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Abstract

We introduce a nevi-parameter family of distributions, the Asymmetric Expotial Power (AEP),
able to cope with asymmetries and leptokurtosis and, ataheegdime, allowing for a continuous vari-
ation from non-normality to normality. We prove that the Nraxm Likelihood (ML) estimates of the
AEP parameters are consistent on the whole parameter spadeyhen sufficiently large values of the
shape parameters are considered, they are also asymibtaftiaient and normal. We derive the Fisher
information matrix for the AEP and we show that it can be ammbiusly extended also to the region of
small shape parameters. Through numerical simulationdingehat this extension can be used to obtain
a reliable value for the errors associated to ML estimates fidr samples of relatively small siz&00
observations). Moreover we show that around this sampée #ie bias associated with ML estimates,
although present, becomes negligible. Finally, we preadetv empirical investigations, using diverse
data from economics and finance, to compare the performdnsER with respect to other, commonly

used, families of distributions.

Keywords: Maximum Likelihood estimation; Asymmetric Exponentialvirer Distribution; Information

Matrix; Economic and Financial variables distribution;

1 Introduction

A large and increasing number of empirical analyses in ataiif fields suggests that the assumption of

normality of real data is quite often not tenable. Indeedpieical densities characterized by heavy tails as
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well as by significant degree of asymmetry are often obsdnmthny economic domains. In finance, since the
seminal work of Mandelbrot, scholars and practitionersehaecome aware that the volatile dynamics which
traditionally characterize financial markets cannot beerly described by using the Gaussian distribution;
quite the contrary, almost every financial return seriestessn found to be characterized by the presence of
fat tails (cfr. the reviews in Mantegna and Stanley, 2000CHlgley, 2007, and the references therein). A
number of recent studies have brought strong empirical atigp the claim that fat tails are also a robust
property of aggregate output growth rates distributiomsh Iin cross sections of different countries (Canning
et al., 1998; Castaldi and Dosi, 2009) and in within counimetseries (Fagiolo et al., 2008). At the micro-
economic level, strong leptokurtosis has been identifiddiiness companies growth rates in many developed
countries, irrespectively of the proxy used to measure finm and of the level of disaggregation considered
(Stanley et al., 1996; Bottazzi and Secchi, 2003, 2006aktaBzi et al., 2007).

In all these domains it is important to adopt flexible stat@tmodels able to cope directly with skew-
ness and leptokurtosis and, at the same time, to allow agnigvariation from non-normality to normality
(Huber, 1981; Azzalini, 1986; Hampel et al., 1986). Bottsthaspects are captured by the Asymmetric Expo-
nential Power(AEP) family of distributions discussed ia firesent paper. As a further specific motivation for
introducing it, we present three empirical exercises wisiobw how it actually performs in describing those
empirical distributions characterized jointly by signifit degrees of skewness and fat tails. We compare the
goodness of fit achieved by the AEP with those obtained witlerotcommonly used distributions, namely
the Skewed Exponential Power (SEP), thStable family and the Generalized Hyperbolic (GHYP). ®@the
examples of the successful and general applicability ofAtgmmetric Exponential Power are in Santoro
(2006), Alfarano and Milakovic (2007), Fagiolo et al. (20@®&d Sapio (2008).

The paper is organized as follows. In the next Section the faERly of distribution is introduced. In
Section 3 we present some theoretical results on the Maxifrikelihood estimation of the AEP family and
derive the elements of the Fisher’s Information matrixcdssing its domain of definition. In Section 3.1 we
prove the consistency of the estimator in the whole paransptece and we discuss the asymptotic efficiency
and normality for the case in which both parametgrandb, are greater than two, while in Section 3.2 we
show that, for some estimates, the domain of definition ofltfiermation matrix can be extended to the
whole parameter space. Next, in Section 4, with the help wfreskve numerical simulations, we analyze the
bias of the ML estimator and their asymptotic behavior indbeain of the parameters space not covered by
the analytical results. Finally, in Section 5 we comparegbdormance of the AEP with other, commonly
adopted, families of distributions in three specific engaifiexercises including electricity, foreign exchange

and stock market data.



2 The Asymmetric Exponential Power distribution

Subbotin (1923) introduced a family of distribution, gealrknown as the Exponential Power (EP) distribu-
tion, characterized by a scale parametes 0, a shape parametér> 0 and a location parametes. The EP

density reads

1 1 |x—m|b
N b = b ‘ a ’
fEP(X7 7a7 m) 2ab1/bf(1/b + 1) €

(1)

wherel'(z) is the Gamma function. The Gaussian distribution is recverhenb = 2 while whenb < 2 the
distributions are heavy-tailed: the lower is the shaperpatarb the fatter the density tails. This model has
been studied by many scholar: cfr. among others Box (1958)€F (1960) and Vianelli (1963). Inferential
aspects of the EP distribution inside the Maximum Likelitidamework have been analyzed in Agr6 (1995)
and Capobianco (2000). In order to deal with both fat taild skewness Azzalini (1986) considered the

skewed exponential power (SEP) distribution

fser(x:b,a,m, A) = 2 ®(sign(z) |z]*/? A \/2/b) fgp(x;b, a,m) )

wherez = (x —m)/a,ab > 0, —00 < m < 00, —00 < & < 00, —00 < A < oo and® is the normal
distribution function. It easy to see thAtgp reduces tofyr when\ = 0 so that the normal case is obtained
when(\, b) = (0,2). The Maximum Likelihood inference problem for this distriton is discussed in details
in DiCiccio and Monti (2004).

In the present paper we suggest an alternative way to taoklpresence of heavy tails and skewness. We
propose a ne-parameters family of distributions, the Asymmetric Exeotial Power distributions (AEP),
characterized by two positive shape parameig@ndb;, describing the tail behavior in the upper and lower
tail, respectively; two positive scale parametersandq;, associated with the distribution width above and
below the modal value and one location parameterepresenting the mode. The AEP density presents the

following functional form

Tz—m
ar

or G(xfm))

faep(7;P) = é 67<b7 3

wherep = (b, b, a;, a,, m), 6(x) is the Heaviside theta function and where the normalizatmrstant reads

C= ale(bl) + aer(br) with

Ak(x):x%_lI’(k—i_l) . (4)

X

The AEP reduces to the EP when= a, andb; = b,.. The density in (3) can be easily integrated to obtain



0.6 T T T T T T T T T 0.9

. br: 5—— a= 5
MZosil o8| 2057
051 I e | a8 =0.
B 1 0.7
0.4 :f' // ‘ 1 0.6
i i\‘
03} LY/
) H
/ \
i P
02r :",' l': \\
i AN
.‘./ \\
0.1r 4 N
0 A s S
-3 -2 -1 0 1 2 3 4 5 6
Figure 1: Densities of the AEP(1,2b1) with b, = Figure 2. Densities of the AEP(1,045,0.5) with
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the distribution function

a; Ao(by) 1
T Q(b_l7

(e78 AO(br) 1
(1 o 9y

FAEP(m; p) =

(®)

Ay
whereQ(«, x) is the regularized upper incomplete gamma functiir, z) = I'(«, z) /T ().

The meanu,zr and the variance?,,, of the AEP distribution can be straightforwardly derived

1 a3 al
pave = m+ = (af Av(br) = af Ai(Br))  oRgp = o A2(br) + gl As(br) - (6)

Moreover, it is possible to express the genérith central momend/;, as a finite series
hCrh 1 h
My =" (q) el =] (agﬂ Ap(by) 4 al ™ Ah(bl)) (a Ai(by) —af Ar(by))" " . @)
q=0

The AEP constitutes a natural extension of the family odtijnproposed by Subbotin, hence the results

derived in the present paper apply also to the latter.

3 Maximum Likelihood Estimation

Consider a set of N observatiosy, ...,z y} and assume that they are independently drawn from the AEP
distribution with parameterpg. We are interested in the estimationwfrom that sample. The Maximum

Likelihood estimatep is obtained maximizing the empirical likelihood or, equartly, minimizing the nega-



tive log-likelihood, computed taking the logarithm of thieelihood function and changing its sign

N

p= argmlnz Lagr(zi;po) Where Lygp(x;po) = —1og fare(2; Po) - (8)
=1

The Cramer-Rao lower bound for the estimates standard iertbe case of unbiased estimators is provided

by the5 x 5 information matrix.J(po), defined as the expected value of the cross-derivative

Ji.j(Po) = Epg [0iLare (2 Po) 0jLare(2;Po)] 9)

whereEy, [.] is the theoretical expectation computed using the trueegghg and where the indexesand

j runs over the five elements of (b, b,, a;,a,,m). In practice, one usually assumpg = p. In the next
Sections we will show that, notwithstanding the presendmii&-sample biases and of analytical problems in
extending the definition of to small values of; andb,., the elements of this matrix can be used to characterize
the statistical errors associated to ML estimates on a [aageof the parameters space. The expression of the

elements of the Fisher information matrix for the AEP dimition are provided in the following

Theorem 3.1 (Information matrix of AEP density) The elements of the Fisher information matyi¢p) of

the Asymmetric Exponential Power distributi(8) are

1 2al 2al
Jblbr = C2 alaTBO(bl)BO(b )
1 1
Joa = aBo(bz) o —5a1Bo(b1) By (by) — B
1
Ioa, = e —5a1Bo(by) By (by)
1
Joym = ﬁ(log b — )
1 1 a 2a 2a
_ BI/ -2 BI 2 T s B r B
Jbrbr C O(b ) CQ aT‘( O(bT')) + Cbr Q(br) Cb% 1(b7") + Cb";) O(br)
1
Jbral = _EGTBO(bl)B{)(bT)
1 1 1
Jbrar = EB(/)(br) @CLTBO(br)B(l)(bT) EBl(br)
1
Jbrm = - b C(log b, — 7)
1 b+ 1\ 1
1
Jalm = _EBO(bl)BO(b )
by
Ja m = A
! Caqy



1 b +1\ 1
Jaraq- - __Bg(br) + < > _BO(bT)

C? ayr C
br
Ja m =
" Ca,
p /it 9 1 ;1/br+1 %, — 1
o= b I b b by
alC bl arC br
(10)
where~ is the Euler-Mascheroni constant and, for any integeit is
1 u k 1
By(x) = z=* Z <h> logh 2 T(k=1) <1 + —> , (12)
X
h=0

wherel'¥) stands for thek-th derivative of the Gamma function.
proof. See Appendix A.

