
HAL Id: hal-00642685
https://hal.science/hal-00642685v4

Submitted on 25 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear regression MDP scheme for discrete backward
stochastic differential equations under general conditions

Emmanuel Gobet, Plamen Turkedjiev

To cite this version:
Emmanuel Gobet, Plamen Turkedjiev. Linear regression MDP scheme for discrete backward stochastic
differential equations under general conditions. Mathematics of Computation, 2015, 85 (299), pp.1359-
1391. �10.1090/mcom/3013�. �hal-00642685v4�

https://hal.science/hal-00642685v4
https://hal.archives-ouvertes.fr


Linear regression MDP scheme for discrete backward stochastic

differential equations under general conditions ∗

E. Gobet† and P. Turkedjiev‡
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Abstract

We design a numerical scheme for solving the Multi step-forward Dynamic Programming

(MDP) equation arising from the time-discretization of backward stochastic differential equations.

The generator is assumed to be locally Lipschitz, which includes some cases of quadratic drivers.

When the large sequence of conditional expectations is computed using empirical least-squares

regressions, under general conditions we establish an upper bound error as the average, rather

than the sum, of local regression errors only, suggesting that our error estimation is tight. Despite

the nested regression problems, the interdependency errors are justified to be at most of the order

of the statistical regression errors (up to logarithmic factor). Finally, we optimize the algorithm

parameters, depending on the dimension and on the smoothness of value functions, in the limit as

the time mesh size goes to zero and compute the complexity needed to achieve a given accuracy.

Numerical experiments are presented illustrating theoretical convergence estimates.

Keywords. Backward stochastic differential equations, dynamic programming equation, empirical

regressions, non-asymptotic error estimates.

1 Introduction

Framework. Let T > 0 be a fixed terminal time and W be a q-dimensional (q ≥ 1) Brownian motion

defined on a filtered probability space (Ω,F ,P), where the filtration (Ft)0≤t≤T satisfies the usual

hypotheses; the filtration may be larger than that generated by W . Let π := {0 = t0 < . . . < tN = T}
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be a time-grid for the interval [0, T ], whose (i+1)-th time-step ti+1− ti is denoted by ∆i, whose mesh

size is defined by |π| := max0≤i<N ∆i ≤ T , and the (i+1)-th Brownian motion increment Wti+1
−Wti

is defined by ∆Wi. The conditional expectation E[·|Fti ] is denoted by Ei[·].
In this paper, we study an algorithm to approximate the solution to a discrete time backward

stochastic differential equation (BSDE) in the form of the Multi step-forward Dynamic Programming

(MDP for short) equation given by

Yi = Ei[ξ +
∑N−1
k=i fk(Yk+1, Zk)∆k],

∆iZi = Ei[(ξ +
∑N−1
k=i+1 fk(Yk+1, Zk)∆k)∆W

⊤
i ]

}
for i ∈ {0, . . . , N − 1}, (1)

where the so called terminal condition ξ is a given FT -measurable random variable in L2, and, for each

i, the so called driver (ω, y, z) 7→ fi(y, z) is Fti ⊗ B(R)⊗ B(Rq)-measurable. The operator ⊤ denotes

the vector transpose. Our results are shown under quite general conditions on the driver f and the

terminal condition ξ, which allows us, for instance, to treat the challenging case of quadratic drivers

in a suitable Markovian setting (see Section 2.2). Because in general the conditional expectations in

(1) are not known in closed form, one has to approximate them in order to have a fully implementable

scheme. We follow the empirical least-squares regression approach presented in [27] and estimate the

global error that this method incurs in the approximation of (Y, Z). We call the resulting algorithm

LSMDP. Let us briefly and informally recall this approach. Under rather general conditions, see

Section 2, the solution of the MDP equation takes the form

(Yi, Zi) := (yi(Xi), zi(Xi)) for i ∈ {0, . . . , N − 1} (2)

for some (unknown but deterministic) measurable functions yi(·), zi(·) and a d-dimensional explanatory

process X := (Xi)0≤i≤N . Each conditional expectation Ei(·) can be viewed as solution of a least-

squares problem in L2(Fti ,P), so the functions yi(·) and zi(·) are approximated by solving this problem

on a finite-dimensional subspace. The approximations are computed using empirical least-squares

regression using simulations of the paths of the explanatory variable X. Our main result (Theorem

4.11) is a full analysis of the quadratic error for the LSMDP. Informally speaking, the quadratic error

can be decomposed into three different contributions:

quadratic error ≤ approximation error + statistical error (3)

+ interdependency error .

Using these error estimates, we optimize the algorithm parameters depending on the number of time

points N and consider the asymptotics N → +∞. This is detailed in Section 4.4, where the complexity

required for a given theoretical accuracy is also computed. The approximation error depends on the

choice of the finite-dimensional space and its magnitude usually depends on the smoothness of the

solutions yi(·) and zi(·). We demonstrate how higher orders of smoothness of the value functions yi
and zi defined in (2) lead to improvements in the error-computational work trade-off as N → +∞. The

statistical error is due to the finite number of Monte-Carlo simulations and it is usually increasing with

respect to the dimensions of the approximation spaces. Thus, a careful balance between approximation

and statistical errors has to be drawn and a curse of dimensionality usually appears. Non-asymptotic

error estimates are fundamental to achieve the optimal trade-off. Lastly, the interdependency error

arises because of the interdependency between regression problems and is inherited from the non-linear
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driver term in the structure of the DP equation. We prove that in our algorithm, the interdependence

error is of same magnitude of the statistical error (up to a log factor). This is a very important

improvement compared to previous works [27, 29]. In this sense, the estimates of Theorem 4.11 are

tight. In Section 5, we provide numerical experiments that confirm the rate of convergence predicted,

for a multidimensional quadratic BSDE with Hölder continuous terminal condition.

The estimates of Theorem 4.11 are obtained by exploiting stability inequalities (Section 3) for

discrete BSDEs: our MDP scheme leads to better weighted norms compared to the usual One step-

forward DP scheme (ODP for short)

YN = ξ, Yi = Ei (Yi+1 + fi(Yi+1, Zi)∆i) ,

∆iZi = Ei

(
Yi+1∆W

⊤
i

)
,

}
for i ∈ {0, . . . , N − 1} (4)

of [27], and thus better error estimates: the quadratic error is the average of local error terms, rather

than the sum, which also means that the result is (in a sense) tight. Unlike [27, 29] which use a

single cloud of simulations for the whole scheme, the LSMDP uses a different, independent cloud of

simulations to approximate the conditional expectation for each time point. Re-simulation is also

used in the work of [7]. It is a standard technique in non parametric statistics to split the data

into independent samples (one for learning, one for testing). While increasing the a priori simulation

cost, this reduces large errors due to interdependencies between the regressions at the different time-

points, leading to a theoretically more efficient scheme. In practice, it is often observed that one-cloud

schemes obtain similar rates of convergence to multi-cloud schemes, suggesting that the re-simulation

of the cloud is wasteful. Whether this is generally the case, however, is an open question, because

the tools of nonparametric statistics currently available imply one-cloud schemes incur a much greater

interdependency error. This is observed in [18] for the ODP scheme; for the MDP scheme, one may

compare the results of this paper with the results of Chapter 2 in [34]. There is an additional, practical

argument in favour of the re-simulation approach: storing the simulated values is by far the highest

memory expense because the number of simulations M must be much larger than the approximation

space dimension K (to avoid overfitting). Thus, roughly speaking, we need to store (d+ q)×M ×N

values (for Markov chain and Brownian motion) if we do not resimulate data, and only (2d+q+1)×M
with re-simulation (1 for the Markov Chain sample at current time, 1 for the Markov chain over the

running time, 1 for the the Brownian motion at the current time, and 1 for the sum of driver and

terminal condition).

The use of an empirical regression scheme is supported by two further very powerful features:

firstly, since we use distribution-free tools [24, Chapters 10-11-12], the estimates of Theorem 4.11 are

model robust and, as such, can to be applied to very general stochastic models because we make very

few assumptions on the explanatory process X - see Section 2. Presumably, the constants obtained are

too conservative, but the convergence rates are optimal. Secondly, the method of regression requires

only independent simulations of X and the Brownian increment, and no knowledge of the distribution

of X; in this sense, the algorithm is a black-box mapping model simulations into value functions. This

enables the use of data-driven methods such as, for example, the purely historical technique of [30].

Applications. Equation (1) appears naturally when approximating a continuous-time BSDE by a

discrete-time process along the time grid π. Continuous time BSDEs have a multiplicity of applications

in the theory of mathematical finance, stochastic optimal control, and partial differential equations (e.g.

KPP equations, reaction-diffusion equations). Over the last ten years, the various numerical methods
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developed have been based on Lipschitz continuity in (y, z) with uniform Lipschitz constant for the

driver fi and ξ = Φ(Xi0 , . . . , XiL) for some Lipschitz continuous function Φ [28, 7, 19, 1, 27, 17, 11, 8].

