .+ (xD−1)2 − (xD)2d = 0 and 0 < xD } (3.11)

under an appropriate analytic diffeomorphism.
We do not guarantee that a cone of type d > 1 cannot be at the same time a

cone of type d′ > 1 with d′ �= d — we cannot exclude that there exists an analytic
diffeomorphism which maps a set (3.10) with d > 1 into a set (3.10) with d′ > 1
distinct from d. But if a cone is of type 1 then it cannot be a cone of type d > 1 — this
is excluded by Lemma B.1.

7Let S′ be a face with no isolated boundary points and let (xn)n=1,2,3... be a sequence of pairwise
distinct points of S′ convergent to x0 ∈ S′. Then x0 is an isolated boundary point of the completion S̃ of a
face S := S′ \ { xn | n = 0, 1, 2, 3 . . . }.
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3.4.1 Orientation of d-cones

The following lemma states a property of d-cones, which is crucial for the construction
of nonstandard states:

Lemma 3.7. Let Cd be a d-cone with a fixed orientation of its normal bundle. Then
every analytic diffeomorphism R

D which maps the cone onto itself preserves the ori-
entation.

To give a proof of the lemma we need some preparations. Consider a C1-class
curve

]− a, a[� τ �→ κ(τ) = (x1(τ), . . . , xD(τ)) ∈ R
D, a > 0. (3.12)

We will say that the curve κ is “ingoing” to a cone Cd through its vertex v if

1. κ(]0, a[) ⊂ Cd,

2. κ(0) coincides with the vertex v of Cd.

We will denote by κ̇ the vector tangent to κ at v. The D-th component of κ̇, κ̇D ,
refers to the decomposition of the vector in the basis given by the canonical coordinates
(x1, . . . , xD) on R

D and is given by

κ̇D =
dxD(τ)
dτ

∣
∣
∣
τ=0

.

Given a diffeomorphism ϕ on R
D preserving the vertex v, ϕ′ will denote the tangent

map from TvR
D onto itself given by the diffeomorphism.

Consider now the cone Cd given by (3.10) and a curve κ ingoing to the cone
through its vertex v = (0, . . . , 0). Then

κ̇D = lim
τ→0+

xD(τ)− xD(0)
τ

= lim
τ→0+

xD(τ)
τ
≥ 0, (3.13)

because xD(τ) > 0 for τ > 0, which follows from the fact that κ is ingoing and from
the definition (3.10) of Cd.

Suppose now that a diffeomorphism ϕ preserves the cone Cd. Consequently, ϕ
maps the vertex v onto itself. It also maps any ingoing curve to ingoing one, hence
the property (3.13) is preserved by the diffeomorphism. This conclusion can be stated
more precisely as follows:

Corollary 3.8. Let Cd be given by (3.10) and let κ be a curve ingoing to Cd through
its vertex v. If ϕ is a diffeomorphism preserving the cone then

(ϕ′κ̇)D ≥ 0.

In fact, a bit stronger statement holds:

Lemma 3.9. Let Cd be given by (3.10) and let κ be a curve ingoing to Cd through its
vertex v such that κ̇D > 0. If ϕ is a diffeomorphism preserving the cone then

(ϕ′κ̇)D > 0.
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Proof. Consider an ingoing curve κ. Assume that κ̇D > 0 and (ϕ′κ̇)D = 0. This
means that the vector ϕ′κ̇ is tangent to the hyperplane xD = 0. Hence we can use a
rotation R around the xD-axis to map ϕ′κ̇ into −ϕ′κ̇. Then we can use ϕ′−1 to map
−ϕ′κ̇ into −κ̇. Since the rotationR is an analytic diffeomorphism preserving the cone
Cd we conclude that the diffeomorphism φ := ϕ−1 ◦ R ◦ ϕ preserves the cone and
the corresponding tangent map φ′ maps κ̇ into −κ̇. We arrive at the conclusion that
(φ′κ̇)D < 0. This however contradicts Corollary 3.8.

Consider now the vector �eD = (0, . . . , 0, 1) based at the vertex v of the cone Cd

(given by (3.10)) and a diffeomorphism ϕ which preserves the cone.
If d > 1 then there exist a curve κ ingoing to the cone through its vertex such that

κ̇ = �eD. By virtue of Lemma 3.9 for any diffeomorphism ϕ preserving the cone Cd

(ϕ′�eD)D > 0. (3.14)

Assume now that d = 1. Then

�eD =
(1

2
, 0, . . . , 0,

1
2

)
+

(
− 1

2
, 0, . . . , 0,

1
2

)
.