In principle the elements of the inverse information matfix' can be directly obtained from the expressions
in (10). None of these elements, however, is identicallypzeor any easy simplification can be found. For
these reasons, we decided not to report here their cumbersgpnessions. In general, for practical purposes,
it is much more convenient to compute the elements/ aind obtain the elements of~! by numerical
inversion. The situation changes if one considers thermalglymmetric EP obtained wheip = a,, = a and

b; = b, = b. For this case the information matrix has been derived iroA@®95). To ease the comparison of

the general and the particular case, we report the res@tusaéng our notatioh.One has

Theorem 3.2 (Information matrix of EP density) Consider the Exponential Power distribution defined in

(1) for the set of parameter®, a, m) . The Fisher information matrix (b, a, m) defined as

Jz’,j(b, a, m) = Eb,a,m [aiLEP('T; b,a, m) ajLEP (55; b,a, m)] > (12)
whereLgp(z; b, a,m) = —log fep(x;b,a,m) is found to be
BB +1/0) +logh + LA (14 4) — & —L(logb+y (1+4)] 0
fﬁ [1ogb+1/1(1+%)} a—bz 0 (13)
0 0 b=/ r(2—1/b)

aZ T(1+1/0)

INotice that the expansion of the eIemele’ta1 of the inverse information matrix reported in Agro (1995ntains a mistake: the

term{log b+ (1 + %)} in the numerator is incorrectly squared.



and its inverse reads

[ b ab?[log b+ (1+1 )] 0
—b+(1+)¢! (1+7) —b+(1+b)y’ (1+1)
ab?[logb+1(1+1)] a2 [b(—1+log? b)+(14b)y)’ (1+%)+2by (14 ) log b+bip? (147 )] 0 (14)
—b+(1+b)y’ (143 ) b [—b+(1+b) v/ (1+2)]

2p2/b—1 F(1+l)
0 ’ e

Proof. SinceLgp(z;b,a,m) = Lagp(z; p) Wherep = (b,b,a,a,m), the elements of (13) can be easily
found starting from the elements of the AEP reported in Theo8.1. Consider for instance the shape param-
eterb. The derivative with respect oof Ly is the sum of the derivatives with respecti@ndb, of L, gp .

In other terms, in computing the elements of the Fisher mfiron matrix for the EP distribution, one has to

consider the substitutio§5 PN a% + a% so that, for instance,

ja,b(b7 a, m) =E [aaLEP 8bLEP] =E [(8blLAEP + abTLAEP) (aalLAEP + 8a7-LAEP)]

= Jalybl (13) + Jalyb'r (13) + Jarybl( ) + Ja'rybr( )
The other elements are obtained in an analogous way.

Q.E.D.

3.1 Properties of the Estimators

We investigate now, form an analytical point of view, thefisignt conditions for consistency, asymptotic
normality and asymptotic efficiency of the AEP maximum likebd estimators. The behavior of these esti-
mators are different whenever the parameteought to be estimated or can be consider known. We analyze
the two cases separately, starting with the case of unknmown

From the definition of AEP in (3) the parametgss= (b, b,, a;, a,,m) belong to the open sdd =

(0, +00) x (0,400) x (0,400) x (0,+00) x (—o0,+00). Let pg be the true parameters value, then

Theorem 3.3 (Consistency)For any pg € D maximum likelihood estimatgs is consistent, that i$ con-

verges in probability to its true valugg.

Proof. For anypg € D there exists a compa&t C D such that:



1. poeP

2. Vp # po,p € P, itis f(z;|p) # f(xi|po)

3. Vp € P,log f(x;|p) is continuous

4. E[supp |log f(z:|p)]] < oo.

According to Theorem 2.5 in Newey and McFadden (1994) (CGheg pag. 2131) these four conditions are

sufficient to prove the statement.

Q.E.D.

While consistency is easy to prove in general, finding swfficiconditions for asymptotic normality and
efficiency is much more difficult. However, both can be foundapply for sufficiently large values of the

shape parameters.

Theorem 3.4 (Asymptotic Normality and Efficiency) If b;, b, > 2 the unique a solutiof of the maximum
likelihood problem(8) is asymptotically normal and efficient in the sense #@¥ (p — po) converges in

distribution toA{0, [J(p)]~!}.
Proof. For the proof see Appendix B.

Analogous results were derived in Agrd (1995) for the symmimdé=xponential Power distribution (1). The
reason why the asymptotic efficiency and normality of the Mtireator can only be proved wheép b, > 2
is due to the presence of singularities in the derivatived gf, with respect to the parametet. When
this parameter is considered known, the situation becomeh simpler. In this case the vector of unknown
parameterp = (b, by, a;, a,) belongs to the open s& = (0, +00) x (0,+00) x (0,+00) x (0,400). Let

po be the true parameters value, then the following holds

Theorem 3.5 (Consistency, Asymptotic Normality and Efficiacy) If m is known, the solutiorp of the
maximum likelihood problerf8) converges in probability to its true valyg); p is also asymptotically normal

and efficient in the sense thatN' (p — pg) converges in distribution tav {0, [.J(p)]~'}.

Proof. The proof follows directly from the proofs of the previougtliems. Indeed whern is known no
discontinuities in the derivatives ofog f(x;|p)/0p; emerge and hence the conditions required by Theorem

3.3 and by Theorem 3.4 are always satisfied.
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Q.E.D.

Basically, the previous Theorem guarantee that wheas known, the maximum likelihood estimatesmwre
consistent, asymptotically efficient and normal on the whadrameter space. Of course, the same thing also

applies to the symmetric EP density (Agro, 1995).

3.2 Extending the Fisher information matrix

The presence of singularities which forbids the extensicgh@results of Theorem 3.4 to small valuesisf
also affects the domain of definition of the elements of trel&ii matrixJ.

The function By (z) defined in (11) and all its derivatives are defined for- 0 and for anyk. Conse-
qguently, all the elements af in (10), apart from/J,,...,, are defined on the whole parameter space. The latter
element, on the contrary, is only defined when bgtandb, are greater thaf.5. Whenb,; or b, move toward
0.5, the gamma function contained in that element encountedea(m x = 0) so that.J,,,, diverges. Of
course, this phenomenon does not happen when the paramegsn be considered known. In that case, the
4x4 Fisher matrix (upper left block of) is defined for any value df, andb,. and, according to Theorem 3.5,
this matrix can be used to characterize the asymptotic efribre estimates over the whole parameter space.
The presence of a pole i,,,,, seems to suggest that, whenis unknown, the Fisher information matrix
cannot be used to obtain a theoretical benchmark of the dstimprrors involved in the ML estimation for
small value ob. It turns out that this is not true. Indeed, the only estirmatbose error diverges ia.

To see how this mechanism works, consider the symmetricicé$8). In this case the Fisher mattbhas



a block diagonal structure, so that the value of the bottaymt rﬁ)lock,Jm,m, does not affect the computation
of the inverse of the upper left block, which contains thedgad error of the estimatésandb and their cross
correlation. Due to this block diagonal structure, the faatm is known or not, does not have any effect on
the asymptotic error of the estimates of the first two parametHence, one can imagine that the upper left
block of the Fisher information matrix can be used to obtaihemretical values for the standard deviations
op ando, also forb < 0.5.

In the asymmetric case, the block-diagonal structure ofRisker information matrix disappears. In
general, the fact that: is known or that its value has to be estimated does have att effiethe elements of
the inverse information matrix associated with the stagh@daror of thea’s andb’s estimates. Nonetheless a
peculiar cancellation in the computation of the elementd of allows to recover a result analogous to the
one found in the symmetric case. More precisely, wheor b, goes toward).5, the element/,,, ,,, diverges
and, correspondingly];hlm goes to0, but, at the same time, the covariance termg of involving m tend
to 0, so that the elements in thie:4 upper left block remains finite. In fact, thie4 upper-left block ofJ !
become positive definite and is equal to thel inverse Fisher information matrix obtained in the case in
which m is known. Hence, analogously to the symmetric case, theezlesrofJ can be used to recover a
theoretical benchmark for the error of the estimatsdanda’s on the whole parameters space. To illustrate
the described behavior, the error banda estimated as the square root of the diagonal elements bire
reported in Figure 3 and Figure 4, respectively. For conspas, both the case with known and unknown
are considered, and the associated element of the EPJcdég is also reported. As can be clearly seen
from the insets, wheh — 0.5 the element of/—! for the case ofn unknown case are indistinguishable for
the same elements computed assuminggnown. The same behavior can be observed also when only one
parameter betwedn andb, converges td.5.

What is the meaning of the inverse Fisher information m&wixvalues ofb lower then0.5? Can we
exploit the continuation of the upper-left block 8f ! to investigate asymptotic efficiency and normality of
ML estimators also in the region of the parameter space whisdew? Using extensive numerical simulations

we will try to answer these questions in the next Section.

4 Numerical Analyses

The analyses of this section focus on two aspects of the Mimason of the Symmetric and Asymmetric
Exponential power distribution. First, we analyze the prne® of bias in the estimates. We know from

Theorem 3.3 that this bias progressively disappears wheesdmple becomes larger, but we are interested

10
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Figure 5: Rescaled standard error of the estimates of ttaera (top) andb (bottom) as a function of the
sample sizéV for the symmetric Subbotin distribution with= 1, m = 0 and for different values df.

in characterizing its magnitude for relatively small sae®pl Second, we address the issue of the estimate
errors, analyzing their behaviors for small samples andgrio describe their asymptotic dynamics. These
investigations are performed using numerical simulatfor.a given set of parametgsg we generate a large
number ofi.i.d. samples of sizéV then, for each parameter € po, we compute the sample mean of the
estimated valug(N; po) = En [p|po], where the expectation is computed over all the generateglea,
and the associated bigéN; po) = p(N; po) — po-

This value is an estimate of the biasgofind, in general, depends on the true valge Since the ML esti-
mates are consistent on the whole parameter space, we #xgiah v, .~ p(N; po) = 0. The second mea-
sure that we consider is the sample variance of the estinvatads, that is>(N; po) = Ex [(p — §)*|po] .