Very few papers [26, 32, 20, 15, 9] have handled greater generality. These papers, however, only deal

with the discretization error, and, to the best of our knowledge, there are no works that consider the

global error analysis of the full numerical scheme in higher generality. In this paper, we treat the

global error analysis under several important relaxations to the traditional assumptions of numerical

schemes for BSDEs. (We do not treat the discretization error in this paper, however, and refer readers

to [35] for this aspect of the error analysis.) Firstly, the terminal condition may satisfy substantially

weaker regularity constraints without impacting the error estimates. This is in contrast to [27], where

Lipschitz continuity is necessary. Secondly, the driver may satisfy a weaker, local Lipschitz continuity

condition, where the Lipschitz constant of fi may depend on the time ti; see (AF-i) in Section 2.

This allows our results, combined with a simple truncation procedure that is presented in Section 2.2,

to be applied to the important class of quadratic BSDEs with bounded, Hölder continuous terminal

conditions without incurring any additional error due to the truncation. This is a very important

feature, because truncation can have a very severe impact on numerical scheme. The methods of

[32, 26, 9] use a truncation procedure which incurs error even at the discretization level. Thirdly, the

driver may satisfy a weaker, local bound at (y, z) = (0, 0) (see (AF-ii) in Section 2). Consequently,

our results can be applied to a particular proxy technique presented in Section 2.2. Also, one may

use the results of this paper to analyse the error of the martingale basis method of Bender-Steiner [5],

where the authors give an example of where this method performs much better than the traditional

One-step scheme, but are unable to analyze the error in a general setting. Finally, the full error

analysis is performed for possibly nonuniform time grid π; see (AF-iii) in Section 2. Indeed, to reduce

the discretization error for BSDE with irregular terminal conditions ξ = Φ(XT ), it has been recently

proposed in [20] to choose nonuniform grids which are consistent with our assumption (AF-iii). Similar

non-uniform grids are obtained for path dependent ξ in [15].

Comparison to other works. We would like to mention further two works that are relevant for

comparison with this work, but which will not receive so much attention later in the paper as [27].

• We remark that equation (1) is inspired by the algorithm of [3], an algorithm based on Picard

iterations and implicit equations that we do not use here. The use of explicit equations leads

to different challenges in the computation of error estimates, particularly in obtaining a priori

estimates (Section 3). Avoiding Picard iterations greatly simplifies the analysis error, because

there is no supremum over the Picard iterations in the approximation error (compare with [29]).

• We have submitted an alternative algorithm based on Malliavin weights [21]. Although this

algorithm is potentially more efficient than the one presented in this paper, it suffers from a

narrower scope of applicability. Indeed, for the approximation of continuous time BSDE, the Z

part of the continuous-time solution must satisfy a Malliavin integration-by-parts representation

[34]. This may not be valid in the degenerate setting or in the setting with jumps. The scheme

of the current paper is simpler to implement since we do not need to simulate the Malliavin

weights.

Organization of the paper. In Section 2, we state our working assumptions and give several

examples to show how these assumptions are useful for approximating a wide variety of continuous-time

BSDEs. In Section 3, we establish stability estimates for discrete BSDEs, and apply them to derive
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tight pointwise and L2-estimates for (Y, Z). In Section 4, we define the LSMDP scheme. The global

error is stated in Theorem 4.11. The rest of the section is devoted to proofs and to a discussion related

to algorithm complexity. In Section 5, we present numerical experiments in which the algorithm is

applied to a quadratic BSDE with Hölder continuous driver in several dimensions, and show that the

rate of convergence predicted by our main Theorem 4.11 holds for experiments. We note that, unlike

many papers, these experiments concern the full quadratic error of the algorithm, rather than the error

in the approximation of Y only at time 0. Some intermediate results are detailed in the Appendix.

Further notation.

• |x| stands for the Euclidean norm of the vector x, Tr(A) denotes the trace of the matrix A.

• |U |Lp
= (E|U |p) 1

p stands for the Lp(P)-norm (p ≥ 1) of a random variable U . To indicate that

U is additionally measurable w.r.t. the σ-algebra Q, we may write U ∈ Lp(Q,P).

• For a q(≥ 1)-dimensional process U = (Ui)0≤i≤N , its l-th component is denoted by Ul =

(Ul,i)0≤i≤N .

• For any finite L > 0 and x = (x1, . . . , xn) ∈ R
n, define the truncation function TL(x) :=

(−L ∨ x1 ∧ L, . . . ,−L ∨ xn ∧ L).

• For finite x > 0, log(x) is the natural logarithm of x.

2 Standing assumptions and applications

In this section, we give the standing assumptions for this paper and we outline several examples to

demonstrate how these more general assumptions lead to wider applicability of our results to practical

continuous-time BSDE problems than is, to the best of our knowledge, currently available.

2.1 Standing assumptions

The standing assumptions are separated into two parts: the first set consists of the minimal assump-

tions that are in force throughout the entirity of the paper, and the second set consists of theMarkovian

assumptions in force throughout Section 4 (or otherwise where stated). The minimal assumptions are

(Aξ) ξ is in L2(FT ,P),

(AF) i) (ω, y, z) 7→ fi(y, z) is Fti ⊗ B(R) ⊗ B(Rq)-measurable for every i < N , and there exist

deterministic parameters θL ∈ (0, 1] and Lf ∈ [0,+∞) such that

|fi(y, z)− fi(y
′, z′)| ≤ Lf

(T − ti)(1−θL)/2
(|y − y′|+ |z − z′|) ∀ i ∈ {0, . . . , N − 1},

for any (y, y′, z, z′) ∈ R× R× R
q × R

q,

ii) there exist deterministic parameters θc ∈ (0, 1] and Cf ∈ [0,+∞) such that

|fi(0, 0)| ≤
Cf

(T − ti)1−θc
, ∀ i ∈ {0, . . . , N − 1},
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iii) the time-grids π := {0 = t0 < . . . < tN = T} are such that

Cπ = sup
k<N

∆k

(T − tk)1−θL
→ 0 as N → +∞, (5)

lim sup
N→∞

Rπ < +∞, where Rπ = sup
0≤k≤N−2

∆k

∆k+1
. (6)

Under (Aξ) and (AF-i-ii), it is straightforward to check from (4) that (Yi)0≤i≤N and (Zi)0≤i<N are

well defined and belong to L2 (see Proposition 3.2 for tight estimates). Note that taking θL = θc = 1

in (AF-i-ii) reduces the assumptions to the usual globally Lipschitz driver setting.

When analyzing the influence of using simulations in Section 4, we reinforce the basic assumptions

with the following set of Markovian assumptions:

(AX) X is a Markov chain in R
d (1 ≤ d < +∞) adapted to (Fti)i. Moreover, for every (i, j) ∈

{0, . . . , N}2 with i < j, there exists a function V ij : Ω×R
d → R

d which is Gi⊗B(Rd)-measurable,

for some sub-σ-algebra Gi ⊂ FT independent of Fti , such that Xj = V ij (Xi).

(A′
ξ) i) ξ is a bounded FT -measurable random variable:

Cξ := P− ess supω |ξ(ω)| < +∞.

ii) ξ is of form ξ = Φ(XN ) for a bounded, measurable function Φ.

(A′
F
) For every i < N , the driver is of the form fi(y, z) = fi(Xi, y, z) where (x, y, z) 7→ fi(x, y, z) is

B(Rd)⊗ B(R)⊗ B(Rq)-measurable and satisfies (AF).

These yield a Markov representation for solutions of the discrete BSDEs: for all k < N , there exist

measurable, deterministic functions yk : R
d → R and zk : R

d → R
q such that Yk = yk(Xk) and

Zk = zk(Xk) holds almost surely (see Subsection 4.1). We emphasize that we do not make any further

assumptions on X - no non-degeneracy condition, no specific distributions, etc; our error estimates are

model-free in this sense. This lends flexibility and robustness to the empirical least-squares regression

scheme: it is a black box mapping model simulations into value functions.

At first glance, the boundedness assumption (A′
ξ-i) appears to be a serious restriction of our scheme.

The raison d’être of (A′
ξ-i) is to derive robust estimates for the global error (see Theorem 4.11) using

the tools of nonparametric regression [24]. On the other hand, ξn = −n ∨ ξ ∧ n (n ≥ 0) defines a

sequence of bounded approximations of ξ and by L2-stability results on continuous-time BSDEs (see

[14, Proposition 2.1] for instance), the truncation error converges to 0 as n→ +∞. Since in our global

error estimates we keep track on the dependence on Cξ, it would be a priori possible to let this upper

bound go appropriately quickly to infinity, while maintaining the convergence rate of the scheme (up

to log terms).

2.2 Applications to motivate (AF).

◮ Assumptions (AF-i-ii). We outline two canonical examples, both related to a R
d-valued Brownian

diffusion process (Xt)0≤t≤T (which could include jumps as in [27]) with infinitesimal generator L.
Assume that q = d, that the coefficients of X are smooth and bounded and that its diffusion coefficient
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σ(t, x) satisfies a uniform ellipticity condition. The typical continuous time BSDE at hand is of the

form

Yt = Φ(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs.

Under various conditions on Φ, f and on the approximation of Xti by Xi, the discrete time process

(Yi, Zi)0≤i<N generated by (1) (or equivalently (4)) converges to (Y, Z), in suitable L2-spaces, as the

mesh size |π| goes to 0. See [36, 7, 19, 26, 20, 32] among others.