It is easy to find two curves ingoing to the cone such that they generate the two vectors
at the r.h.s. of the equation above. Again by virtue of Lemma 3.9 for any diffeomor-
phism ϕ preserving the cone C1

(
ϕ′

(
± 1

2
, 0, . . . , 0,

1
2

))D

> 0

and consequently (3.14) holds also in the case d = 1.
Thus we arrived at the following conclusion:

Corollary 3.10. Assume that a diffeomorphism ϕ preserves the cone Cd given by
(3.10) and �eD = (0, . . . , 0, 1) is based at the vertex of Cd. Then the D-th compo-
nent of ϕ′�eD is positive.

Proof of Lemma 3.7. It is not difficult to realize that since the lemma concerns analytic
diffeomorphisms its assertion holds if and only if it holds true for Cd

M being the max-
imal analytic extension of the cone Cd given by (3.10). This extension is unbounded
and its closure divides the space R

D in two disjoint open subsets: the ”internal” one
denoted by U+ (the xD coordinate of every point in U+ is positive) and the ”external”
one U−. Obviously,

R
D = U+ ∪ U− ∪ Cd

M ∪ {v},
where v is the vertex of Cd

M .
Consider now the constant vector field Y = (0, . . . , 0,−1) on R

D . This vector
field restricted to Cd

M defines an orientation of the cone. Denote by χ0 the integral
curve of Y which runs through the vertex v—χ0 coincides with the xD-axis with the
opposite orientation. For every integral curve χ of the vector field we define

χ± := χ ∩ U±.

Let ϕ be an analytic diffeomorphism preserving Cd
M . Suppose that ϕ changes the

orientation of the cone. Then for arbitrary integral curve χ �= χ0 of the vector field Y

ϕ(χ±) ∩ U± = ∅

ϕ(χ±) ∩ U∓ = ϕ(χ±).
(3.15)
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But because of continuity of both the diffeomorphism and the vector field the above
statements have to be true also for χ0.

Note now that the vector tangent to χ0 at the vertex v is−�eD. Since ϕ(χ0) satisfies
(3.15) the D-th component of

ϕ′(−�eD) = −ϕ′�eD

has to be non-negative. This however contradicts Corollary 3.10 which implies that
every ϕ preserving Cd

M maps the vector−�eD into one of a negative D-th component.
Thus we conclude that if ϕ preservesCd

M then it cannot change its orientation.

Among faces used to define flux operators are those which are subsets of d-cones.
It is now clear that Lemma 3.7 implies the following conclusion:

Corollary 3.11. If a face S is a subset of a d-cone then every analytic diffeomorphism
of R

D which preserves S preserves also the orientation of S.

Now let us distinguish one of the orientations of a d-cone Cd as external: we mean
that a d-cone faceCd is externally oriented if the ”up” side ofCd is ”pointed out” by its
vertex. More precisely: the external orientation of the d-cone (3.10) is that given by the
constant vector field Y = (0, . . . , 0,−1) on R

D restricted to the cone. The externally
oriented Cd is the image under a diffeomorphism ϕ of the externally oriented d-cone
(3.10).

3.4.2 Some auxiliary facts

In this subsection we will present and justify some auxiliary statements of a rather
technical character. We will also introduce a notion of almost equal flux operators. All
these will be used in the next section to state and prove the main theorem of the paper.

Lemma 3.12. Let a face S be a subset of a d-cone Cd. Then the set I∂S ∩ Cd is
nowhere dense in Cd.

Proof. Let x ∈ I∂S ∩ Cd. We know that there exists a nonempty set Ux open in R
D

such that Ux ∩ ∂S = {x}. Hence Ux ∩ I∂S = {x} and Cd ∩ Ux ∩ I∂S = {x}. But
Cd ∩ Ux ≡ Vx is nonempty and open in Cd. Then

V :=
⋃

x∈I∂S∩Cd

Vx

is nonempty and open in Cd.
Consider now a nonempty setA ⊂ Cd open inCd. Assume thatA∩V is nonempty.