Notice that the previous two quantities together define et Rlean Squared Error of the estimatg s (IV; po) =

11



VEN[(p — po)?po] = /P* + o2

4.1 Symmetric Exponential Power distribution

Consider the symmetric Exponential Power distributionTaible 6 we report the values of the bias and the
estimates standard deviation for the three parameiérandm computed usindg0, 000 independent samples
of size N, with N running from100 to 6400 and for different values df. For the present qualitative discussion
the value of the parametesisandm is irrelevant; hence we fix their value taand0, respectively. The values
of the bias and the estimates standard deviation for thepess: andb in the case ofn known are reported

in Table 7.

Since we consider0000 replications, the standard error on the reported bias aitmis nothing but the
estimator standard deviation ovefl0,000. The bias estimates which results two standard deviaticayaw
from zero are reported in bold face in Tables 6 and 7. Lookirigeafirst column of Table 6 for each estimate,
one observes that the ML estimatesuadindb are sometimes biased, while the estimated bias/fas never
significantly different from zero. Notice that in all caseswhich it is present, the bias seems to decrease
proportionally tol /N (for both known and unknowm:). For the parameter the bias stops to be significantly
different from zero also for medium-sized sampldsground400) while for b it is in general significant until
largest sample sizes are reached. It is worthwhile to ntitiae when the parameter is considered known,
the bias of the estimated valuescodndb tends to increase, irrespectively of the true valué. of

Let us consider now the estimated standard emg(sV) in Table 6. The first thing to notice is that they
are always at least one order of magnitude greater that theagsd biases, so that the contribution of the
latter to the estimates Root Mean Squared Error is in gemegligible. This means that, for any practical
purposes, the ML estimates of the symmetric Power Expaaleditribution can be considerathbiased
This is also true if one consider the case wittknown, reported in Table 7. Indeed the values of the estgnate
standard error are practically identical for the two casils anly a couple of exceptions whevi is small and
b large. In this cases (see, for example= 100 andb = 1.4) the standard error is much bigger when also
has to be estimated.

The second thing to notice is that the estimated standandseseem to decrease with the inverse squared
root of N. Indeed in Figure 5 we report for three different value$,0{/No,(N) andvNay(N), for m
unknown (left panels) and known (right panels). Notwithsliag the presence of noticeable small sample
effects, these products always converge toward an asyimp&dtie. Since the convergence is from above, the

efficiency of the estimator for small sample is lower than @amer-Rao bound, implying a small sample

12



Table 1: Extrapolated values for the asymptotic (lakgeestimates standard errors together with the theoret-
ical Cramer-Rao values.

0.2 | 0.3012 0.3016| 2.3418 2.3519| 0.0186 -

0.4 | 0.6366 0.6400| 1.7547 1.7489 0.1921 -

0.6 | 1.0105 1.0134| 1.4849 1.4994| 0.5628 0.4130

0.8 | 1.4024 1.4198| 1.3550 1.3604| 0.8499 0.8134

1.0| 1.8608 1.8574] 1.2654 1.2715] 1.0041 1.0000

1.2 22602 2.3244| 1.2100 1.2095| 1.0808 1.0700

1.4 | 27697 2.8194] 1.1550 1.1639 1.0912 1.0817

1.6 | 3.3065 3.3411| 1.1195 1.1287| 1.0762 1.0651

1.8 | 3.8407 3.8883] 1.0928 1.1008| 1.0480 1.0353

2.0 | 44819 4.4599 1.0900 1.0779| 1.0036 1.0000

2.2 | 49894 5.0550| 1.0536 1.0587| 0.9674 0.9632

inefficiency. Notice, however, that this inefficiency is iergral of modest size.
For the case of unknowm, in order to compare the asymptotic behavior of the MontddGzstimates of
the standard error with the theoretical prediction we abersihe large samples limit

lim \/NUP(N; Po) = ,°" (Po) - (15)

N—oo

We compute these values by extrapolating 3h@bservations relative to the largest values\dofestimating

with OLS the intercept of the following linear relation
1
\/NO'pNOé—{—ﬂN . (16)

The results for the different values ioére reported in Table 1 together with the theoretical ptemiobtained
from J~! in (13). As expected, the agreement is extremely good, wébrepancies around5%, in the
regionb > 2, where the Theorem 3.4 applies. In this region, the ML egtinseof the EP density are, indeed,
asymptotically efficient, so that the observed agreemantseas a consistency check of our extrapolation

procedure. The same degree of agreement, however, is asovable in the regiof.5 < b < 2, where
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Figure 6: Rescaled standard error of the estimator of thenpaterss; (top) andb; (bottom) as a function of
the sample siz&/, for the Asymmetric Subbotin distribution fay = a,, = 1, m = 0 and different (but equal)
values of; andb,..
the Fisher information matrix is defined but no theoreti@dults guarantee the efficiency of the estimator
for large samples. Moreover, quite surprising, the agre¢memains high, for the andb estimators, also
in the regionb < 0.5, where the Fisher information matrix cannot be defined atiogrto (12) but can be
analytically continued, as discussed in Section 3.2.

In conclusions, the previous numerical investigation edtein many respect the analytical findings of the

existing literature. We have show that for the symmetricdhamtial Power distribution

1. the bias of the ML estimators, being very small, can belpad@ored at least for samples with more

than100 observations.

2. the ML estimators of,, b andm are asymptotically efficient, independently of the valuehsf true

parameters and of the fact that the valuerois known or unknown.
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Table 2: Extrapolated values for the asymptotic (lalgeestimates standard errors of the EP together with
the theoretical Cramer-Rao values.

SASY J-1 SASY J-1 SASY J-1
(b1, by) ) by by =b, a ar a; = ar m m
(0.4,0.4) 0.7181 0.7083 0.6907 2.1407 2.1628 2.1341 0.3740 -
(0.5,0.5) 0.9392 0.9565 0.9073 1.9636 1.9386 1.9199 0.5788 -
(0.75,0.75)| 1.6974 1.6811 1.6114 1.6557 1.6755 1.6458 1.4214 1.1146
(1.5,1.5) 5.9582 6.0244 5.9308 3.2969 3.2845 3.2534 5.1804 5.1064
(2.5,2.5) | 19.0743 18.7929 19.2629 7.9499 7.9109 8.0497 11.2056 11.3643
(be, br) b br by by a ar a ar m m
(0.5,1.5) 0.8709 3.8556 0.8174 3.5742 2.1005 1.5258 2.0572 1.3205 0.8588 -
(0.5,2.5) 0.8802 7.2828 0.7991 6.9769 2.0958 1.4619 2.0710 1.1991 0.9164 -
(1.5,2.5) 6.8920 14.3902 6.7661 14.13454.1304 5.3853 4.0050 5.2242 7.1248 6.9119

3. the continuation of the Fisher information matrix to tlegion withb < .5 can be used to obtain a

reliable measure of the error involved in the ML estimatiéparameters andb.

4.2 Asymmetric Exponential Power distribution

This Section extends the numerical analysis to the case yhAgtric Exponential Power distribution. For
the sake of clarity, we split our analysis in two steps. Fing analyze the asymptotic behavior of the ML
estimates when the true parameters have symmetric valusson® we comment on the observed effects
when different degrees of asymmetry characterize the @lies of the shape parametérandb,.

In Table 8 we report the values of the bias and the estimeatesiatd deviation for the five parameteys
ar, by, b, andm computed using0, 000 independent samples of si2é, with N running from100 to 6400.
The samples are randomly generated from (3) considerifigrelift values for the parametéis= b,.. Again
the exact value of the’s andm parameters is irrelevant for the present discussion ancetvg s= a, = 1
andm = 0 for all simulations. As can be seen, the picture that emegyeentical to the symmetric case.
The bias is in general present for small samples, apart éoegtimaten which seems in general unbiased.
When present, the bias tends to decrease proportionallyNoand, for the parameters anda, it becomes
statistically indistinguishable from zero with the incseaf the sample size. Notice that f§r> 100, the bias

is always at least one order of magnitude smaller than tmelatd deviation. Consequently, also in the case
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of Asymmetric Exponential Power distribution, when thestparameters are symmetric, and for sufficiently
large samples > 100), the ML estimates can be considered, for any practicalgaepunbiased Also the
behavior of the estimates standard deviation is subshgritiantical to what observed in the case of symmetric
distribution. Indeed, the plots in Figure 6 (left panelshfian that the rescaled estimate@_\fo—p(N) approach
flat lines whenV becomes large, making the asymptotic efficiency apparemueder, the small sample effect
seems to last a little longer: when one consider small vadfiégsee the top left panel in Figure 6) it is still
noticeable for sample as large H¥)0 observations.

In Table 9 we report the values of the bias and the estimagesiatd deviation for the four parametérs
b., a; anda,., obtained with the Monte Carlo procedure illustrated abavéhe case in which the parameter
m is assumed known. No large differences are observed in tievlme of biases and standard deviations with
respect to the case of unknown. The general increase of the bias level, already observatidcsymmetric
distribution, is still there. Concerning the estimatesxdtad errors, notice that the right panels in Figure 6
display behavior similar to what observed in the left panetsfirming that the deviations from the Cramer-
Rao bound is essentially due to small sample effect. In tke ofim known, these effects tend to disappear
completely whenV > 400.

In order to judge the reliability off ~! in estimating the observed errors, we compute the asyraptoti
values of the standard errasg®" extrapolating the three estimates obtained with the lagmsples ¥ =
1600, 3200, 6400) following the same procedure used above (cf. equation).(T)e results are reported in
Table 2 (upper part). Again, the agreement between the vaxieapolated from numerical simulations and
the theoretical values obtained from the inverse inforamathatrix./ —! is remarkably high: discrepancies are
around1% both in the region of high and lows, confirming that/~! can be used to obtain a value of the
asymptotic standard errors of the estimates also in themegiwhich Theorem 3.4 does not apply.