Approximating Quadratic BSDEs. Consider a quadratic growth driver satisfying

|f(t, x, y, z)| ≤ c (1 + |y|+ |z|2),
|f(t, x, y, z)− f(t, x, y′, z′)| ≤ c (1 + |z|+ |z′|)(|y − y′|+ |z − z′|)

for any (t, x, y, y′, z, z′) ∈ [0, T ] × R
d × R × R × R

d × R
d and for a given constant c ≥ 0. Quadratic

BSDEs have important applications in mathematical finance, for example, in utility optimization in

incomplete markets [33, 25, 13]. Assume additionally that the terminal function Φ is Hölder continuous

and bounded. Then, [12, Theorem 2.1] yields that there exist constants θ ∈ (0, 1] and Cu ∈ R
+ such

that (T − t)(1−θ)/2|Zt| ≤ Cu for all t ∈ [0, T ) almost surely. Now, using the truncation function T.(.),
set ϕt : ζ ∈ R

d 7→ ϕt(ζ) := TCu(T−t)(θ−1)/2(ζ) and define a new driver f̄(t, x, y, z) := f
(
t, x, y, ϕt(z)

)
.

Observe that f̄(t,Xt, Yt, Zt) = f(t,Xt, Yt, Zt) almost surely. Therefore, the BSDE with terminal

condition Φ(XT ) and driver f(t,Xt, y, z) admits the same solution as the BSDE with terminal condition

Φ(XT ) and driver f̄(t,Xt, y, z) due to uniqueness of solutions, so it is equivalent to solve the BSDE with

driver f or f̄ . This implies that this technique incurs zero error due to the truncation. Notice also that

ϕt(·) is 1-Lipschitz continuous and bounded by Cu
√
d(T − t)−(1−θ)/2, hence fi(y, z) := f̄(ti, Xti , y, z)

satisfies (AF-i-ii) with Cf = c, θc = 1, Lf = c(T (1−θ)/2 + 2
√
dCu), θL = θ. It is possible to show that

the exponent θ equals the Hölder coefficient of Φ, see [35][34]. In contrast, it may be difficult to obtain

an explicit value for the constant Cu and therefore the constant Lf , see for example [31]. On the other

hand, one may replace this constant by
√

ln(1 + lnN), where N is the number of time-points in the

time-grid; for sufficiently large N , this will dominate Lf . The effect of adding this dependence on N

into the Lipschitz constant will deteriorate the rate of convergence only by a factor of (1 + lnN)c̄,

because the constants obtained in Theorem 4.11 depend on Lf at worst through the factor ec̄L
2
f .

Using proxys. This is a technique that may improve the numerical efficiency of BSDE algorithms

given a priori knowledge. Consider a standard Lipschitz driver f . Assume that we know by some a

priori information that the solution (Yt, Zt)t is close to (v(t,Xt),∇v(t,Xt)σ(t,Xt))t, where v is the

explicit solution to a linear parabolic equation ∂tv(t, x) + L̃v(t, x) + f̃(t, x) = 0; the diffusion process

associated to L̃, the terminal condition and the driver may have changed to produce an analytical

solution. v is called a proxy in [6]. This is a standard method in PDE theory. It is then natural to

numerically compute the residual (Y 0
t , Z

0
t ) := (Yt − v(t,Xt), Zt − ∇v(t,Xt)σ(t,Xt)), which solves a

BSDE with terminal function Φ(.)− v(T, .) and driver

f0(t, x, y, z) := f(t, x, y + v(t, x), z +∇v(t, x)σ(t, x))− f̃(t, x) + (L − L̃)v(t, x).
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The new driver f0 is uniformly Lipschitz w.r.t. y and z, so (AF-i) is satisfied with θL = 1. If

v(T, ·) is θ-Hölder continuous (θ ∈ (0, 1]), then usual PDE estimates on the parabolic operator L̃ give

(T − t)(
k−θ
2 )+ |Dk

xv(t, x)| ≤ Cv (k = 0, 1, 2), from which (AF-ii) is derived with θc = θ/2. In fact, for

L̃ = L, v(T, .) = Φ(.) and f̃ = 0, one has the improvement θc = (1 + θ)/2.

A related approach is the so-called Martingale basis method [5]. Here, L̃ = L, v(T, .) = Φ(.)

and f̃ = 0, and one obtains an approximation of v(·) and ∂xv(·) essentially for free because one is in

possession of a special set of basis functions. Whilst the authors are not able to provide explicit error

estimates for their scheme, they give several numerical examples showing that the method outperforms

the ODP scheme; the results of this paper now allow explicit error estimates.

To conclude this example, we mention that in the case L̃ = L, v(T, .) = Φ(.) and f̃ = 0, it is

proved in [20] that the L2-time-regularity of (Y 0, Z0) is usually more well-behaved than that of (Y, Z),

implying that the discretization error from the DP equation for (Y 0, Z0) is smaller.

◮ Assumption (AF-iii). This assumption is used to derive stability results for discrete BSDEs

(see Proposition 3.2) and for the numerical schemes (see Theorem 4.11) as the number N of grid

times becomes large. This condition is satisfied by, for example, the grid suggested in [20] (i.e. tk =

T − T (1 − k/N)1/θπ with θπ ∈ (0, 1]); see [22, Lemma A.1]. In that article, it was shown that this

class of time-grid is in some sense optimal for the time-discretization of the continuous BSDE, a

result extended to the weaker conditions used in this paper in [35], so the Assumption (AF-iii) is not

restrictive in this respect.

3 General a priori estimates

In this section, our effort concentrates on establishing L2 estimates that will be uniform as N → +∞.

These results will be crucial for Section 4. The methods of proofs are somewhat standard but due to

our non globally Lipschitz assumptions, there are technicalities that are worth being detailed.

The first two results of this section, Lemma 3.1 and Proposition 3.2, determine stability estimates

for a class of BSDEs whose drivers satisfy rather weaker conditions than afforded by (AF). These

weaker assumptions are critical for the analysis of BSDEs with sample-dependant drivers in Section 4.

We consider two discrete BSDEs, (Y1,i, Z1,i)0≤i≤N and (Y2,i, Z2,i)0≤i≤N , given by

Yj,i = Ei

[
ξj +

∑N−1
k=i fj,k(Yj,k+1, Zj,k)∆k

]
,

∆iZj,i = Ei

[
(ξj +

∑N−1
k=i+1 fj,k(Yj,k+1, Zj,k)∆k)∆W

⊤
i

]
,

for i ∈ {0, . . . , N − 1}, j ∈ {1, 2}, and we aim to study the differences

∆Yi = Y1,i − Y2,i, ∆Zi = Z1,i − Z2,i.

For this, we define

∆fi = f1,i(Y1,i+1, Z1,i)− f2,i(Y1,i+1, Z1,i), ∆ξ = ξ1 − ξ2.

The assumptions on the drivers fj,i(y, z) differ from (AF), and, before continuing, we briefly outline

how. Firstly, the driver f2,i(y, z) is Lipschitz continuous w.r.t. (y, z) and the dependence of their
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Lipschitz constant w.r.t. i is general. Secondly, there are no Lipschitz continuity assumptions on

f1,i(y, z); however, we assume that each f1,i(Y1,i+1, Z1,i) are in L2(FT ), so that Y1,i and Z1,i are also

square integrable for any i. Finally, we do not insist that the drivers be adapted, which will be needed

in the setting of sample-dependant drivers.

Using the tower property of conditional expectations, observe that the MDP and ODP definitions

of the discrete BSDEs coincide, i.e.





Yj,N = ξj , Yj,i = Ei [Yj,i+1 + fj,i(Yj,i+1, Zj,i)∆i] ,

∆iZj,i = Ei

[
Yj,i+1∆W

⊤
i

]
,

(7)

for i ∈ {0, . . . , N −1}, j ∈ {1, 2}. The first stability result, the Lemma below, is an intermediate result

used repeatedly later in the proof of Proposition 3.2:

Lemma 3.1 (Local estimates). For j ∈ {1, 2}, assume that ξj is in L2(FT ). Moreover, for each

i ∈ {0, . . . , N − 1}, assume that f1,i(Y1,i+1, Z1,i) is in L2(FT ) and f2,i(y, z) is Lipschitz continuous

w.r.t. y and z, with a finite Lipschitz constant Lf2,i ≥ 0. Then, for any ∆i ≤ T and γi > 0 satisfying

6q(∆i +
1
γi
)L2

f2,i
≤ 1, it follows that

|∆Yi|2 ≤ (1 + (γi +
1

2
)∆i)Ei(|∆Yi+1|2) + 3(∆i +

1

γi
)∆iEi[|∆fi|2]. (8)

Proof. Preliminary estimates for ∆Zi. Since the Brownian increment ∆Wi is conditionally centered,

it follows that

∆i∆Zi = Ei

[
(∆Yi+1 − Ei[∆Yi+1])∆W

⊤
i

]
.