Then there exists x ∈ I∂S ∩ Cd such that A ∩ Vx is nonempty. It is excluded that
A ∩ Vx = {x} since {x} is not open in Cd which follows from the fact that Cd is an
embedded submanifold of R

D. Hence A ∩ (Vx \ {x}) is nonempty and open and does
not contain any points of I∂S ∩ Cd.

If A ∩ V is empty then A again does not contain any points of I∂S ∩ Cd.
We just proven that every nonempty open subset A of Cd contains a nonempty

open subset B such that B ∩ (I∂S ∩ Cd) = ∅. This means that I∂S ∩ Cd is nowhere
dense subset of Cd [15].
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Lemma 3.13. Let XS,f ∈ Ã be a flux operator based on a face S being a subset of
a d-cone. Then there exists a d-cone Cd and a unique allowable smearing function
f ′ : Cd �→ R such that S ⊂ Cd and

f ′(x) =

{
f(x) if x ∈ S
0 if x ∈ Cd \ S̃

. (3.16)

Proof. Without loss of generality we can prove the lemma assuming that S is a subset
of a d-cone given by (3.10). As the coneCd let us take a d-cone given by (3.10) of such
a height H that the closure S either does not intersect the boundary of Cd or intersect
the boundary only at the vertex of Cd.

Note now that S̃ ⊂ C̃d. Indeed, it follows from the above assumption about Cd

that S ⊂ C̃d. On the other hand S̃ ⊂ S.
According to Definition 3.4 there exists a compactly supported continuous function

f̃ on S̃ such that f = f̃ |S . Therefore for every x0 ∈ ∂S̃ (where ∂S̃ is the boundary of
S̃ as a subset of C̃d)

lim
x→x0

f̃(x) = 0.

This means that the function f̃ ′ : C̃d → R defined as

f̃ ′(x) :=

{
f̃(x) if x ∈ S̃
0 otherwise

(3.17)

is continuous and of compact support in C̃d. Hence f ′ := f̃ ′|Cd is an allowable smear-
ing function on Cd. Moreover it satisfies the condition (3.16). In this way we showed
existence of f ′.

In order to show uniqueness of f ′ it is enough to note that f ′ is continuous on Cd

and the condition (3.16) defines its values everywhere onCd except the nowhere dense
set I∂S ∩ Cd.

Note that XS,f �= XCd,f ′ because there may exist isolated boundary points of S
belonging to Cd for which the values of f ′ are non-zero. However, as stated by Lemma
3.12 the set I∂S ∩ Cd is quite “small”. Therefore we will say that X̂S,f and X̂Cd,f ′

such that (S, f) and (Cd, f ′) are related as in Lemma 3.13 are almost equal and will
write

X̂S,f ≈ X̂Cd,f ′ .

Now we can draw the following conclusion:

Corollary 3.14. Assume that

X̂S,f ≈ X̂Cd
1 ,f ′

1
and X̂S,f ≈ X̂Cd′

2 ,f ′
2
.

Then either d = d′ = 1 or both d, d′ are greater than 1. Moreover, the cones share the
common vertex v and

f̃ ′
1(v) = f̃ ′

2(v).
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Proof. Because S ⊂ Cd
1 and S ⊂ Cd′

2 and because the faces are analytic all of them
are contained in the maximal analytic extension of Cd

1 . Therefore either d = d′ = 1 or
both d, d′ are greater than 1 and the cones share the same vertex v.

Moreover, there exist a neighborhoodU of v in R
D such that U ∩ Cd

1 = U ∩ Cd′
2 .

By virtue of Lemmas 3.13 and 3.12 the functions f ′
1 and f ′

2 coincide on U ∩Cd
1 hence

f̃ ′
1(v) = f̃ ′

2(v).

Lemma 3.15. Let cM be the closure of the maximal analytic extension of a d-cone Cd.
Suppose that among analytical faces {S1, . . . , Sk} there is no one which is a subset of
cM . Then

k⋃

i=1

Cd ∩ Si (3.18)

is a nowhere dense subset of Cd.

Proof. Suppose first that, given Si, the set cM ∩ Si is not a nowhere dense subset of
cM . Then using the continuity of the face Si one can show that cM ∩ Si contains an
open subset of cM , hence Si ⊂ cM by the analyticity of both faces which contradicts
the assumptions of the lemma.

Thus for any i the set cM ∩ Si is a nowhere dense subset of cM . A finite union of
nowhere dense subsets is nowhere dense again [15], thus

k⋃

i=1

cM ∩ Si

is nowhere dense. Cd is an embedded submanifold of R
D and therefore it is an open

subset of cM . Hence (3.18) is nowhere dense in Cd.

Consider now a cone Cd and a finite set of faces {S1, . . . , Sk} contained in Cd

and a finite set of faces {S′
1, . . . , S

′
k′} such that no one is contained in the closure of

the maximal analytic extention of Cd. Then it follows immediately from Lemmas 3.12
and 3.15 that the set

( k⋃

i=1

Cd ∩ I∂Si

)
∪

( k′
⋃

j=1

Cd ∩ S′
j

)
(3.19)

is nowhere dense in Cd. Hence we have the following corollary:

Corollary 3.16. The set
Čd := Cd \ the set (3.19) (3.20)

is dense in Cd.