Finally, we have explored the behavior of the ML estimatoewkhe true values of the parametgrand
b, are different. Results are reported in Table 10 for a s@edf different values of the two shape parameters.
The most noticeable effect of the introduction of asymmaetihe true values of the parameters is an increase
in the biases of their estimates. First, in this situatidsn éhe estimate of location parameteresults biased.
Second, the observed biases of the estimatésrefain statistically different from zero also for relative
large samplesN = 6400). Again, when the sample size increases, the biases stilbdse proportionally
to 1/N. At the same time, the behavior of the estimates standacd @srresembles the ones observed in
the previous cases: as the plots in Figure 7 show, all thalesstandard errors defined accordingly to (15)
asymptotically approach flat lines so that the ML estimator be considered asymptotically efficient. The

different asymptotic behaviors of the bias and the standext imply that for sufficiently large samples, the
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Figure 7: Standard error of the estimator of the parametets (top) andb;, b, (bottom) as a function of the
sample sizeV for the Asymmetric Subbotin distribution for different vak ofy;, b, = 2.5, a; = a,, = 1 and

m = 0.

contribution of the former to the estimates root Mean Saui&eors becomes negligible. Indeed, it is already
the case for sample sizes arourid observations. As in the symmetric case these results ddaoge when

m is known (cfr. Table 11).

We conclude the section on the numerical analysis with soried tomment on the technical aspects
of ML estimation. The solution of the problem in (8) is in geslemade difficult by the fact that both the
AEP and EP densities are not analytic functions. The sdnaliecomes more severe when small values of
the shape parametérare considered. In this case, the likelihood as a functioth@focation parameten
possesses many local maxima, located on the observatidok edmpose the samples. In order to overcome
this difficulties, the ML estimation presented above havenbabtained with a three steps procedure: in each

case the negative likelihood minimization started withHiadhiconditions obtained with a simple method of
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moments. Then a global minimization was performed in ordeshitain a first ML estimate, which is later
refined performing several separate minimizations in tfferéint intervals defined by successive observations
in the neighborhood of the first estimate. Even if this metisatht guaranteed to provide the global minimum,
we checked that in the whole range of parameters analyzsttegiancies were always negligiBI€or further
details on the minimization methods utilized the readeeisired to Bottazzi (2004).

As already observed in Agro (1995) for the EP distributiainen the value of the shape paraméiés
large and the size of the sample relatively small, the mimdtidn procedure can fail to converge. In the case
of Asymmetric Exponential Power distribution the situatie in general worsened especially when the shape
parameter$; andb, present largely different true values (see for exaniple- 100, b; = 0.5 andb, = 2.5 in

Table 8). The number of failures is reported in the columnsdkthe relevant Tables.

5 Empirical Applications

In the present section we test the ability of the Asymmetdw& Exponential to fit empirical distributions
obtained from different economic and financial datasets.civiepare the AEP with the Skewed Exponential
Power (SEP), the-Stable family and the Generalized Hyperbolic (GHYP) eatimg their parameters via
maximum likelihood procedures (for parametrization anthidkeon the SEP, tha-Stable and on the GHYP
see DiCiccio and Monti (2004), Nolan (1998) and McNeil ef(aD05) respectively). In order to evaluate the
accuracy of the agreement between the empirical obsergtdbdiions and the theoretical alternatives we
consider two complementary measures of goodness-of-ditKthmogorov-SmirnovD and the Cramer-Von

MisesW?2 defined as

1 2
) Emp Th Emp Th 7
D= m;p F () — F* " (xp) W2 = Ton + En (F (7g) — F (Sﬂn)) ) 17)

where FP™P and FT" stands for the empirical and theoretical distribution ezsipely. These two statistics
can be considered complementary as they capture somehenedifeffects. The statistics is indeed pro-
portional to the largest observed absolute deviation oftteeretical form the empirical distribution while the
W2 is intended to account for their “average” discrepancy ¢herentire sample.

Notice that the following discussion is not focused on asisgswhether the deviation of the theoretical
models from actual data can be considered a significantlsifmaisspecification. Rather, we are interested

in evaluating the relative abilities of the different faied to properly describe the behavior of the empirical

20Observed discrepancies were generally due to the preséseearal clustered observations
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Table 3: Maximum likelihood estimates (standard errorsdrepthesis) of the shape parametérandb,.,
of the AEP density together with the EDF goodness-of-fitigtias for four different families of distribution.
Data are daily log returns of electricity prices from thertaie power exchange, Powernext.

Goodness of fit - W2 Goodness of fit- D

Hour by b: AEP GHYP Stable SEP| AEP GHYP Stable SEP

10.00 a.m.  0.566022 0.8930.043 | 0.287 1.365 1.436 1.339 0.030 0.053 0.051 0.042
12.00 a.m. 0.62bo26 0.9850.0s51 | 0.155 0.253 0.644 0.39Q 0.022 0.024 0.036  0.032
2.00 p.m. 0.60@.024 0.9990.051 | 0.147 0.752 1.016 0.573 0.026 0.040 0.044 0.035
5.00 p.m.  0.59bo23 1.0030.051 | 0.193 0.592 0.774 0.847 0.027 0.036 0.037 0.042

8.00 p.m.  0.65@.027 0.9120.046 | 0.091 0.178 0.576  0.239 0.017 0.024 0.033 0.022

distributions. Hence, all the figures associated with tliferdint statistics should be regarded in comparative

and not absolute terms.

French Electricity Market

As a first application we analyze data from Powernext, thedtrgopower exchange. We consider a data set
containing the day-ahead electricity prices, in differentirs, from November 2001 to August 20Dénd we
build the empirical distribution of the corresponding gldilg returns. Then using the goodness-of-fit statistics
defined in equation (17) we investigate the ability of therfoompeting families to reproduce the observed
distributions. Results are reported in Table 3.

Two main evidences emerge from the reported figures. HrstAEP outperforms all the other distribu-
tions both in terms of the Kolmogorov-Smirnov and of the Ceaiion Mises statistics. In particular, from
Table 3, it is clear that while the observed Kolmogorov-3wmw statisticsD is, for the AEP, only slightly
lower than the ones obtained for the other families the sgppears not true in the case of the Cramer-Von
Mises test. Indeed, the values of tHé2 statistic are significantly lower for the AEP being alwayssl¢han
half of the average of the other three. In order to provide aemevealing, albeit qualitative, assessment of
the relative ability of the different families in reprodngi the empirical distribution we present, in Figure 8,

two plots, for the AEP and the GHYP respectively, of the fiorctA (z) defined as

A(z) = FEmP(z) — FTh(z) . (18)

3These prices are fixed on day, separately for the 24 indiVitmars, for delivery on the same day or on the following.
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Figure 8: DeviationsA(z) of the AEP and of the Figure 9: DeviationsA(x) of the AEP and of the
GHYP from the empirical distribution. Data are GHYP from the empirical distribution. Data are
daily log-returns of the French electricity price at daily log first difference of the exchange rate be-
5 p.m. tween US Dollar and Euro.

Deviations ofA(x) from the constant ling = 0 represent the local discrepancy between the theoretical an
the empirical distribution. This figure, while confirming &ecordance with formal tests the better fit of the
AEP, adds also some interesting insights: the AEP is cldeatier in the whole central part of the distribution
and in its upper tail, while the opposite is true for the lowarwhere the GHYP seems slightly preferable.

The second evidence emerging from Table 3 regards the efiffer between the estimated values of the
AEP shape parametebs andb,, which suggests the presence of substantial asymmetriém ismpirical
distribution of electricity price returns. This finding istra peculiar feature of the French market but applies
to a number of different power exchanges, see Sapio (2008) bvoader analysis. As such, it provides a
potent, empirically based, case for the development of@édistributions able to cope at the same time with
fat tails and skewness.

To sum up, our evidence suggests that the AEP fits systerhatiedter the skewed distribution function
of the log returns of French electricity prices presentatghe same time, the lowest overall discrepancy and

the lowest maximum deviation from the corresponding erogifoenchmark.

Exchange rates Market

As a second application we consider exchange rates datrisall from FREP, a database of over 15,000
U.S. economic time series available at the Federal Resaam& &f St. Louis. We select a dataset containing

5 different exchange rates and we focus on the most recerthonsand observatioRsWe build empirical

“For the sake of clarity we do not report the functiarfz) for the a-Stable and the SEP, since from Table 3 it is apparent that
their ability to fit the empirical distribution is substaaity worse.

The exchange rates analyzed are: U.S. Dollars to one Eugo,llars to one U.K. Pound, Japanese Yen to one U.S. Dollar,
Singapore Dollars to one U.S. Dollars and Swiss Francs tdJoSeDollars. The time window goes from August 25, 2003 to éstg
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Table 4. Maximum likelihood estimates (standard errorsarepthesis) of the shape parameters of the AEP
density together with the EDF goodness-of-fit statistiasféor different families of distribution. Data are
daily log first difference on different exchange rates. 8euFRE® Federal Reserve Economic Data.

Goodness of fit - W2 Goodness of fit- D

Currencies by b, AEP GHYP Stable SEP| AEP GHYP Stable SEP

usd4eu 1.198127 1.5030165 | 0.052 0.073 0.351 3.42Q 0.018 0.022 0.036  0.107

usd4uk 1.385.172  1.6880217 | 0.037 0.044 0.214 0.12¢0 0.016 0.019 0.035 0.026

sz4usd 1.455163 1.3740167 | 0.054 0.060 0.339 0.07§ 0.018 0.019 0.039 0.021

si4usd 1.11@.119 1.5300153 | 0.038 0.033 0.066 2.798| 0.020 0.016 0.020 0.088

jp4usd 1.19%.125 1.541o0a7s | 0.019 0.029 0.141 0.703 0.014 0.018 0.032  0.059

distributions of the (log) differenced exchange rateseseaind, as we did in the previous section, we test the
relative ability of the4 families under investigation to fit their observed counsetp

Results of the goodness-of-fit test are reported in Table dceCgain the AEP and the GHYP clearly
show, when compared with the other two families, a bettelitalto reproduce the empirical distributions
with the former displaying the best results in four out of fsample considered. To add further evidence,
Figure 9 reports the functioi (z) for the exchange growth rates of U.S. Dollar vs. Euro: théedihce
between the two families appears, if compared with FigureaByer mild even if it is apparent the better

capability of the AEP to fit the extreme upper tail of the erwaik distribution.

Stock Markets

As a last application we consider daily log returns of a samydl30 stocks, 15 from the London Stock
Exchange (LSE) andl5 from the Milan Stock Exchange (MIB) chosen among the top émésrms of capi-
talization and liquidity?