By the Cauchy-Schwarz inequality, |Ei
[
(∆Yi+1−Ei[∆Yi+1])∆W

⊤
i

]
|2 is bounded above by q∆i

(
Ei[(∆Yi+1)

2]−
(Ei[∆Yi+1])

2
)
, whence

∆i|∆Zi|2 ≤ q
(
Ei[(∆Yi+1)

2]− (Ei[∆Yi+1])
2
)
. (9)

Estimates for ∆Yi. We have ∆Yi = Ei∆Yi+1 +∆iEi[∆fi] + ∆iEi[f2,i(Y1,i+1, Z1,i)− f2,i(Y2,i+1, Z2,i)].

Combining the Young inequality - (a+ b)2 ≤ (1 + γi∆i)a
2 + (1 + 1

γi∆i
)b2 for any (a, b) ∈ R

2 - and the

Lipschitz property of f2,i and (9), one deduces that

(∆Yi)
2 ≤ (1 + γi∆i)(Ei[∆Yi+1])

2 (10)

+ 3(∆i +
1

γi
)∆i

[
Ei[|∆fi|2] + L2

f2,iEi[(∆Yi+1)
2] + L2

f2,i |∆Zi|2
]

≤
(
1 + γi∆i − 3qL2

f2,i(∆i +
1

γi
)

)
(Ei[∆Yi+1])

2 + 3(∆i +
1

γi
)∆iEi[|∆fi|2]

+

[
3(∆i +

1

γi
)∆iL

2
f2,i + 3qL2

f2,i(∆i +
1

γi
)

]
Ei[(∆Yi+1)

2]. (11)

The assumptions on γi and ∆i ensure that 1 + γi∆i − 3qL2
f2,i

(∆i +
1
γi
) ≥ 0 for any ∆i, whence,

applying Jensen’s inequality to the terms in (Ei∆Yi+1)
2 in (11), it follows that

(∆Yi)
2 ≤

(
1 + γi∆i − 3qL2

f2,i(∆i +
1

γi
)

)
Ei[(∆Yi+1)

2] + 3(∆i +
1

γi
)∆iEi(|∆fi|2)
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+

[
3(∆i +

1

γi
)∆iL

2
f2,i + 3qL2

f2,i(∆i +
1

γi
)

]
Ei[(∆Yi+1)

2]

=

(
1 + γi∆i + 3(∆i +

1

γi
)∆iL

2
f2,i

)
Ei[(∆Yi+1)

2] + 3(∆i +
1

γi
)∆iEi(|∆fi|2).

Finally, using that 3(∆i +
1
γi
)∆iL

2
f2,i

≤ ∆i

2 completes the proof of (8). �

We now come to the main stability result, which will be used extensively in the error analysis of

Section 4:

Proposition 3.2 (Global pointwise estimates). For j ∈ {1, 2}, assume that ξj is in L2(FT ). Moreover,

for each i ∈ {0, . . . , N − 1}, assume that f1,i(Y1,i+1, Z1,i) is in L2(FT ) and f2,i(y, z) is Lipschitz

continuous w.r.t. y and z, with a finite Lipschitz constant Lf2,i ≥ 0. Then, for any time grid π and

γ ∈ (0,+∞)N satisfying 6q(∆k +
1
γk
)L2

f2,k
≤ 1 for all k ≤ N − 1, we have for 0 ≤ i ≤ N

|∆Yi|2Γi +
N−1∑

k=i

∆kEi(|∆Zk|2)Γk

≤ C(12)

(
ΓNEi[|∆ξ|2] + 3

N−1∑

k=i

( 1

γk
+∆k

)
∆kEi[|∆fk|2]Γk

)
, (12)

where Γi :=
∏i−1
k=0(1 + γk∆k) and C(12) := 2q + (1 + T )eT/2.

Note that, whenever necessary, the above conditional pointwise estimates can be easily turned into

uniform L2-estimates:

sup
i≤k≤N

E(|∆Yk|2)Γk +
N−1∑

k=i

∆kE(|∆Zk|2)Γk

≤ C(12)

(
ΓNE[|∆ξ|2] + 3

N−1∑

k=i

( 1

γk
+∆k

)
∆kE[|∆fk|2]Γk

)
.

Proof of Proposition 3.2. Multiplying both sides of equation (8) by

λi := (1 + (γi−1 +
1

2
)∆i−1)λi−1, where λ0 := 1,

one obtains |∆Yi|2λi ≤ Ei[|∆Yi+1|2]λi+1 + 3(∆i + 1/γi)∆i[|∆fi|2]λi; summing both sides of this in-

equality between i to N − 1 and taking the conditional expectation Ei[·], one deduces that

(∆Yi)
2λi ≤ λNEi(|∆ξ|2) + 3

N−1∑

k=i

(
1

γk
+∆k)∆kEi[|∆fk|2]λk.

From the simple inequality Γi ≤ λi = exp
(∑i

k=0 ln(1 + (γk +
1
2 )∆k)

)
≤ eT/2Γi, it follows that, for all
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i ∈ {0, . . . , N},

(∆Yi)
2Γi ≤ eT/2ΓNEi[|∆ξ|2] + 3eT/2

N−1∑

k=i

(
1

γk
+∆k)∆kEi[|∆fk|2]Γk. (13)

Final estimates for ∆Zi. From (9),
∑N−1
k=i ∆kEi[|∆Zk|2]Γk is bounded above by

N−1∑

k=i

qΓk+1

(
Ei[(∆Yk+1)

2]− Ei[(Ek∆Yk+1)
2]
)

≤ qΓNEi[|∆ξ|2] +
N−1∑

k=i+1

qΓk

(
Ei[(∆Yk)

2]− (1 + γk∆k)Ei[(Ek∆Yk+1)
2]
)

and, from (10), Ei[(∆Yk)
2]− (1 + γk∆k)Ei[(Ek[∆Yk+1])

2] is bounded above by

3(
1

γk
+∆k)∆k

[
Ei[|∆fk|2] + L2

f2,k
Ei[(∆Yk+1)

2] + L2
f2,k

Ei[|∆Zk|2]
]

whence it follows that
∑N−1
k=i ∆kEi[|∆Zk|2]Γk is bounded above by

qΓNEi(∆ξ
2) + 3

N−1∑

k=i+1

q(
1

γk
+∆k)∆kL

2
f2,k

Ei(|∆Zk|2)Γk

+ 3

N−1∑

k=i+1

q(
1

γk
+∆k)∆kEi(|∆fk|2)Γk + 3

N−1∑

k=i+1

q(
1

γk
+∆k)∆kL

2
f2,k

Ei[(∆Yk+1)
2]Γk.

Using the assumptions on γk and ∆k of the Proposition statement, it follows that
∑N−1
k=i ∆kEi[|∆Zk|2]Γk

is bounded above by

2qΓNEi[|∆ξ|2] + 6

N−1∑

k=i+1

q(
1

γk
+∆k)∆kEi[|∆fk|2]Γk +

N−1∑

k=i+1

∆kEi[(∆Yk+1)
2]Γk

≤ (2q + TeT/2)ΓNEi[|∆ξ|2] + (6q + 3TeT/2)

N−1∑

k=i+1

(
1

γk
+∆k)∆kEi[|∆fk|2]Γk,

where the estimate (13) on ∆Y is used in the last inequality. �

In the final result of this Section, Proposition 3.3 below, we return to the discrete BSDE (Yi, Zi)0≤i≤N
defined in (1) and show that, when the terminal condition is bounded, almost sure absolute bounds on

Yi and Zi are available for all i ∈ {0, . . . , N − 1}. The a priori estimates of Proposition 3.2 are vital in

the proof. Note that the assumption (AF) is automatically in force. These bounds will be critical for

determining model-free estimates with the non-parametric tools [24, Chapters 10-11-12] in Section 4.

Proposition 3.3 (a.s. upper bounds). Assume (A′
ξ-i). For any π with N large enough (such that
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CπL
2
f ≤ 1

12q , see (AF-iii)), the following almost sure bounds on Yi and Zi apply:

|Yi|≤ C(14)

(
Cξ +

√
T θL∧θc(T − ti)2θc−θL∧θc

4q(2θc − θL ∧ θc)
Cf

)
≤ Cy := C(14)

(
Cξ +

T θc√
4q(2θc − θL ∧ θc)

Cf

)
,

(14)

|Zl,i|≤
C(14)√
∆i

(
Cξ +

√
T θL∧θc(T − ti)2θc−θL∧θc

4q(2θc − θL ∧ θc)
Cf

)
≤ Cz,i :=

Cy√
∆i

,

for 0 ≤ i ≤ N − 1 and C(14) = exp
(
T
4 +

6q(1∨L2
f )

θL∧θc (T θL ∨ 1)
)
.

Observe that Cy and C(14) are uniform in i, and that they remain bounded as Lf and T go to 0

(as we naturally expect). Moreover, if the terminal condition is 0, so that Cξ = 0, we obtain the

simplification

|Yi| ≤ C(15)(T − ti)
θc− 1

2 θL∧θc , |Zl,i| ≤
C(15)√
∆i

(T − ti)
θc− 1

2 θL∧θc . (15)

where C(15) :=
C(14)T

1
2
θL∧θc√

4q(2θc−θL∧θc)
. Therefore, we see that Yi and Zi get smaller as i tends to N . This

observation is useful in particular for the proxy method of Section 2.2, in the setting where L̃ = L,
v(T, .) = Φ(.) and f̃ = 0; indeed, tighter bounds on Y and Z improves the constants of the numerical

convergence (but presumably not the rates).