3.5 Main theorem

Since now we will treat each flux operator as based on either (i) a face being a subset
of a d-cone with an orientation consistent with the external orientation of the cone or
(ii) a face which is not contained in any d-cone (if the orientation of a face contained
in a d-cone is not consistent with the external orientation of the cone then we change it
together with the sign of the smearing function on the face). Using this convention we
state the main theorem of this paper:
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Theorem 3.17. The following assignment ω of a complex number to elements of the
modified holonomy-flux algebra Ã

ω(Ψ̂) = μAL(Ψ),

ω(X̂S,f) =

⎧
⎪⎨

⎪⎩

χ(d) f̃(v) if S is a d-cone of vertex v

ω(X̂C,f ′) if S is a subset of a d-cone C and X̂S,f ≈ X̂C,f ′

0 otherwise

, (3.21)

ω(Ψ̂X̂S1,f1 . . . X̂Sm,fm) = ω(Ψ̂)ω(X̂S1,f1) . . . ω(X̂Sm,fm) for all Ψ̂ and X̂S,f ,

where χ : [1,∞[→ R is a function constant on ]1,∞[, extends by linearity to a diffeo-
morphism invariant state on the algebra.

Remark. The value f̃(v) is equal to limx→v f(x), thus the assignment above agrees
with the preliminary description given in Subsection 3.1.

Note that the assignment (3.21) is defined also for a product of flux operators.
Indeed,

ω(X̂S1,f1 . . . X̂Sm,fm) = ω(1̂X̂S1,f1 . . . X̂Sm,fm) = ω(X̂S1,f1) . . . ω(X̂Sm,fm),

where 1̂ is the unit of Ã given by the constant cylindrical function Ψ0 of value 1 for
which ω(1̂) = μAL(Ψ0) = 1.

Proof of Theorem 3.17. For the sake of clarity let us divide the proof into some steps.
In each step we will justify a statement:

Step 1: The assignment (3.21) is well defined.

Step 2: If the assignment defines a linear functional on Ã then the functional is a
state on the algebra.

Step 3: If the assignment defines a linear functional then the functional is diffeo-
morphism invariant.

Step 4: The assignment defines a linear functional on Ã.

Once we will justify all the statements the proof of the theorem will be complete.

Step 1. Let us first check whether the assignment (3.21) is unambiguously defined
— a potential source of an ambiguity is twofold: (i) to define the assignment we use
the type d of a cone, but we are not sure whether the type can be uniquely ascribed to
the cone unless d = 1 and (ii) the relation X̂S,f ≈ X̂C,f ′ is not a one-to-one relation.
Assume then that S is at the same time a cone of type d > 1 and a cone of type
d′ > 1 with d′ �= d. Then it follows from the properties of the function χ that the value
ω(X̂S,f) is well defined. Regarding (ii) assume now that S is a subset of a d-cone C.
Then there are many cones containing S and therefore there are many operators which
are almost equal to X̂S,f . But by virtue of both Corollary 3.14 and the properties of χ
the value assigned to X̂S,f is again well defined.

Step 2. Assume that the assignment (3.21) extends by linearity to a (linear) func-
tional ω on Ã. Then by Lemma 3.1 the functional is real, and hence by virtue of Lemma
3.2 it is a state on the algebra.

Step 3. The assignment Ψ̂ �→ μAL(Ψ) is diffeomorphism invariant by virtue of the
properties of the measure μAL [8].
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Suppose that the action (2.7) of a diffeomorphism ϕ maps X̂Cd,f to X̂C′d′ ,f ′ . The
diffeomorphism covariance (3.8) of the set of isolated boundary points means that the
vertex v of the cone Cd is mapped to the vertex v′ of C′d′

. Therefore f̃ ′(v′) = f̃(v).
On the other hand as stated by Lemma B.1 any two cones C1 and Cd for d > 1 are
diffeomorphicly inequivalent i.e. there is no diffeomorphism which maps C1 onto Cd.
Consequently, the value χ(d) associated to Cd is equal to χ(d′) associated to C′d′

.
Finally by virtue of Lemma 3.7 if Cd is externally oriented then C′d′

is externally
oriented also. All these mean that the assignment X̂Cd,f �→ ω(X̂Cd,f) given by (3.21)
is diffeomorphism invariant.