The results of the goodness-of-fit tests performed usingtlaadV2 statistics is reported in Table 5. As
can be seen the obtained results are more ambiguous tham jmatious two analyses on electricity power
prices and exchange rates. While also in this case the AERha@n@HYP systematically outperform both
the a-Stable and the SEP, it seems less clear how to rank thermirs t&frtheir capability to fit the empirical
returns distributions. On the one hand, for the majority e stocks, the Generalized Hyperbolic seems

better in approximating the overall shape of the empiriesigity, as withessed by the lower values of ifie

14, 2007.
®We use daily closing prices as retrieved from Bloomberg fiferlata service. The time window considered covers thger
between June 1998 and June 2002.
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Goodness of fit - W2 Goodness of fit - D

LSE by b AEP GHYP  Stable SEP AEP GHYP  Stable SEP

ARM  1.0760092 0.8550063 | 0.0666 0.0790 0.2042  0.4951 0.0287 0.0289 0.0392 0.0508
DXN  0.71800s3 1.2590.006 | 0.0336 0.0910 0.1605 0.2702 0.0203 0.0217 0.0374 0.0346
BG 1.1100.009 0.9830.081 | 0.0282 0.0253 0.1809 4.5531| 0.0214 0.0225 0.0309 0.1173
BLT 1.3150127 0.8960069 | 0.0811 0.0517 0.0976  3.8995| 0.0224 0.0258 0.0271 0.1190
ISY 0.7140051  1.1250084 | 0.0336 0.1666 0.2446  0.0665 0.0237 0.0333 0.0433 0.0247
CS 1.38&.137  0.9180073 | 0.0652 0.0646 0.2244  1.6211| 0.0385 0.0379 0.0453 0.0724
LGE 1.0810.002 0.8670065 | 0.0714 0.0616 0.1896 0.0739| 0.0385 0.0343 0.0342 0.0372
CNA  1.0470089 0.8730.0es | 0.0589 0.0345 0.1680 1.8616| 0.0318 0.0305 0.0367 0.0776
HSB 1.1430.105 1.0070.08s | 0.0544 0.0162 0.0864 0.3686| 0.0203 0.0168 0.0202 0.0385
BT 1.1970125 1.3280.34 | 0.0354 0.0454 0.1461 0.1509 0.0143 0.0179 0.0312 0.0282
TSC 1142101 0.8950069 | 0.0393 0.0358 0.2824  3.1644| 0.0224 0.0258 0.0348 0.1043
SHE 1.32%.132 1.1880124 | 0.0381 0.0283 0.0797 5.3933| 0.0181 0.0184 0.0211 0.1163
BAR 1.0260.009 1.4470138 | 0.0201 0.0265 0.1397 9.0418 0.0160 0.0174 0.0271 0.1721
BP 1.35%130 0.999.080 | 0.0232 0.0329 0.2276  4.2845 0.0145 0.0177 0.0341 0.1128
VOD  1.98802s3 1.2740158 | 0.0625 0.0511 0.0789 0.6844| 0.0215 0.0191 0.0271 0.0588

MIB30 by b: AEP GHYP  Stable SEP AEP GHYP  Stable SEP

BIN 1.1040006 0.9410076 | 0.0406 0.0452 0.2742 0.2730 0.0295 0.0309 0.0369 0.0476
BUL 1.0230.002 1.0170081 | 0.0802 0.0734 0.4221 0.1231| 0.0283 0.0275 0.0490 0.0327
FNC 11760119 1.13l1o101 | 0.0387 0.0388 0.1364 0.0725 0.0217 0.0181 0.0297 0.0222
oL 0.941008s 1.3540118 | 0.0394 0.0605 0.1517 0.3213 0.0172 0.0208 0.0386 0.0396
ROL 0.8910.067 0.8410.0e2 | 0.0824 0.0493 0.1285 0.1381| 0.0286 0.0294 0.0301 0.0310
SPM 1.072.103 1.2110110 | 0.0426 0.0222 0.1178  3.1962| 0.0270 0.0228 0.0267 0.1066
ucC 1.0020.083 0.9730079 | 0.1182 0.0616 0.1077 0.1142| 0.0371 0.0368 0.0393 0.0418
AUT 0.9590.074 0.7200.047 | 0.1204 0.0941 0.2442 12.5376/ 0.0397 0.0407 0.0467 0.1841
BPV 0.8640.063 0.74700s51 | 0.0822 0.1068 0.3362 0.1309 0.0344 0.0342 0.0491 0.0431
CAP 0.9540.077 0.8530.062 | 0.0642 0.0719 0.2164 1.1071 0.0265 0.0304 0.0467 0.0734
Fl 0.8910069 0.9150060 | 0.0278 0.0183 0.1551  1.4545| 0.0161 0.0161 0.0291 0.0731
MB 1.1310100 0.9060071 | 0.0271 0.0306 0.2008 0.0497| 0.0208 0.0209 0.0276 0.0228
PRF 1.191107 0.87000es | 0.1571 0.0971 0.1570 0.7884| 0.0427 0.0444 0.0480 0.0493
RI 1.1090.103 1.0240.08s | 0.0731 0.0594 0.1539 3.9919| 0.0221 0.0222 0.0343 0.0943
ST™M 15110197 1.4510170 | 0.0471 0.0391 0.1112 0.0565| 0.0162 0.0158 0.0243 0.0187
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Figure 10: Empirical log-return density together Figure 11: DeviationsA(z) of the AEP and of

with the AEP and the GHYP fits. Data are daily the GHYP from the empirical distribution. Data

log-returns of the INVENSYS PLC stock listed at are daily log-returns of the INVENSYS PLC stock

the London Stock Exchange. listed at the London Stock Exchang&(z) for the
symmetrized series.

statistic. On the other hand the highest observed devidiigmalmost always lower for the AEP (cfr. again
Table 5). Anyway, one should be very cautious in ranking én@g families, also because the respective
values ofD andW?2 are very close to each other.

We can, however, obtain other interesting insights anatyz depth the unique case in which the AEP
appears to performs substantially better than all the dtirexe families, GHYP included: the stock price
returns of the INVENSYS PLC, a British company representethé LSE by the abbreviation ISY. It turns
out that in this case the log-returns observed present twolipe features: they display a significant degree
of skewness and they include one rather anomalous obsmmatithe upper tail, as can be seen from the
empirical density displayed in Figure 10 together with tHePA(thick solid line) and GHYP (dashed line) fits.
The functionA(z) reported in Figure 11 shows that the quality of the fit prodidg the GHYP is remarkably
worse than the one obtained using the AEP. The impressidraighe concomitant presence of a significant
degree of skewness and very few anomalous observationsusbgaffects the ability of the GHYP to capture
the observed distribution, notably worsening its fit. TdHier investigate this impression, we run the following
experiment. From the original sample of the ISY stock retune removed the top% observations, thus
inducing the original distribution to become more symmuetrihen we replicate the goodness-of-fit analysis.
We obtain values of both the Cramer-Von Mises and the Kolmmg&mirnov statistics that are very close to
each other0.0327 and0.0224 respectively for the AEP antl0351 and0.0186 for the GHYP. The fact that

the discrepancy between the two families is strongly redwstgports our conjecture that the GHYP appears

"Coherently the left and right estimated shape parametetiseoRAEP become more similar: on the symmetrized sarbpls
found to bel.029(0.099) while b, is found equal td .085(0.089).
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Table 5: Properties of the Maximum Likelihood estimatortaf AEP parameters.

Theoretical Results Numerical Analysis
m known m unknown m known m unknown
Consistent Consistent Biased Biased

Asymp. Normal  Asymp. Normal

Asymp. efficient  Asymp. efficient

Consistent Consistent Biased Biased
05<b; <205<b,<2
Asymp. Normal

Asymp. efficient  .J well defined Asymp. efficient

Consistent Consistent Biased Biased
b; <0.5,b. <0.5
Asymp. Normal

Asymp. efficient Asymp. efficient

* Bias contribution to RMSE is negligible for any practicapipation when the sample siZé is greater than
100

less robust to the presence in the data of skewness and anmmddservations.

6 Conclusions

This paper introduces a new family of distributions, the isyetric Exponential Power (AEP), able to cope
with asymmetries and leptokurtosis and at the same timavialgpfor a continuous variation from non-
normality to normality. We discuss the Maximum Likelihoagtimation of the AEP parameters, investigating
the properties of their sampling distribution using bothlgtical and numerical methods.

We present a series of analytical results on the consistasggnptotic efficiency and asymptotic normality
of the ML estimator of the AEP parameters. They are basicallgxtension of results previously known for
the symmetric Exponential Power and prove that the estimstoonsistent over the whole parameter space
and that they are asymptotically efficient and normal whemdb, are both greater or equalcfr. Table 5 for
a summary of these results). At the same time, we derive gteeFinformation matrix of the AEP, showing
that it is well defined in the parameter space whigr@ndb, are grater thaf.5. In this derivation we obtain
the result for the symmetric EP as a special case, fixing aak@gtresent in a previous work (Agro, 1995).
Furthermore, we prove that a relevant part of the Fisherin&ion matrix.J can be continuously extended
to the whole parameter space. Indeed we show that even bylam b, are smaller thaf.5 the upper-left

4x4 block of the inverse information matrix continues to be &r@nd positive definite. This suggests that
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the information matrix can be used to obtain theoreticahgsptic values for the estimates standard errors
also when the values of the shape parameters are less5thélve prove this conjecture numerically: using
extensive Monte Carlo simulations we show that, first, Mlineators are always asymptotically efficient (i.e.
scale withy/N) even if, especially in presence of strong asymmetries)|sample effects are present and,
second, that the inverse information matrix provides aateumeasures of the ML estimates also in the region
of the parameter space whefés defined via analytic continuation, that is whéygh, < 0.5. The numerical
investigation of the asymptotic behavior of the ML estimmatiso shows that a bias is in general present, but
due to its negligible contribution to the Mean Squared Eobthe estimates, it can safely be ignored for
any practical purpose even when the sample size is rekativebll (cfr. again Table 5 for a summary of the
results).