Proof. Let (Y1,i, Z1,i)0≤i≤N := (0, 0)0≤i≤N , the discrete BSDE with 0 terminal condition and 0 driver,

and (Y2,i, Z2,i)0≤i≤N := (Yi, Zi)0≤i≤N , the discrete BSDE given by (1). The terminal condition and

driver of (Yj,i, Zj,i)0≤i≤N (for j ∈ {1, 2} respectively) satisfy the conditions of Proposition 3.2. In

order to apply the a priori estimates from this proposition, it is sufficient from (AF-iii) to take N large

enough so that CπL
2
f ≤ 1

12q , whence 6q∆i
L2

f

(T−ti)1−θL
≤ 1/2 for each i, and to find a γi > 0 (explicited

below) such that 6qL2
f (T − ti)

θL−1/γi ≤ 1/2 for each i ∈ {0, . . . , N − 1}. Then, it follows from (13)

and bound of fk(0, 0) given in (AF-ii) that

(∆Yi)
2 ≤ eT/2

(
ΓNEi(ξ

2) + 3
N−1∑

k=i

(1 + γk∆k)

γk
Γk∆kEi[|fk(0, 0)|2]

)

≤ eT/2ΓN
(
C2
ξ + 3C2

f

N−1∑

k=i

∆k

γk(T − tk)2(1−θc)
)
, (16)

where Γi is defined by
∏i−1
k=0(1 + γk∆k) for each i ∈ {0, . . . , N}. The appropriate γi’s are determined

constructively: setting

γi := 12q
(1 ∨ T−θL)(1 ∨ L2

f )

(T − ti)1−θL
( T

T − ti

)θL−θL∧θc ≥
12qL2

f

(T − ti)1−θL
, for i ∈ {0, . . . , N − 1},

it follows 6q 1
γi

L2
f

(T−ti)1−θL
≤ 1/2 for every i, as required. It only remains to compute upper bounds
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for ΓN . Observing that 2θc − θL ∧ θc ≥ θc > 0, it follows that

ΓN ≤ exp
(N−1∑

k=0

γk∆k

)
≤ exp

(
12q(1 ∨ T−θL)(1 ∨ L2

f )T
θL−θL∧θc

∫ T

0

(T − t)θL∧θc−1dt
)

= exp
(12q(1 ∨ L2

f )

θL ∧ θc
(T θL ∨ 1)

)
, (17)

N−1∑

k=i

∆k

γk(T − tk)2(1−θc)
=
N−1∑

k=i

∆k(1 ∧ T θL)T θL∧θc−θL

12q(1 ∨ L2
f )(T − tk)(1−2θc+θL∧θc)

≤ T θL∧θc(T − ti)
2θc−θL∧θc

12q(2θc − θL ∧ θc)
≤ T 2θc

12q(2θc − θL ∧ θc)
. (18)

Substituting (17) and (18) into (16), we obtain the required upper bounds (14) on Y . The bound on

Zi is clear from the Cauchy-Schwarz inequality and the bound on Yi+1. �

4 Monte-Carlo regression scheme: the LSMDP algorithm

In this section, we present the LSMDP scheme: the conditional expectations in (1) are approximated

using linear least-squares regression on simulated data to provide a fully implementable algorithm. A

full error analysis is undertaken in Section 4.3 and the algorithm complexity is discussed in Section

4.4. Finally, Section 4.5 is devoted to the proofs. Throughout this section, the Markovian assumptions

(AX), (A′
ξ) and (A′

F
) are always in force.

4.1 Preliminaries

Due to the Markovian assumptions, there are measurable, deterministic (but unknown) functions

yi(·) : Rd → R and zi(·) : Rd → R
q for each i ∈ {0, . . . , N − 1} such that the solution (Yi, Zi)0≤i≤N of

the discrete BSDE (1) is given by

(Yi, Zi) :=
(
yi(Xi), zi(Xi)

)
. (19)

This is a similar result to [4, Theorem 3.1], but without Picard iterations. It is shown by mathematical

induction using assumption (AX) and the following corollary of the Monotone Class theorem.

Lemma 4.1. Suppose that G and H are independent sub-σ-algebras of F . For l ≥ 1, let F : Ω×R
d →

R
l be bounded and G⊗B(Rd)-measurable, and U : Ω → R

d be H-measurable. Then, E[F (U)|H] = j(U)

where j(h) = E[F (h)] for all h ∈ R
d.

We have used assumption (AX) - i.e., that Xj = V ij (Xi) for all j > i - in order to apply Lemma

4.1 for each i ∈ {0, . . . , N − 1} with H = σ(Xi), G = σ(∆Wi) ∨ Gi, U = Xi, and

F (x) = FY,i(x) := Φ
(
V iN (x)

)
+

N∑

k=i

fk
(
V ik (x), yk+1(V

i
k+1(x)), zk(V

i
k (x))

)
∆k for yi(·),

and F (x) = FZ,i(x) :=
1

∆i
FY,i+1(x)∆W

⊤
i for zi(·).
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Definition 4.2 (Linear least-squares regression). For l, l′ ≥ 1 and for probability spaces (Ω̃, F̃ , P̃) and
(Rl,B(Rl), ν), let S be a F̃ ⊗ B(Rl)-measurable R

l′-valued function such that S(ω, ·) ∈ L2(B(Rl), ν)
for P̃-a.e. ω ∈ Ω̃, and K a linear vector subspace of L2(B(Rl), ν) spanned by deterministic R

l′-valued

functions {pk(.), k ≥ 1}. The least squares approximation of S in the space K with respect to ν is the

(P̃× ν-a.e.) unique, F̃ ⊗ B(Rl)-measurable function S⋆ given by

S⋆(ω, ·) = arg inf
φ∈K

∫
|φ(x)− S(ω, x)|2ν(dx). (20)

We say that S⋆ solves OLS(S,K, ν).
On the other hand, suppose that νM = 1

M

∑M
m=1 δX (m) is a discrete probability measure on (Rl,B(Rl)),

where δx is the Dirac measure on x and X (1), . . . ,X (M) : Ω̃ → R
l are i.i.d. random variables. For

an F̃ ⊗ B(Rl)-measurable R
l′-valued function S such that

∣∣S
(
ω,X (m)(ω)

)∣∣ <∞ for any m and P̃-a.e.

ω ∈ Ω̃, the least squares approximation of S in the space K with respect to νM is the (P̃-a.e.) unique,

F̃ ⊗ B(Rl)–measurable function S⋆ given by

S⋆(ω, ·) = arg inf
φ∈K

1

M

M∑

m=1

|φ
(
X (m)(ω)

)
− S

(
ω,X (m)(ω)

)
|2. (21)

We say that S⋆ solves OLS(S,K, νM ).

From (19), the MDP equation (1) can be reformulated in terms of Definition 4.2: taking for K(l′)
i any

dense subset in the Rl
′

-valued functions belonging to L2(B(Rd),P◦(Xi)
−1), for each i ∈ {0, . . . , N−1},





yi(·) solves OLS( SY,i(x) , K(1)
i , νi ),

where SY,i(x) := Φ(xN ) +

N−1∑

k=i

fk
(
xk, yk+1(xk+1), zk(xk)

)
∆k,

zi(·) solves OLS( SZ,i(w,x) , K(q)
i , νi ),

where SZ,i(w,x) :=
1

∆i
SY,i+1(x) w

⊤

and νi := P ◦ (∆Wi, Xi, . . . , XN )−1,

(22)

where w ∈ R
q and x := (x0, . . . , xN ) ∈ (Rd)N+1. However, the least-squares regressions in (22)

encounter the computational problems that L2(B(Rd),P◦(Xi)
−1) may be infinite dimensional and that

one has to compute (20) using the law of (∆Wi, Xi, . . . , XN ), which may be impossible. Therefore,

the functions yi(·) and zi(·) are to be approximated on finite dimensional function spaces with the

sample-based empirical version of the law, as described in the next section.

4.2 Algorithm

In order to avoid the possible infinite dimensionality, we will regress on a predetermined finite dimen-

sional vector spaces.

Definition 4.3 (Finite dimensional approximation spaces). For i ∈ {0, . . . , N − 1}, we are given two
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finite functional linear spaces of dimension KY,i and KZ,i




KY,i := span{p(1)Y,i, . . . , p

(KY,i)
Y,i }, for p

(k)
Y,i : R

d → R s.t. E[|p(k)Y,i(Xi)|2] < +∞,

KZ,i := span{p(1)Z,i, . . . , p
(KZ,i)
Z,i }, for p

(k)
Z,i : R

d → (Rq)⊤ s.t. E[|p(k)Z,i(Xi)|2] < +∞.