Note finally that (i) the relation X̂S,f ≈ X̂C,f ′ is diffeomorphism invariant and
(ii) if S is not contained in any d-cone then for every analytic diffeomorphism ϕ the
image ϕ(S) is not contained in any d-cone either.

Hence if the assignment (3.21) defines a linear functional then the functional is
diffeomorphism invariant.

Step 4. Let us start this part of the proof with simplifying the notation: instead of
X̂Sα,fα , where α is a label or a multilabel, we will write X̂α. Consequently, given X̂α,
we will refer to corresponding smearing functions as fα and f̃α.

Note now that it is not obvious at all that an extension of the assignment given
by Theorem 3.17 to a linear functional on Ã is possible: the source of a potential
obstacle is the fact that we assigned numbers to elements of the form Ψ̂X̂1 . . . X̂n—
these elements span the algebra Ã but they are not linearly independent. Therefore we
have to check whether the assignment respects linear dependence between the elements
under consideration. It is easy to realize that there is no obstacle for the extension if
for every sum of the elements such that

n∑

i=1

Ψ̂iX̂i1 . . . X̂iki = 0. (3.22)

the sum of the assigned numbers is zero:

n∑

i=1

ω(Ψ̂iX̂i1 . . . X̂iki) = 0. (3.23)

Let us now divide the set T of all terms occurring in the sum (3.22) in a way
convenient for further considerations: we distinguish three disjoint subsets of T as
follows:

1. the subset F consists of terms of the form Ψ̂i (F stands for functions);

2. the subset C consists of terms of the form Ψ̂iX̂i1 . . . X̂iki such that every flux
operator X̂ij is based on a face contained in a d-cone;

3. the subset O := T \ (F ∪ C) is a subset of all other terms.

Note now that

span { a | a ∈ F } ∩ span { a | a ∈ C or a ∈ O } = 0.

It follows from this fact and (3.22) that
∑

a∈F
a = 0. (3.24)
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Therefore ∑

a∈F
ω(a) =

∑

a∈F
μAL(a) = μAL(

∑

a∈F
a) = 0.

Because ω(a) = 0 for any a ∈ O our task is reduced to proving that

∑

a∈C
ω(a) = 0.

By virtue of (3.22) and (3.24)
∑

a∈C∪O
a = 0,

which means that for any cylindrical function Φ
∑

a∈C∪O
πAL(a)Φ = 0, (3.25)

where πAL is the Ashtekar-Lewandowski representation8 of Ã [14]. Now we are going
to choose some specific cylindrical functions Φ in the equation above to extract some
relevant information about elements of C while neglecting at the same time all infor-
mation about elements in O. The construction of these functions proceeds as follows.

Denote by S the set of all faces underlying the flux operators occurring in the sum
(3.22). It is not difficult to realize that there exists a set SC = {C1, . . . , Cm} of d-cones
of the following properties:

1. given a coneCi ∈ SC every S ∈ S is either contained in Ci or it is not contained
in closure of the maximal analytic extension of Ci;

2. given Ci there exist at least one S ∈ S such that S is contained in Ci;

3. given Ci �= Cj , Ci is not contained in the maximal analytic extension of Cj .

Thanks to the property 1 above for every Ci ∈ SC we can define a set Či as it was
described at the very end of the previous section (see Equations (3.19) and (3.20)). Let

Č× := Č1 × . . .× Čm (3.26)

Given (x1, . . . , xm) ∈ Č×, we can find a graph γ with edges {e1, . . . , em} such that
for every i = 1, . . . ,m

1. ei ∩ Ci = xi and xi is the source of ei;

2. ei lies “up” the oriented cone Ci;

3. for every S ∈ S not contained in Ci either ei ∩ S = ∅ or ei is contained in S 9.

8The representation is defined as follows

πAL(Ψ̂)Φ := ΨΦ, πAL(X̂S,f )Φ := −iXS,f Φ.

9Let us fix a face S �⊂ Ci. Then xi �∈ S. Consider an analytic edge e satisfying the conditions 1 and 2.
Now according to Definition 2.5 it can be adapted to S i.e. divided into shorter edges such that each of them
satisfies (modulo orientation) one of the three conditions of Definition 2.4. The shorter edge containing xi

can be chosen in such a way that it satisfies the condition (i) or (iii) of the definition. Call this edge eS .
Then ei :=

⋂
eS where the intersection runs over all faces S ∈ S not contained in Ci.
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It is easy to see that for any cylindrical functions Φ compatible with γ the sum over
C ∪ O in (3.25) reduces to a sum over C.