On the empirical side, our investigations provide rathesrgj motivations for the use of the Asymmetric
Exponential Power distribution for descriptive purposksieed, using a selection of diverse economic and
financial data, we show that the AEP performs better, in teyhits ability to approximate empirical distribu-
tions, than other commonly used families. Moreover, evehase situations in which its performance seems
comparable to the one obtained with the best alternativiéall@ namely the Generalized Hyperbolic, the
AEP seems able to provide a more robust fitting frameworkés@nce of significant skewness and anomalous
observations.

Two elements of the study of the inferential aspects of the AEstribution are not discussed in the present
contribution and still need to be investigated: the behawfdhe ML estimator for small sample sizes and
the characterization of the error associated with the esérof the location parametet whenb;, b, < 0.5.

We did not pursue these issues here because we considerftbena, practical point of view, of a secondary
relevance. Indeed, in the large majority of applicationsvitich the use of the AEP could result useful, one
typically has at his disposal samples of several hundredsbsérvations and the shape parameteiarely

take values below.5.
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A Appendix

Before deriving the information matri¥ matrix for the AEP distribution let us solve the followingetsl

integral

! mn m—a\* z—m\"
IA,k:/ dzf(x) ( > <10g ) EeN,AeR". (19)

—00 aj ay

b
Substituting (3) in (19) and changing the variablée to b—ll (x*m) ' one obtains

aj
Al

b b 400 Al
By=""— /0 dt ™t (logt +logby)" (20)

that expanding the summation becomes

AL gk
b, b k k +oo Al
IAJC = allT Z <h> log" bl/ dte 't 1logk*ht (21)
h=0 0
and finally
ay i E b g A+1
1 l hy pk=h) (212
B . 1;) <h> log" b, T ( b > (22)

whereI'® is thei — th derivative of the Gamma function and where we used ( cfr.&rmyn and Ryzhyk
(2000) eq. 4.358)," dx log" z 2"~ e~ = T("(x)
For instance, when = b; we get

1 k

a; p—Fk k _ by+1 a]

=25t <h> log" by T~ (b—l> = % Bl (23)
h=0

whereBy,(z) is defined in (11). When = b; — 1 one has

k
k

Iy 1 =% Y <h> log" b; D=1 (1) (24)

h=0

while when\ = 2b; itis
a Ak [k (2641
Ly o= El b, > <h> log" b, T+=") <7lbl ) . (25)
h=0

and wherk = 0and\ =h € Nitis Iﬁ,o = & Ap(by) where Ay, () is defined in (4).
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Correspondingly

, +oo z—m\* z—m\"
Dk = def(z) | — log — (26)
Al g
- M i k log? b T(k—h) Atl keN e RT (27)
- c & \n) B by ’

We provide below preliminary calculations needed to detingeFisher information matrix J of(x; p).

They must be used in conjunction with equations (23), (28) and (27) to obtain expressions in (10).

z ;sz 0(m — @)2 -

by b

log

r—m

Foe 1 , 1

o, = dmf(x;p) EalBo(bl) + _E a
2

a; aj s 1

=% By (br) — o2 (Bo(bi))” + o

2

2 2
b

1 l l
Ibb? Ibz,l + b3 IbL,O .
1

z—ml" 1
Jr

ap

+oo 1 , 1
Job, = dz f(z; p) aalBo(bl)JF -3

b
1 1
< EarBé(br) + <@

by

xr—m xTr —

L
br

ar

Ina = [ awsep) ( Gasho) + Llzmmfy Lot e o m)) g,
bja; = - ZTJ(T; P Cal o\Yl bl2 a b ay og a; m-—-x
b
1 z—m|" 1_, ai / 14
<6B0(bl)_ a 9(m—m)) = aBo(bl)—EBQ(bZ)BO(bZ)—a—l[bhl .
T = [ st (s + (g [E " L g2 ) g
bia, — . TJj(T;P Cal o\l blg ar bl a; og a; m x
1 z—m|" a;
- /
<6B0(br) ar 9(xm)> :7E BO(br)Bo(bl) .
J _/+ood f( ) l B’(b)+ ,i ubl+l“’ mbll r—m 9( — )
bym = . ry(z;p Cal 001 B2 p b @ 0og ! m-x
_ by —1 _ byr—1
(l r—m H(m—x)—i r—m H(x—m)) ——[zl;ﬁu
ay ay ar Qr

J —/+Oodxf(x' ) la Bl(by) + 1 z—mlr 1|z mbrlo T—m Oz —m)| =
brbr = o P o o 2| ar b | ar & ar -
Qar ai ’ 1, 2 2
=C By (br) — 1oz} (Bo(br))? + +E[br,2 - glbr,l + @Ibr,o
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+o00 1 1 |z —ml? 1|z —mlr -
o = 5 - rB/ r ) 7 I
Ty /_OO dz f(; p) < arBo(br) + < b2 | ar + br | ar 8 ar
1 z—mlbr a
( G Bo(br) = . 0(x — m)) = — Gz Bo(b) By (br)
+oo 1]z—ml|™ 1]z —m|
Torar = /70o da f(z; p) <5ar36(br) <b—2 o | Tl Ta | e
b
1 T—m| " 1 ’ Qr ’ -
< EBO(br) — ar (9($ — m)) = 6 Bo(br) C2 Bo(br) BO(br) — a—r Ibr 1
Foo 1 , 1]z—m| 1]z —m|® T
m = ;p) | =arBo(br T o I
I, /_Oo dx f(; p) <Ca o(br) + < 2 e | Tl . 0g

o by —1 _ br—1
( llz=m O(m —x) — Ljz=m 0(xm)> = fiIgT_l,l .
ap ap Qr ar ar
Foo 1 z—m|% 1 bi+1
Jalal = [m d:Ef(l',p) < EBO(bl) — a 9(m — ZE) = 7@ B()(b[) —+ a—l2 Ibl 0
+oo 1 _ by 1 br
Jarar :/ dzf(z;p) (530(@)— x lm 0(m—x)> <530(br)_ xa T Gz —m) | =
1
= —E Bo(bl) Bo(br) .
Foo 1|z —ml|2? 1 |z—mlr?
Jon = [ daf(aip) <a—l T g =) = [T g m)
1 z—m|” b
<EBO(bl) - Py 9(m — 58)) = 7a—l2 Ibl—l,O .
oo 1 br S b 41
r—m T T
Jarar = /_Oo dx f(z:p) (530@) - 1= 9(xm)> =~z Bilb) + = g
+oo 1]z—m|%! 1]z—ml[r?
Jou = [ daf(aip) (a 2 pm =) - = [ 0@ —m)
1 z—mlr b
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b —1
! 1

dun = [ angtasm) | 22 oo ) - LT ey -
mm — . TP @ @ m x . @ x m =
-1 + 15
70112 2b; —2,0 a2 2b,.—2,0 -
B Appendix
Consider a set of N observatiofs, ..., zxy} and assume that they are independently drawn from an AEP

distribution of unknown parameters). According to Lehmann (1983),the ML estimates of thesematars

p obtained trough (8) are asymptotically normal and efficittite following 4 regularity conditions apply:

A. there exists an open subgebf P containing the true parameter poimg such that for almost alt, the

density fxp (x|p) admits all third derivative$o® /0p,dp;Opy.) faee(x) forallp € p

B. the first and second logarithmic derivativesfqf,, satisfy the equations

E [810g fAEP(w; p)

oo ] =0 (28)

and

h H. —E -9 log faep(z;p)
whereH ;. (p) —ope |

C. the elementd},;(p) are finite and the matriX (p) is positive definite for alp in g;

D. there exists functiond/;;;, such th%‘ﬁ;aﬁ log fare(z|p)| < Mpi(z) Vp € p wheremy,;, =

Epo[Mpj(z)] < oo Vh,j,k .

Below we will prove that these four conditions are satisfiedhie subsep = [2,4+00) X [2 + o0) X

(0, 4+00) x (0,+00) C D. In what follows we will denotef,r Simply by f, the meaning being understood.

A. Condition A. is always satisfied since any derivativefafz p present, at most, a single discontinuity in

correspondence af = m.
B. Sinceitis

by
r—m

E[2B IR [ i

1
8al _EBO(bl) +

C c

ap

wm—m]z—lm@g+l&@g:o.
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. +oo
E{aloga%h(nx,p)} :/_Oo da f(z; )

1
7530(67‘) +

]

by
1
log

1

r—m r—m

. Foo
5 {%%bl(mvp)} :/40 dz f(z;p)

1 1
_aalBé(bl) + <E

1/b;—2
albl/l

ap ap

O(m — x):| = {(log(bl) - DI +1/b)+v(A1+1/6)0(1 4+ 1/b) +T(1 4+ 1/b)+

—log(b))I'(1+1/b;) — (1 +1/b)'(1 + 1/bl)] =0 .

o1 . +oo , . by o by .
E {70%&%}))] :/_oo dx f(x; p) 7éarBO(br)+ (b% xarm —% xarm log xarmD
anbL/br=2
0(x — m):| = TC {(log(br) -1+ 1/br)+ (1 +1/b-)T(1+1/br)+

+T(1 + 1/by) — log(b)T(1 + 1/b,) — (1 + 1/b,)T(1 + 1/1%)] =0 .

b—1 br—1
z—ml|"’ 1 |z—m|"

5 {8log f(ac;p)} :[;mdxf(x;p) [;—1

om 1

0(x — m):| =

aj Qr

- %Bo(bl 1)+ %Bo(br “1)=0.
the first part (Equation 28) of Condition B is satisfied. Moreit is

In order to prove (29), notice that wheftz; p) dlog f(x;p)/0p; are continuous functions, this equation
is a simple consequence of an integration by parts. Henamiains to prove (29) only in those cases

where a derivative with respect to the parametes involved. One has

+oo 1]z—m|®?t T—m 1
Hyym = / da f(x) [ — log‘ ‘G(m —a)| ==L 11 = Jym
— oo ag ag ap ap
+oo 1 |z—m|"" - 1
Hyom = / dz f(x) [ — == log r-m ‘ Olx—m)| =——1Iy 11 = Jo,m
o ar | ar ar ar
z—ml|% ! b

+oo bl
Halm = — dl’f(.fﬂ) ?
—o0 1

9(m — ZE):| = 7@[&_1’0 = Jalm

ay 1
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Foo by |z —m br—1 br
Hopm = f/ dz f(x) [ 2| o Olx —m)| =— Elbr—l,o = Ja,m
Foo b —1 z—m|% 2 b, —1 xz—m| 2
o= [ daf(e) e e R e I GV B
bl — 1 1 br - 1 ™
=—1I_ ——1Iy, 20 = Jmm
al2 b;—2,0 + a% br.—2,0 J,

and (29) is proved.