The function yi(·) will be approximated in the linear space KY,i, whereas the function zi(·) will be
approximated in KZ,i. We define the approximation errors

TY1,i := inf
φ∈KY,i

E

[
|φ(Xi)− yi(Xi)|2

]
, TZ1,i := inf

φ∈KZ,i

E

[
|φ(Xi)− zi(Xi)|2

]
,

which are the best approximation errors using the basis functions. In order to avoid the problem of

explicit computations using the law of (∆Wi, Xi, . . . , XN ), we will regress using the empirical measure,

rather than the law. In order to define the empirical measure, we need to generate simulations of

(∆Wi, Xi, . . . , XN ).

Definition 4.4 (Simulations and empirical measures). For i ∈ {0, . . . , N − 1}, generate Mi ≥ 1

independent copies Ci := {(∆W (i,m)
i , X(i,m)) : m = 1, . . . ,Mi} of (∆Wi, X): Ci forms a cloud of

simulations used for the regression at time i. Furthermore, we assume that the clouds of simulations

(Ci : 0 ≤ i < N) are independently generated. All these random variables are defined on a probability

space (Ω(M),F (M),P(M)). Denote by νi,M the empirical probability measure of the Ci-simulations, i.e.

νi,M =
1

Mi

Mi∑

m=1

δ
(∆W

(i,m)
i ,X

(i,m)
i ,...,X

(i,m)
N )

.

Denoting by (Ω,F ,P) the probability space supporting (∆W,X), which serves as a generic element for

the clouds of simulations, the full probability space used to analyze our algorithm is the product space

(Ω̄, F̄ , P̄) = (Ω,F ,P)⊗ (Ω(M),F (M),P(M)).

Remark 4.5. The reader will observe that the simulations X
(i,m)
j for j < i are not used in the

algorithm: however, we keep them in the notation for simplicity.

Allowing time-dependency in the number of simulations Mi is coherent with our setting of time-

dependent local Lipschitz driver. Without loss of generality, up to the generation of extra simulations,

we assume Mi ≥ KY,i ∨KZ,i for all i ∈ {0, . . . , N − 1}.

By a slight abuse of notation, we write P (resp. E) to mean P̄ (resp. Ē) from now on. We now

come to the definition of the LSMDP algorithm.

Definition 4.6 (LSMDP algorithm). Recall the the linear spaces KY,i and KZ,i from Definition 4.3,

the empirical measures {νi,M : i = 0, . . . , N − 1} from Definition 4.4, the almost sure bounds from

Proposition 3.3 and the truncation function TL (notation in introduction).

Set y
(M)
N (·) := Φ(·).

For each i = N−1, N−2, . . . , 0, set the random functions y
(M)
i (·) and z(M)

i (·) recursively as follows:
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define y
(M)
i (·) := TCy

(
ψ
(M)
Y,i (·)

)
and z

(M)
i (·) = TCz,i

(
ψ
(M)
Z,i (·)

)
, where





ψ
(M)
Y,i (·) solves OLS(S

(M)
Y,i (x) , KY,i , νi,M )

for S
(M)
Y,i (x) := Φ(xN ) +

N−1∑

k=i

fk
(
xk, y

(M)
k+1(xk+1), z

(M)
k (xk)

)
∆k,

ψ
(M)
Z,i (·) solves OLS( S

(M)
Z,i (w,x) , KZ,i , νi,M )

for S
(M)
Z,i (w,x) :=

1

∆i
S
(M)
Y,i+1(x) w

⊤,

(23)

for every w ∈ R
q, x = (x0, . . . , xN ) ∈ (Rd)N+1.

Like the MDP, the LSMDP is computed recursively: first, y
(M)
N (·) is used to compute z

(M)
N−1(·), then

y
(M)
N (·) and z

(M)
N−1(·) are both used to compute y

(M)
N−1(·), and so on. In practice, the empirical least

squares regressions are computed using a Singular Value Decomposition (see [23, Section 5.5]). So long

as it is possible to generate the simulations (∆W
(i,m)
i , X(i,m))i,m, it is possible to perform the LSMDP

algorithm given in Definition 4.6. In this sense, the algorithm is fully implementable.

To conclude this section, we present the following result, which will feature frequently in Section

4.3 below, on almost sure bounds.

Lemma 4.7. Recall the constants Cy of Proposition 3.3. For S
(M)
Y,i (·) defined in (23),

sup
0≤i≤N

sup
x∈(Rd)N+1

|S(M)
Y,i (x)| ≤ C4.7 := Cξ + LfCyT

θL
2

[ 2
√
T

1 + θL
+

√
q
√
N√

θL

]
+ Cf

T θc

θc
.

Proof. From (A′
ξ-i), (AF-i-ii), and Proposition 3.3, we readily obtain

|S(M)
Y,i (x)| ≤ Cξ +

N−1∑

i=0

[
Lf

(T − ti)
1−θL

2

(
Cy +

√
q
Cy√
∆i

)
∆i +

Cf
(T − ti)1−θc

∆i

]

≤ Cξ + LfCy

[
T (1+θL)/2

(1 + θL)/2
+
√
q
√
N
(N−1∑

i=0

( √
∆i

(T − ti)
1−θL

2

)2)1/2
]
+ Cf

T θc

θc

for any x ∈ (Rd)N+1 and i ∈ {0, . . . , N}, so the announced upper bound follows. �

4.3 Error analysis

We will estimate the error of the LSMDP approximation
(
y
(M)
i (Xi), z

(M)
i (Xi)

)
0≤i≤N of the discrete

BSDE
(
yi(Xi), zi(Xi)

)
0≤i≤N in a L2-norm. Since both the functions y

(M)
i (.), z

(M)
i (.) and its arguments

Xi are random, we shall define more precisely the norms chosen to quantify the error.

Definition 4.8. Let ϕ : Ω(M)×R
d → R or Rq be F (M)⊗B(Rd)-measurable. For each i ∈ {0, . . . , N−1},

define the random norms

‖ϕ‖2i,∞ :=

∫

Rd

|ϕ(x)|2 P ◦X−1
i (dx), ‖ϕ‖2i,M :=

1

Mi

Mi∑

m=1

|ϕ(X(i,m)
i )|2.
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We are concerned with finding an upper bound for the error terms

Ē(Y,M, i) := E

[
‖y(M)
i (·)− yi(·)‖2i,∞

]
, Ē(Z,M, i) := E

[
‖z(M)
i (·)− zi(·)‖2i,∞

]
.

Actually, in the error analysis of empirical regressions, the most natural error norms are related to

empirical measures, i.e.

E(Y,M, i) := E

[
‖y(M)
i (·)− yi(·)‖2i,M

]
, E(Z,M, i) := E

[
‖z(M)
i (·)− zi(·)‖2i,M

]
.

In order to relate error terms Ē(·,M, i) and E(·,M, i), we use simple inequalities

Ē(Y,M, i) ≤ 2E(Y,M, i) + E

[(
‖y(M)
i (·)− yi(·)‖2i,∞ − 2‖y(M)

i (·)− yi(·)‖2i,M
)
+

]
, (24)

Ē(Z,M, i) ≤ 2E(Z,M, i) +

q∑

l=1

E

[(
‖z(M)
l,i (·)− zl,i(·)‖2i,∞ − 2‖z(M)

l,i (·)− zl,i(·)‖2i,M
)
+

]
, (25)

so that we are in a position to apply the following proposition which estimates sample deviation

uniformly on the function spaces; we defer to Appendix B for the proof.

Proposition 4.9. For finite B > 0, let G := {ψ
(
TBφ(·)−η(·)

)
: φ ∈ K}, where ψ : R → [0,∞) is

Lipschitz continuous with ψ(0) = 0 and Lipschitz constant Lψ, η : Rd → [−B,B], and K is a finite

K-dimensional vector space of functions. Then, for X (1), . . . ,X (M) i.i.d. random variables distributed

as X , we have

E

[
sup
g∈G

(∫

Rd

g(x)P ◦ X−1(dx)− 2

M

M∑

m=1

g(X (m))
)

+

]
≤ 507(K + 1)BLψ log(3M)

M
.

Recalling the constant Cy from Proposition 3.3, we apply Proposition 4.9 with B = Cy (resp.

Cz,i = Cy/
√
∆i), ψ(x) =

(
|x| ∧ (2Cy)

)2
(resp.

(
|x| ∧ (2Cz,i)

)2
- whence Lψ = 4Cy (resp. 4Cz,i) - and

K = KY,i (resp. KZ,i), so that, from (24) and (25) we obtain the following preliminary result.

Proposition 4.10. For each i ∈ {0, . . . , N − 1}, we have

Ē(Y,M, i) ≤ 2E(Y,M, i) +
2028(KY,i + 1)C2

y log(3Mi)

Mi
,

Ē(Z,M, i) ≤ 2E(Z,M, i) +
2028(KZ,i + 1)qC2

y log(3Mi)

∆iMi
.

Therefore, to control Ē(Y,M, i) and Ē(Z,M, i), it is sufficient to select sufficiently large Mi to

balance KY,i and KZ,i, and to control the error terms E(Y,M, i) and E(Z,M, i). We now state the

main result of this paper.