Consider now an operator X̂ik appearing in an element of C and the face S under-
lying the operator. Note that if S ⊂ Cj ∈ SC then I∂S ∩ Čj = ∅ and consequently

πAL(X̂ik)Φ = πAL(X̂Cj,f ′
ik

)Φ

provided X̂ik ≈ X̂Cj ,f ′
ik

(see Lemma 3.13). This means that while evaluating (3.25)
we can use appropriate operators based on the cones in SC .

Now let us choose Φ of the form

Φ(A) = exp[ i
m∑

j=1

njhej (A) ], nj ∈ R, (3.27)

where hej (A) ∈ U(1) is the holonomy of A along the edge e. Before we will evaluate
the sum at the l.h.s. of (3.25) on cylindrical functions just introduced let us make some
preparatory remarks. Note first that it follows immediately from Definition 2.6 of flux
operators and the form of the Ashtekar-Lewandowski representation that if X̂ik ≈
X̂Cj,f ′

ik
then

πAL(X̂ik)Φ = πAL(X̂Cj,f ′
ik

)Φ = njf
′
ik(xik)Φ.

where xik ≡ xj .
Given an element ai = Ψ̂iX̂i1 . . . X̂iki ∈ C, it can happen that some flux operators

constituting the element are based on faces contained in the same d-cone Cj . Let C�l,
�l = (l1, . . . , lm), denotes a subset of C such that in each element of the subset there
are lj flux operators based on a face contained in the cone Cj . Thus if ai belongs to C�l
then

πAL(ai)Φ = πAL(Ψ̂iX̂i1 . . . X̂iki)Φ = Ψin
l1
1 . . . n

lm
m f ′

i1(xi1) . . . f ′
iki

(xiki )Φ,

where for all the flux operators constituting ai there holds an appropriate relation
X̂ik ≈ X̂Cj,f ′

ik
which defines the identification xik ≡ xj ∈ Čj .

After these preparations it is easy to evaluate the sum at the l.h.s. of (3.25) on
(3.27):

∑

a∈C∪O
πAL(a)Φ =

∑

�l

∑

a∈C�l

πAL(a)Φ =

=
∑

�l

∑

i | ai∈C�l

Ψin
l1
1 . . . n

lm
m f ′

i1(xi1) . . . f ′
iki

(xiki )Φ =

=
∑

�l

nl1
1 . . . n

lm
m

( ∑

i | ai∈C�l

Ψif
′
i1(xi1) . . . f ′

iki
(xiki )

)
Φ = 0.

The key observation now is that the last equation holds for all nj ∈ R and it is a
polynomial of real numbers {nj}. Therefore

∑

i | ai∈C�l

Ψif
′
i1(xi1) . . . f ′

iki
(xiki ) = 0 (3.28)

where we got rid of Φ (note that Φ(A) �= 0 for everyA).
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Recall that xik ≡ xj ∈ Čj if X̂ik ≈ X̂Cj,f ′
ik

. These means that the product

of the smearing functions in (3.28) is evaluated at a point belonging to Č×. Since
(x1, . . . , xm) is an arbitrary point of the set, Equation (3.28) holds on the whole Č×. It
follows from Corollary 3.20 that this set is a dense subset of C1× . . .×Cm. Therefore
for every j we can pass to the limit xik ≡ xj → vj , where vj is the vertex of the cone
Cj . For each smearing function f ′

ik the limit is equal to f̃ ′
ik(vj) (see Definition 3.4).

Thus we obtain ∑

i | ai∈C�l

Ψif̃
′
i1(vj) . . . f̃ ′

iki
(vj′ ) = 0.

Integrating both sides of the equation above by means of the Ashtekar-Lewandowski
measure and multiplying them by an appropriate number of factors χ(d) corresponding
to the cones {Cj} we obtain

∑

ai∈C�l

ω(ai) = 0

which holds for every �l. This ends the proof.

4 Summary

In this paper we constructed a class of diffeomorphism invariant states on the modi-
fied holonomy-flux algebra. Each state defines the GNS representation π of the alge-
bra on a Hilbert space H, which as in the case of the standard state is isomorphic to
L2(A, dμAL). The representation is described by the following simple formulae

π(Ψ̂)Φ = ΨΦ,

π(X̂S,f )Φ = −iXS,f(Φ) + ω(X̂S,f)Φ

for any Φ ∈ Cyl∞ ⊂ L2(A, dμAL). These hold true for the GNS representation
defined by the standard state (that is, the Ashtekar-Lewandowski representation) the
only difference being that then ω(X̂S,f) is zero for every flux operator.