C. According to Theorem 3.1 the matrikexists and is positive definite foy, b, > .5. When one of these

two parameters moves toward the valtg¢he element/,,,,,, encounters a pole and the matrix is no longer

defined.

D. Consider the case whei = p; = p, = m. Itis easy to show that

o3 by —1)(b — 2) |z — m|%3
- tog f(afp) = A2 o(m — )
m ay aj
(br = 1)(br — 2) bre? )
T T r—m
- pe - O(x —m)
If one defines
_ _ _ bi—3 _ . . br—3
My () = (b 1)gbl 2) |z —m N (b, 1)gbr 2) |lx—m (31)
a; ay a} ay

it follows that aa—wg;),log f(m\p)‘ < Mpymm(z) Vp € p. Moreover, forby, b, > 2itis E [Mmm] < oo.
Using the same argument it is straightforward to prove thamwb;, b, > 2 condition D is satisfied also

for all other casesQ.E.D.
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Table 6: Bias and Standard Deviation ZofB, a andrm estimated on 10000 samples drawn from a Power
Exponential distributionX is the number of times the ML procedure did not converge.

(b,a,m)=(0.4,1,0)

N b/b ou/b aja ca/a m Om K
100 | -0.018288 0.177637  -0.019566 0.178384 -0.000365  0.059433 0
200 | -0.007221 0.118821  -0.008976 0.122441 -0.000642  0.035281 0
400 | -0.004860 0.081781  -0.004822 0.086703 -0.000240  0.021029 0
800 | -0.002362 0.057095  -0.002149 0.061403 -0.000071  0.012641 0
1600 | -0.000950 0.040103 -0.000650  0.043213 -0.000054  0.007717 0
3200 | -0.000500  0.028149 -0.000387  0.030772 -0.000060  0.004570 0
6400 | -0.000710  0.019966 -0.000173  0.021858 0.000006  0.002715 0
(b,a,m)=(0.8,1,0)
N b/b ob/b a/a oa/a m Om K
100 | 0.024698 0.217721  -0.005042 0.141531 0.000457  0.102071 0
200 | 0.010619 0.137288  -0.002619 0.097276 -0.000158  0.068417 0
400 | 0.004350 0.091226  -0.001645 0.068244 0.000521  0.047679 0
800 | 0.002038 0.063613  -0.000996 0.047803 -0.000023  0.032717 0
1600 | 0.000972  0.044655 -0.000196  0.033742 0.000129  0.022560 0
3200 | 0.000426  0.031728 -0.000006  0.024025 -0.000123  0.015543 0
6400 | 0.000013  0.021858 -0.000119  0.016879 0.000014  0.010769 0
(b,a,m)=(1.4,1,0)
N b/b ob/b a/a oala m Om K
100 | 0.123678 5.325462 0.005878 0.125171 -0.001145  0.112919 0
200 | 0.030093 0.161387 0.002007 0.085312 0.000602  0.077747 0
400 | 0.013300 0.106216 0.000311  0.059140 0.000302  0.055068 0
800 | 0.006123 0.072968 0.000307  0.041433 0.000249  0.038259 0
1600 | 0.003050 0.050587 0.000355  0.028948 -0.000124  0.026960 0
3200 | 0.000927 0.035539 -0.000204  0.020489 0.000240  0.019192 0
6400 | 0.000280  0.024811 -0.000176  0.014431 0.000081  0.013594 0
(b,a,m)=(2.2,1,0)
N b/b ou/b aja ca/a m Om K
100 | 0.491071 12.614268  0.012540 0.120088 -0.000602  0.099523 0
200 | 0.049846 0.194413 0.005017 0.078570 -0.000744  0.069450 0
400 | 0.024967 0.126713 0.003576 0.054255 -0.000774  0.047950 0
800 | 0.011329 0.084521  0.001311 0.037981 -0.000272  0.033816 0
1600 | 0.005102  0.058735  0.000547 0.026772 0.000015  0.023958 0
3200 | 0.002471  0.040739 0.000322  0.018683 0.000100  0.016927 0
6400 | 0.001520  0.028629 0.000298  0.013257 -0.000000 0.012098 0
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Table 7: Bias and Standard Deviation ZofB, a andrm estimated on 10000 samples drawn from a Power
Exponential distribution whem is known. K is the number of times the ML procedure did not converge.

(b,a)=(0.4,1)

N b/b ou/b aja ca/a K

100 | 0.040468 0.174889 0.018407 0.180738
200 | 0.018971 0.118363 0.007964 0.123157
400 | 0.008160 0.081851 0.003515 0.086975
800 | 0.004253 0.057183 0.002026 0.061492
1600 | 0.002472 0.040050 0.001478 0.043217
3200 | 0.001256 0.028099 0.000692 0.030777
6400 | 0.000170 0.019822 0.000363 0.021830 0

[cNeoNoNolNoNo]

(b,a)=(0.8,1)

N b/b ob/b ija oa/a K

100 | 0.054497 0.207635 0.014160 0.138900
200 | 0.025469 0.134228 0.006792 0.096496
400 | 0.011932 0.090158 0.003114 0.068023
800 | 0.005788 0.063193 0.001341 0.047691
1600 | 0.002764 0.044496 0.000928 0.033709

3200 | 0.001323 0.031615 0.000552 0.024005
6400 | 0.000482 0.021620 0.000168 0.016814 0

[cNeoNeoNeNoNo)

(b,a)=(1.4,1)

N b/b ob/b ija oa/a K

100 | 0.074693 0.260163 0.013868 0.121101
200 | 0.033730 0.157512 0.006150 0.084261
400 | 0.015243 0.104988 0.002404 0.058833
800 | 0.007109 0.072519 0.001331 0.041282
1600 | 0.003590 0.050498 0.000879 0.028906
3200 | 0.001153 0.035471 0.000042 0.020489
6400 | 0.000381 0.024579 0.000057 0.014364 0

[eNeoNeolNeNoNo]

(b,a)=(2.2,1)

N b/b ou/b aja ca/a K

100 | 0.152469 5.046575 0.014395 0.113174
200 | 0.046257 0.187227 0.006733 0.077362
400 | 0.023759 0.124730 0.004466 0.053871
800 | 0.010726 0.083782 0.001735 0.037794
1600 | 0.004872 0.058559 0.000779 0.026715
3200 | 0.002375 0.040666 0.000445 0.018663
6400 | 0.001438 0.028421 0.000352 0.013206

[eNeoNeoNeoNoNoNe]
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Table 8: Bias and Standard Deviation igf b,, a;, G, and estimated on 10000 samples drawn from an
Asymmetric Exponential Power distributiof is the number of times the ML procedure did not converge.

(by,b.,a;,a,,m)=(0.5,0.5,1,1,0)

N b~l/bl Ubl/bl b;/br U'bT/br dl/al aal/al C[T/CLT Uar/ar m Om K
100 | 0.026188 0.281091 0.020557 0.271076 0.014968 0.215253 0.014931 0.210935 0.003749 0.166962 1
200 | 0.012562 0.162519 0.012789 0.161660 0.005921 0.140722 0.006872 0.141735 0.000388 0.091752 0
400 | 0.007066 0.107014 0.005707 0.107006 0.001429 0.0968470.003919 0.098412 0.000393 0.056794 0
800 | 0.003648 0.072630 0.003716 0.074012 0.001149 0.0681570.002622 0.069134 -0.000345 0.034856 0

1600 | 0.001486 0.049725 0.000821 0.049235 0.000266 0.048097.001194 0.047838 0.000002 0.020220 1

3200 | 0.000433 0.034397 0.000309 0.034407 -0.000006 0.03411®00448 0.034070 -0.000090 0.012452 0

6400 | 0.000306 0.023751 0.000086 0.024056 0.000160 0.024499004/@ 0.024146 0.000011 0.007887 0
(bllbrlallarlm)z(l'Sl1'5111110)

N b~l/bl Ubl/bl b;/br U'bT/br dl/al aal/al C[T/CLT Uar/ar m Om K
100 | 0.138699 0.707531 0.130697 0.830274 0.041225 0.376155 0.042109 0.371139 0.000928 0.553390 45
200 | 0.059863 0.364016 0.049007 0.350531 0.021834 0.255554 0.016018 0.252260 0.005378 0.385947 0
400 | 0.025145 0.226582 0.023601 0.224548 0.009361 0.176657 0.008696 0.177574 0.000974 0.274766 0
800 | 0.012233 0.154245 0.011369 0.153025 0.004094 0.124075 0.004513 0.124694 -0.000187 0.194852 0

1600 | 0.006437 0.106212 0.004958 0.104984 0.002698 0.087034 0.001332 0.086825 0.001153 0.137088 0
3200 | 0.002850 0.072848 0.002355 0.073090 0.001223 0.060221 0.000308 0.060127  0.000990 94983 0
6400 | 0.001065 0.050449 0.001670 0.050608 0.000367 0.041679 0.000469 0.041504 0.000036 65446 0

) ) (by,b:,a5,a,,m)=(2.5,2.5,1,1,0)

N bi /by ov, /bi b, /by o, /br ai/a Oa, /i dr/ar Ca,./ar m Om K
100 | 0.216104 1.077383 0.194571 0.988308 0.052892 0.540990 0.051839 0.537115 0.001134 0.730692 357
200 | 0.105139 1.287989 0.096703 0.752724 0.032009 0.432849 0.036462 0.432766 -0.003785 0.593991 8
400 | 0.048444 0.382355 0.036445 0.375708 0.024977 0.345262 0.017779 0.342416 0.003945 0.477221 0
800 | 0.020174 0.270658 0.019085 0.269044 0.010986 0.262583 0.012462 0.262840 -0.001216 0.367170 0

1600 | 0.009100 0.192912 0.011360 0.191377 0.005337 0.193851 0.008018 0.193535 -0.001951 0.272406 0
3200 | 0.004226 0.136708 0.006990 0.134924 0.002167 0.1403580.005429 0.139778 -0.002423 0.197663 0
6400 | 0.002709 0.095266 0.003138 0.094106 0.001603 0.0982120.002417 0.097851 -0.000599 0.138287 0
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Table 9: Bias and Standard Deviationigfb,, 4;, 4, andsn estimated on 10000 samples drawn from an AEP
distribution withx known. K is the number of times the ML procedure did not converge.