Theorem 4.11 (Error for the LSMDP scheme). Recall the constants Cy from Proposition 3.3 and

C4.7 from Lemma 4.7. For each k ∈ {0, . . . , N − 1}, define

E(k) := TY1,k + TZ1,k + C2
4.7

(3KY,k

Mk
+ 2q

KZ,k

∆kMk

)
+ 800

(
(KY,k + 1) +

(KZ,k + 1)q

∆k

)
C2
y

log(3Mk)

Mk
.
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For any any π such that CπL
2
f (Rπ ∨ 1) ≤ (192C(12)(1 + T ))−1, we have, for all 0 ≤ i ≤ N − 1, that

E

[
‖y(M)
i (·)− yi(·)‖2i,M

]
≤ TY1,i +

3C2
4.7KY,i

Mi
+ C4.11

N−1∑

k=i

E(k)∆k, (26)

N−1∑

k=i

E

[
‖z(M)
k (·)− zk(·)‖2k,M

]
∆k ≤ C4.11

N−1∑

k=i

E(k)∆k, (27)

where C4.11 = 8 exp
(
192(Rπ ∨ 1)C(12)(1 + T )T θLL2

f/θL
)
.

The proof of Theorem 4.11 is given in Section 4.5. As announced in (3), the global error estimates

are a time-average of three different, local error contributions E(k) along the DP equation: the terms

TY1,k and TZ1,k are the best approximation errors using the basis functions, the terms with factor C4.7

come from statistical errors, and last terms (with factor Cy) are interdependency terms due to nested

regression problems. In our algorithm, these interdependency terms deteriorate the statistical error

terms only by a log(M) factor: this is a very significant improvement compared to existing results. As

a consequence, the theoretical rate of convergence is much better, even under our general conditions.

Since interdependency errors have a small impact, the global LSMDP error writes as an average of

regression errors only, therefore it is hard to think of possible improvements to the convergence rates.

In this sense, we believe that these error estimates are optimal. However, constants could be improved,

for instance by incorporating variance reduction techniques (see [34, 2]).

4.4 Algorithm complexity

As usual in empirical regression theory, the parameters of the algorithm play contradictory roles:

the higher the dimension of the approximation spaces, the lower the bias T ·
1,· but the larger the

statistical errors in Theorem 4.11; the higher the number of simulations, the lower the statistical and

intedependancy errors, but the more computational work to be done. Thus, it is essential to optimize

these parameters by means of an error vs. computational work (complexity) analysis. For simplicity,

we assume that the time-grid is uniform: ∆i = T/N . In the following, c is a positive constant that

does not depend on N and may change from line to line; c is assumed to be large enough for the

arguments to be consistent.

◮ Smooth Markovian functions. Assume that the continuous-time limit of the value functions (yi(.), zi(.))i
are (u(t, .), v(t, .))t and that these functions are respectively of class Cκ+1+η

b and Cκ+ηb in space uni-

formly in time for some κ ∈ N and η ∈ (0, 1], i.e. u and v are uniformly bounded and κ + 1 (resp.

κ)-continuously space-differentiable with bounded derivatives, and the κ + 1 (resp. κ)-th derivatives

are uniformly η-Hölder continuous in space. This qualitative information is related to semi-linear

PDE estimates: they hold under standard conditions on the driver and the terminal function, see for

instance [12, 10].

Assume furthermore that the discretization errors between (yi(.), zi(.)) and

(u(ti, .), v(ti, .)) are uniformly bounded by cN−θconv for some θconv > 0: for Lipschitz data, θconv = 1
2

(see [36, 7, 19]) and for smoother data θconv = 1 (see [16, Theorems 7 and 8]). Thus, the bias terms

are bounded as follows:

TY1,i ≤ 2 inf
φ∈KY,i

E

[
|φ(Xi)− u(ti, Xi)|2

]
+

2c2

N2θconv
,
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TZ1,i ≤ 2 inf
φ∈KZ,i

E

[
|φ(Xi)− v(ti, Xi)|2

]
+

2c2

N2θconv
.

We now aim at choosing parameters so that the local error terms E(i) are of order N−2θconv (up to

logarithm factor) uniformly in i.

◮ Approximation spaces. For the basis functions, we take local polynomials defined on disjoint hyper-

cubes (Hn)n with edge length δy (for y) and δz (for z). The union of these hypercubes is of the form

[−R,R]d for each component y, z1, . . . , zq. The degree of local polynomials is κ+ 1 for y, and κ for z.

Pl stands for the set of polynomials of degree less than or equal to l.

◮ Approximation error. The best approximation error infφ∈KY,i
E[|φ(Xi)− u(ti, Xi)|2] is equal to

E

[
|u(ti, Xi)|21|Xi|∞>R

]
+

∑

n

min
φ∈Pκ+1

E

[
|φ(ti, Xi)− u(ti, Xi)|21Xi∈Hn

]

≤ |u(ti, .)|2∞P(|Xi|∞ > R) +
∑

n

c|u(ti, .)|2κ+1+η(δ
κ+1+η
y )2P(Xi ∈ Hn)

≤ |u(ti, .)|2∞P(|Xi|∞ > R) + c|u(ti, .)|2κ+1+η(δ
κ+1+η
y )2

where we have used a Taylor expansion on each set Hn and taken the local polynomials to be equal

to the first κ + 1 terms of the expansion. Assume additionally that Xi has exponential moments

(uniformly in i), i.e. for some λ > 0, supN≥1 sup0≤i≤N E(eλ|Xi|∞) < +∞, so that the choice R =

2θconvλ
−1 log(N + 1) is sufficient to ensure P(|Xi|∞ > R) = O(N−2θconv). Hence, the choice δy =

cN− θconv
κ+1+η ensures that TY1,i = O(N−2θconv). With similar arguments for the z components, we have

to choose δz = cN− θconv
κ+η . Thus the sizes of the vector spaces are KY,i = cNd θconv

κ+1+η logd(N + 1) and

KZ,i = cNd θconv
κ+η logd(N + 1).

◮ Statistical and interdependency error. Because the continuous-time solution (u, v) are bounded,

we can improve the uniform upper bound for |S(M)
Y,i (x)| and |SY,i(x)|, replacing C4.7 by a constant

independent of N . Then, to ensure that the term of factor of C2
4.7 in E(i) is of order O(N−2θconv), it

is enough to take Mi = cN1+2θconvKl,i = cN1+2θconv+d
θconv
κ+η logd(N + 1). With this choice of Mi =M ,

the last contribution (interdependency error) in E(i) is O(N−2θconv log(N)).

◮ Complexity analysis for the LSMDP scheme. By averaging the above error contributions, we obtain

from Theorem 4.11 that supi≤N

(
E

[
‖y(M)
i (·) − yi(·)‖2i,M

]
+

∑N−1
k=i E

[
‖z(M)
k (·) − zk(·)‖2k,M

]
∆k

)
=

O
(

log(N)
N2θconv

)
. Since the hypercubes are disjoint, the final computational cost C (counting the elementary

operations) is of order MN2, that is

C = cN3+2θconv+d
θconv
κ+η logd(N + 1).

Equivalently, the global error, as a function of complexity and ignoring log factors, is

N−θconv ≤ c C
−θconv

3+2θconv+d
θconv
κ+η = c C

−1

2(1+ 3
2θconv

+ d
2(κ+η)

)
.

This analysis shows that the smaller the parameter 3
2θconv

+ d
2(κ+η) , the quicker the convergence. There

are several numerically significant implications of this:

• the higher the smoothness of the solution, the better the convergence;
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• the higher the dimension, the worse the convergence; this is the usual curse of dimensionality.

• the better the discretization error (θconv large), the better the convergence. This motivates the

development of high-order discretization schemes for BSDEs.

If we apply the same analysis to [27, Theorem 2] for κ + η ≥ 1 and θconv = 1/2, we obtain that the

error is of order C
− 1

2(4+ 2d
κ+1+η

) for the ODP, which is significantly worse than the current LSMDP (at

least in the theoretical framework given in this section). There is a version of the ODP scheme which

also uses re-sampling and is detailed in [18]; therefore, it also avoids the high interdependency error,

but additionally avoids high re-sampling cost, because it only needs to resample one time-point per

regression. The error of this scheme is theoretically of order C
− 1

2(4+ d
κ+1+η

) . This is still higher than the

error of the LSMDP scheme so long as the smoothness parameters satisfy κ+ η > 1, which constitutes

every scenario under which the differentiability assumption is valid. This demonstrates that using the

multi-step rather than the one-step algorithm may bring about improvement in theoretical efficiency,

and that this improvement in efficiency is in fact related to the multi-step structure of the algorithm

and not only due to resimulation.

To conclude this section, let us turn our attention to the proxy method of Section 2.2. So far,

our analysis indicates that the use of proxies does not deteriorate the rate of convergence. We focus

particularly on the setting L̃ = L, v(T, .) = Φ(.) and f̃ = 0. As we saw in (15), the a priori bounds of

the remainder (yi(·) − v(ti, ·), zi(·) − ∇xv(ti, ·)σ(ti, ·)) are smaller, which induce tighter error bounds

due to improved constants and therefore better convergences. Unfortunately, convergence rates are

not improved.

4.5 Proof of Theorem 4.11

The following proposition is a key tool in the proof of Theorem 4.11:

Proposition 4.12. With the notation of Definition 4.2, suppose that K is finite dimensional and

spanned by the functions {p1(.), . . . , pK(.)}. Let S⋆ solve OLS(S,K, ν) (resp. OLS(S,K, νM )), ac-

cording to (20) (resp. (21)). The following properties are satisfied:

(i) linearity: the mapping S 7→ S⋆ is linear.