As mentioned in the introduction the main idea of this paper was to verify whether
the example of a non-standard state presented in [5] can be generalized to higher di-
mensional base manifolds. As we saw the answer is in the affirmative. It has to be
however emphasized that the result relies heavily on the following assumptions con-
cerning (i) the structure group of the principal bundle underlying the construction (ii)
the construction of the modified holonomy-flux algebra Ã and (iii) the choice of the
gauge transformations acting on the algebra:

(i) the structure group is U(1). Note that by virtue of the last property of the ansatz
(3.4) for any flux operators ω([X̂S,f , X̂S′,f ′ ]) = 0. In the case of a (semisim-
ple) noncommutative structure group we can expect that flux operators may be
expressed as commutators of other flux operators which would mean that our
ansatz would be reduced to the formulae defining the standard state. Moreover,
the fact that in the U(1) case the flux operators commute allowed us to use in
the proof of the main theorem 3.17 the function Φ (3.27) being an eigenvector of
all the operators. This property of Φ made that part of the proof relatively easy.
Note also that in the U(1) case the smearing functions can be treated as real ones
hence the limit (3.6) could be used as a value of the non-standard states on X̂S,f

invariant with respect to Yang-Mills gauge transformations.

22



(ii-a) the support of each smearing function f : S → R is noncompact in a rather
specific way i.e. it is compact modulo isolated boundary points of the face S.
Our construction does not seem to be valid in the case of the holonomy-flux
algebra allowing smearing functions with any non-compact supports.

(ii-b) the faces (and graphs) are analytic. We used properties of analytic faces in the
proof of the main theorem 3.17 (more precisely: in the proof that the assignment
(3.21) can be extended by linearity to a functional on Ã) and also in the proof of
Lemma 3.7. Perhaps the construction of the states is still valid in the semianalytic
case but then a proof of Theorem 3.17 would be technically much harder.

(iii) the gauge transformations do not contain any non-analytic diffeomorphisms,
which is consistent with the choice of analytic faces.

Let us finally state that in our opinion the result presented in this paper does not
weaken the significance of the uniqueness theorem of [5]. It is true, of course, that
the assumptions of the theorem are not general, but we learnt from this research that
in order to obtain a non-standard state we have to (i) replace the simple and natural
assumptions of the theorem by ones which are not so simple and natural and (ii) base
the construction on some very special structures like vertices of cones where the differ-
entiability of a face is broken. Such structures are pointlike and therefore it seems that
they cannot play any role in physical models where the smallest structures are expected
to be of the Planck length.
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Nauki i Szkolnictwa Wyższego grants 1 P03B 075 29 and 182/NQGG/ 2008/0, by the
Foundation for Polish Science grant ”Master” and a Travel Grant from the QG research
networking programme of the European Science Foundation.

A Graph not adaptable to a submanifold

Let Σ = R
3 and let

S = { (x, y, z) ∈ R
3 | 0 < x < 2, −1 < y < 1, z = 0 }.

Denote by B(p, r) a closed ball in R
3 of center p and radius r > 0 and for n ∈ N

define

Bn := B
(( 1

n
, 0, 0

)
,
1
4

( 1
n
− 1
n+ 1

))

Clearly, Bn ∩Bn′ = ∅ for n �= n′. The set

S := S \
∞⋃

n=1

Bn

is an embedded analytic submanifold of R
3. Then the graph γ = {e}, where

e := {(x, y, z) ∈ R
3 | 0 ≤ x ≤ 1, y = z = 0 }

is an analytic edge, is not adaptable to S in the sense of Definition 2.4. Therefore
according to Definition 2.5 S is not a face.
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Consider now the set

S′ := S \ { (1/n, 0, 0) ∈ R
3 | n ∈ N }.

S′ is again an embedded analytic submanifold of R
3 and the graph γ is adaptable to

S′—it is in fact adapted to S′ since e ⊂ S′. It is easy to realize that S′ is a face in
the sense of Definition 2.5. Moreover, the set I∂S′ of its isolated boundary points is
infinite. Thus S′ is an example of a face with infinite isolated boundary points.

B Inequivalence of C1 and Cd with d > 1 with respect
to diffeomorphisms

Lemma B.1. There is no diffeomorphism on R
D which maps a cone C1 into a cone

Cd with d > 1 or a cone Cd with d > 1 into a cone C1.

Proof. It is enough to prove the lemma in the case of cones given by (3.10). The proof
we are going to present is based on an analysis of curves ingoing to the cones through
their vertex v = (0, . . . , 0). In the proof we will use notation introduced in Subsection
3.4 below Lemma 3.7.