(by,b:,a5,a,,m)=(0.5,0.5,1,1,0)

N b~l/bl Ubl/bl b;/br U'bT/br dl/al Ual/al a}/ar Uar/ar K
100 | 0.064224 0.215717 0.064604 0.216754 0.021229 0.198856 0.022081 0.197856 O
200 | 0.031114 0.138348 0.031988 0.138717 0.010393 0.137301 0.011382 0.139067 O
400 | 0.015344 0.094456 0.014446 0.093711 0.003460 0.095598 0.005939 0.097347 O
800 | 0.007962 0.065844 0.007348 0.065663 0.002087 0.067657 0.003570 0.068646 O

1600 | 0.003681 0.046000 0.003035 0.045963 0.000915 0.0478960.001879 0.047672 O

3200 | 0.001620 0.032504 0.001368 0.032498 0.000343 0.0340640.000780 0.034026 O

6400 | 0.000878 0.022711 0.000713 0.022942 0.000392 0.0244540.000653 0.024135 O
(by,by,a;,a,,m)=(1.5,1.5,1,1,0)

N b~l/bl Ubl/bl b—:y/b/y Ub,,,/bT dl/al Ual/al dr/ar UaT/ar K
100 | 0.170308 0.909158 0.170702 1.173527 0.019263 0.142899 0.021168 0.141552 O
200 | 0.061326 0.216921 0.058578 0.209759 0.008688 0.095054 0.009503 0.094936 O
400 | 0.027404 0.134213 0.027293 0.134654 0.003746 0.066096 0.004358 0.066122 O
800 | 0.013651 0.091370 0.012676 0.091370 0.001609 0.046557 0.001857 0.046577 O

1600 | 0.006274 0.063041 0.006320 0.063171 0.000687 0.032683 0.000711 0.032923 O

o

3200 | 0.002594 0.044291 0.003323 0.044531 0.000038 0.023429 0.000279 0.023403
6400 | 0.001237 0.031043 0.001905 0.031479 0.000071 0.016446 0.000218 0.016504 O

(by,by,a1,a,,m)=(2.5,2.5,1,1,0)

N b~l/bl Ubl/bl b;/br U'bT/br dl/al Ual/al a}/ar Uar/ar K

100 | 0.498902 3.420278 0.411656 2.536465 0.030263 0.148275 0.027090 0.147140
200 | 0.099737 0.381414 0.098326 0.430159 0.011924 0.094034 0.011169 0.093641
400 | 0.043165 0.175576 0.037703 0.172490 0.006442 0.063279 0.005061 0.063162
800 | 0.018806 0.116601 0.016616 0.113832 0.002202 0.044585 0.002169 0.044289
1600 | 0.008874 0.078796 0.009164 0.078615 0.001305 0.031190 0.001403 0.031516
3200 | 0.005009 0.054622 0.005034 0.054509 0.001012 0.022023 0.000987 0.021996
6400 | 0.002764 0.038202 0.002561 0.037959 0.000642 0.015458 0.000659 0.015617

[eNeoNoNoNoNol J
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Table 10: Bias and Standard Deviationkf b,., d;, @, andr estimated on 10000 samples drawn from an
Asymmetric Exponential Power distributiof is the number of times the ML procedure did not converge.

(by,by,a5,a,,m)=(0.5,1.5,1,1,0)

N l;l/bl ov, /bi b;/bT Ob,./br ai/a Oa, /i dr/ar Ca,./ar m Om K
100 | 0.016059 0.251608 0.066257 0.403796 0.026195 0.228994 -0.009739 0.216587 0.019185 0.191960 84
200 | 0.005344 0.147271 0.032755 0.232989 0.012207 0.154975 -0.003246 0.136095 0.006282 0.109004 3
400 0.002462 0.096266 0.016076 0.145892 0.006336 0.106578 -0.001011 0.088222 0.002936 0.066112 1
800 | 0.000016 0.064622 0.010703 0.098329 0.003381 0.074980 0.001126 0.059925 -0.000526 0.042494 0
1600 | -0.000799 0.045051 0.006403 0.068035 0.002236 0.052221 0.000876 0.041374-0.000907 0.027879 0
3200 | -0.000847 0.031354 0.003399 0.047031 0.001514 0.036679 0.000320 0.028286-0.000393 0.017856 0
6400 | -0.000348 0.021951 0.001960 0.032511 0.000977 0.026344 0.000344 0.019415-0.000313 0.011392 0
(by,by,a;,a,,m)=(0.5,2.5,1,1,0)
N l;l/bl ov, /bi b;/bT ob,./br ai/a Oa, /i dr/ar Ca,./ar m Om K
100 | 0.022468 0.255162 0.101449 0.555071 0.020517 0.225258 -0.018580 0.219204 0.028914 0.196187 423
200 0.008303 0.149654 0.050432 0.287029 0.010281 0.153611 -0.004446 0.138285 0.010341 0.112153 7
400 | 0.004299 0.098062 0.020972 0.169655 0.005071 0.106479 -0.001899 0.086841 0.004974 0.067606 2
800 | 0.001987 0.065114 0.009224 0.111832 0.001813 0.074475 -0.001770 0.057358 0.002692 0.042156 0
1600 | 0.000572 0.044927 0.005221 0.077055 0.001262 0.052684 -0.000442 0.039397 0.001054 0.026905 0
3200 | 0.000452 0.031767 0.003277 0.053408 0.000906 0.036877 0.000328 0.027017 0.000215 0.018008 0
6400 | 0.000171 0.022005 0.001973 0.036795 0.000444 0.026330 0.000501 0.018571 -0.000034€11815 0
(by,by,a;,a,,m)=(1.5,2.5,1,1,0)
N 61/1)1 Ubl/bl b;/br Ubr/br dl/al aal/al a}/ar aar/ar m Om K
100 | 0.172840 0.807995 0.163922 1.018400 0.083851 0.413484 -0.003162 0.479259 0.076579 0.635499 238
200 | 0.078985 0.394488 0.061394 0.510150 0.048404 0.297385 -0.008636 0.354509 0.050121 0.472570 3
400 | 0.038409 0.257181 0.019304 0.311780 0.027430 0.215093 -0.007662 0.262142 0.029973 0.352509 0
800 0.020593 0.175969 0.005227 0.211818 0.015980 0.153095 -0.007333 0.189167 0.019614 0.254872 0
1600 | 0.007903 0.119389 0.005257 0.146614 0.005724 0.105444 -0.001113 0.133336 0.006430 0.178423 0
3200 | 0.002899 0.083172 0.002837 0.103493 0.002151 0.074641 0.000119 0.095920 0.002139 0.127786 0
6400 | 0.001851 0.057875 0.001033 0.0720140.001390 0.051602 -0.000185 0.066737 0.001534 0.088487 0
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Table 11: Bias and Standard Deviationkf b,., d;, G, andr estimated on 10000 samples drawn from an
AEP distribution withu known. K is the number of times the ML procedure did not converge.

(by,by,a5,a,,m)=(0.5,1.5,1,1,0)

N b~l/bl Ubl/bl b;/br U'bT/br dl/al Ual/al C[T/CLT Uar/ar K

100 | 0.053773 0.195910 0.125824 0.837937 0.008226 0.210580 0.019986 0.139315
200 | 0.025039 0.125204 0.051494 0.195526 0.004733 0.147089 0.009401 0.094616
400 | 0.011770 0.084416 0.024379 0.126572 0.002732 0.103001 0.004863 0.066439
800 | 0.005727 0.058028 0.011656 0.086037 0.000728 0.0728280.001962 0.046634
1600 | 0.002342 0.041046 0.005938 0.060213 0.000719 0.0511910.000677 0.032976
3200 | 0.000659 0.028824 0.003137 0.042609 0.000707 0.035983 0.000243 0.023462
6400 | 0.000484 0.020419 0.001537 0.029969 0.000432 0.025943 0.000128 0.016550 O

O OO oo

o

(by,by,a;,a,,m)=(0.5,2.5,1,1,0)

N b~l/bl U'bl/bl b;/br O’br/bq' dl/al Ual/al dq'/aq' UaT/ar K
100 | 0.049015 0.189674 0.228050 1.238896 0.000973 0.2102650.022900 0.135733 O
200 | 0.023643 0.122868 0.072195 0.251545 0.000192 0.1465960.010420 0.088294 O
400 | 0.011436 0.082733 0.031470 0.154247 0.000626 0.1031980.005328 0.060806 O
800 | 0.005635 0.056868 0.014698 0.103640 -0.000054 0.0732610.002103 0.042548 O

1600 | 0.002651 0.040238 0.007654 0.071829 0.000320 0.0520420.001282 0.030253 O

3200 | 0.001697 0.028480 0.004188 0.050021 0.000367 0.0363850.000941 0.021258 O

6400 | 0.000874 0.020158 0.002018 0.034866 0.000088 0.0260840.000587 0.015053 O
(by,by,a;,a,,m)=(1.5,2.5,1,1,0)

N b~l/bl Ubl/bl b;/br U'bT/br dl/al Ual/al C[T/CLT Uar/ar K
100 | 0.253803 4.212897 0.435188 2.473012 0.018725 0.138093 0.031128 0.152805 O
200 | 0.059715 0.209753 0.099552 0.367232 0.007405 0.092740 0.012295 0.097120 O
400 | 0.026696 0.130166 0.038787 0.174597 0.003372 0.064278 0.005117 0.065592 O
800 | 0.012453 0.088677 0.018056 0.115543 0.001334 0.044944 0.002241 0.045771 O
1600 | 0.006231 0.061846 0.009675 0.079525 0.000511 0.0315550.001409 0.032307 O

3200 | 0.002890 0.042806 0.004814 0.055465 0.000249 0.0222230.000740 0.022808 O
6400 | 0.001675 0.030318 0.002671 0.038534 0.000268 0.0157410.000596 0.016006 O
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