To prove the lemma in the case of cones (3.10) it is enough to justify the following
three facts:

1. vectors in TvR
D of non-zero D-th components generated by curves ingoing to

C1 through v span TvR
D.

2. vectors in TvR
D of non-zero D-th components generated by curves ingoing to

Cd, d > 1, through v span a one dimensional subspace of TvR
D.

3. if a diffeomorphism ϕ maps C1 into Cd (d > 1) or Cd into C1 then

(a) it preserves the vertex v and maps a curve κ ingoing to C1 (or Cd) through
v into a curve ϕ(κ) ingoing to Cd (or C1) through its vertex,

(b) if the D-th component of κ̇ is non-zero then the D-th component of ϕ′κ̇ ∈
TvR

D is non-zero also.

Indeed—all these together mean that if ϕ maps C1 into Cd or vice versa then the
tangent map ϕ′ is non-linear which cannot be true. Now let us show that the three
statements above are true.

To prove the first statement consider a D ×D-matrix

(Λi
j) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0 1
0 1 . . . 0 0 1
...

...
. . .

...
...

...
0 0 . . . 1 0 1
0 0 . . . 0 1 1
0 0 . . . 0 −1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Obviously, every curve

τ �→ κi(τ) = (Λi
1τ, . . . ,Λi

Dτ) ∈ R
D
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is ingoing to C1 through v, the D-th component of each κ̇i is non-zero and the vectors
span TvR

D (note that the determinant of (Λi
j) is non-zero).

To show that the second statement is correct consider a curve κ : τ → (xi(τ))
ingoing to Cd, d > 1, through its vertex v such that κ̇D > 0. Then we can use the
coordinate xD to reparametrize the curve in the neighborhood of v—there exists a > 0
and a function z �→ τ(z) defined on ]−a, a[ such that xD(τ(z)) = z on ]−a, a[. Then

]− a, a[� z �→ κ′(z) := κ(τ(z))

is a well defined C1-class curve in R
D. Obviously,

κ̇ =
dxD

dτ

∣
∣
∣
τ=0

κ̇′ = κ̇Dκ̇′.

A coordinate expression of the curve κ′ for z ∈]0, a[ reads

κ′(z) = (x1(z), . . . , xD−1(z), xD(z)) = (zdy1(z), . . . , zdyD−1(z), z)

where

yi(z) :=
xi(z)
zd

, i = 1, . . . , D − 1.

These functions satisfy
D−1∑

i=1

(yi(z))2 = 1

(see the formula (3.10)) and are bounded therefore. Since κ′(0) = (0, . . . , 0) we have
for i = 1, . . . , D − 1

(κ̇′)i =
dxi

dz

∣
∣
∣
z=0

= lim
z→0+

zdyi(z)− 0
z

= lim
z→0+

zd−1yi(z) = 0.

Hence
κ̇′ = (0, . . . , 0, 1)

and consequently
κ̇ = (0, . . . , 0, κ̇D).

This proves the second statement.
To prove the third statement assume for definiteness that a diffeomorphismϕ maps

C1 into Cd. Note that ϕ has to preserve the point v = (0, . . . , 0) being the vertex of
both cones. Consequently, an open neighborhood10 of v in C1 has to be mapped onto
an open neighborhood of v in Cd and ϕ maps a curve κ ingoing to C1 through v into
ϕ(κ) ingoing to Cd through v. In particular this means that

(ϕ′κ̇)D = ( ˙ϕ(κ))D ≥ 0

(see (3.13)).
Consider then a curve κ ingoing to C1 through its vertex v such that κ̇D > 0.

Suppose that (ϕ′κ̇)D = 0. Then we can use a D-dimensional rotation R around the
xD-axis to map ϕ′κ̇ into −ϕ′κ̇, and then ϕ′−1 to map the latter vector into −κ̇. Thus
(φ′κ̇)D < 0, where φ := ϕ−1 ◦R ◦ ϕ.

10An open neighborhood U of the vertex v in Cd, d ≥ 1, is an open subset U of Cd such that U =

U0 \ {v}, where U0 is a subset of the closure Cd such that v ∈ U0.
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But R preserves the cone Cd and therefore the diffeomorphism φ maps an open
neighborhood of v in C1 onto an open neighborhood of v in C1. Thus φ(κ) is again
ingoing to C1 through v and (φ′κ̇)D ≥ 0 (see again (3.13)) which contradicts the
previous conclusion. This means that the supposition (ϕ′κ̇)D = 0 cannot be true and
we are left with

(ϕ′κ̇)D > 0.

Thus the third statement is shown to be correct.
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