(ii) contraction property: ‖S⋆‖L2(B(Rl),µ) ≤ ‖S‖L2(B(Rl),µ), where µ = ν (resp. µ = νM ).

(iii) conditional expectation solution: in the case of the discrete probability measure νM , assume

additionally that the sub-σ-algebra Q ⊂ F̃ is such that
(
pj(X (1)), . . . , pj(X (M))

)
is Q-measurable

for every j ∈ {1, . . . ,K}. Setting SQ(X (m)) := Ẽ[S(X (m))|Q] for each m ∈ {1, . . . ,M}, then

Ẽ[S⋆|Q] solves OLS
(
SQ,K, νM

)
.

(iv) bounded conditional variance: in the case of the discrete probability measure νM , suppose that

S(ω, x) is G ⊗ B(Rl)-measurable, for G ⊂ F̃ independent of σ(X (1:M)), there exists a Borel

measurable function h : Rl → E, for some Euclidean space E, such that the random variables

{pj(X (m)) : m = 1, . . . ,M, j = 1, . . . ,K} are H := σ(h(X (m)) : m = 1, . . . ,M)-measurable,

and there is a finite constant σ2 ≥ 0 that uniformly bounds the conditional variances E
[
|S(X (m))−
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E(S(X (m))|G ∨ H)|2 | G ∨ H
]
≤ σ2

P̃-a.s. and for all m ∈ {1, . . . ,M}. Then

Ẽ

[
‖S⋆(·)− E[S⋆(·)|G ∨ H]‖2

L2(B(Rl),νM )

∣∣ G ∨ H
]
≤ σ2K/M.

The proof is given in Appendix A. The significance of the Borel function h in Proposition 4.12(iv) is

to distinguish between the dependency on the sample path of the basis functions and the observations

used for the least-squares regression: observe that the basis functions in Definition 4.3 depend only on

the marginal X
(k,m)
k , whereas the observations in Definition 4.4 depend also on the marginals X

(k,m)
j

for j greater than k and the Brownian increment ∆W
(k,m)
k , so the Borel function h : Rq+d×(N+1) → R

d

is the projection operator h(w,x) = xk. We need to introduce some further notation and preliminary

results before we commence the proof.

Conditioning. To deal with the simulations, we introduce the following notation.

Definition 4.13. Define the σ-algebras

F (∗)
i := σ(Ci+1, . . . , CN−1), F (M)

i := F (∗)
i ∨ σ(X(i,m)

i : 1 ≤ m ≤Mi).

For every i ∈ {0, . . . , N − 1}, let EMi [·] (resp. P
M
i ) with respect to F (M)

i .

Remark 4.14. The σ-algebras in Definition 4.13 do not form filtrations. Recall the ambiant filtration

(Ft)0≤t≤T : we will make use of the extended filtration { F (M) ∨ Fti : i = 0, . . . , N} below.

Intermediate processes and local error terms. For each k ∈ {0, . . . , N − 1}, recall the functions

SY,k(x) and SZ,k(w,x) from (22), the linear spaces KY,k and KZ,k from Definition 4.3, and the empirical

measure νk,M from Definition 4.13, and set

ψY,k(·) solves OLS( SY,k(x) , KY,k , νk,M ),

ψZ,k(·) solves OLS( SZ,k(w,x) , KZ,k , νk,M ).

}
(28)

Observing that (EMk [SY,k(X
(k,m))] , EMk [SZ,k(∆W

(k,m)
k , X(k,m))]) =

(
yk(X

(k,m)
k ) , zk(X

(k,m)
k )

)
for each

m ∈ {1, . . . ,Mk} where
(
yk(·), zk(·)

)
are the unknown functions defined in (19), we can apply Propo-

sition 4.12(iii) to prove the following lemma.

Lemma 4.15. For each k ∈ {0, . . . , N − 1},

E
M
k [ψY,k(·)] solves OLS( yk(.) , KY,k , νk,M ),

E
M
k [ψZ,k(·)] solves OLS( zk(.) , KZ,k , νk,M ).

}

In addition

TY,M1,k := E
[
‖EMk [ψY,k(·)]− yk(·)‖2k,M

]
= E

[
inf

φ∈KY,k

‖φ(·)− yk(·)‖2k,M
]
≤ TY1,k,

TZ,M1,k := E
[
‖EMk [ψZ,k(·)]− zk(·)‖2k,M

]
= E

[
inf

φ∈KZ,k

‖φ(·)− zk(·)‖2k,M
]
≤ TZ1,k.

Proof of Theorem 4.11. From TCy
(yk) = yk and the Lipschitz continuity of TCy

, it follows that

E[‖yk(·)−y(M)
k (·)‖2k,M ] is less than or equal to E[‖yk(·)−ψ(M)

Y,k (·)‖2k,M ]. Applying Pythagoras’ theorem
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and taking expectations then yields

E‖yk(·)− y
(M)
k (·)‖2k,M ≤ TY,M1,k + E[‖ψ(M)

Y,k (·)− E
M
k [ψY,k(·)]‖2k,M ].

Because S
(M)
Y,k (·) depends on z(M)

k (·) computed with the same cloud of simulations Ck as that used to

define the OLS solution ψ
(M)
Y,k (·), it raises some interdependency issue that we solve by making a small

perturbation to the intermediate processes as follows: for x = (x0, . . . , xN ) ∈ (Rd)N+1, define

S̃
(M)
Y,k (x) := Φ(xN ) + fk

(
xk, y

(M)
k+1(xk+1), zk(xk)

)
∆k +

N−1∑

i=k+1

fi
(
xi, y

(M)
i+1 (xi+1), z

(M)
i (xi)

)
∆i,

ψ̃
(M)
Y,k (·) solves OLS(S̃

(M)
Y,k (x) , KY,k , νk,M ).

We do not need this perturbation for the Z-component, because S
(M)
Z,k (w,x) depends only on the

subsequent clouds of simulations {Cj , j > k}. Then by Young’s inequality, we have

E‖yk(·)− y
(M)
k (·)‖2k,M ≤ TY1,k + 3E[‖EMk [ψ̃

(M)
Y,k (·)− ψY,k(·)]‖2k,M ]

+ 3E[‖ψ̃(M)
Y,k (·)− E

M
k [ψ̃

(M)
Y,k (·)]‖2k,M ] + 3E[‖ψ̃(M)

Y,k (·)− ψ
(M)
Y,k (·)‖2k,M ]. (29)

We handle each term separately.

◮ Term E[‖EMk [ψ̃
(M)
Y,k (·)−ψY,k(·)]‖2k,M ]. Set ξ̃∗Y,k(x) := E(S̃

(M)
Y,k (X)−SY,k(X)|Xk = x,F (M)). Recalling

that S̃
(M)
Y,k (x)− SY,k(x) is built only using the clouds {Cj , j ≥ k + 1}, it follows from Lemma 4.1 that

E
M
k [S̃

(M)
Y,k (X(k,m)) − SY,k(X

(k,m))] is equal to ξ̃∗Y,k(X
(k,m)
k ) for every m ∈ {1, . . . ,Mk}. Then, using

Proposition 4.12(i)(iii), EMk [ψ̃
(M)
Y,k (·)−ψY,k(·)] solvesOLS(ξ̃∗Y,k(·), KY,k , νk,M ). By Proposition 4.12(ii),

E[‖EMk [ψ̃
(M)
Y,k (·)− ψY,k(·)]‖2k,M ] ≤ E[‖ξ̃∗Y,k(·)‖2k,M ] = E[(ξ̃∗Y,k(Xk))

2].

Defining ξ∗Y,k(x) := E(S
(M)
Y,k (X)− SY,k(X)|Xk = x,F (M)), Young’s inequality yields

E[(ξ̃∗Y,k(Xk))
2] ≤ 2E[(S̃

(M)
Y,k (X)− S

(M)
Y,k (X))2] + 2E[(ξ∗Y,k(Xk))

2]

≤ 2E[|fk(Xk, y
(M)
k+1(Xk+1), z

(M)
k (Xk))− fk(Xk, y

(M)
k+1(Xk+1), zk(Xk))|2]∆2

k

+ 2E[(ξ∗Y,k(Xk))
2]

≤
2L2

f∆
2
k

(T − tk)1−θL
E[|z(M)

k (Xk)− zk(Xk)|2] + 2E[(ξ∗Y,k(Xk))
2].

◮ Term E[‖ψ̃(M)
Y,k (·) − E

M
k [ψ̃

(M)
Y,k (·)]‖2k,M ]. Since S̃

(M)
Y,k (.) depends only on the clouds {Cj , j > k}

and is bounded above by C4.7 (like S
(M)
Y,k (.)), it follows from Proposition 4.12(iv) that E[‖ψ̃(M)

Y,k (·) −
E
M
k [ψ̃

(M)
Y,k (·)]‖2k,M ] is bounded above by C2

4.7KY,k/Mk. This contribution is interpreted as a statistical

error term in regression theory.

◮ Term E[‖ψ̃(M)
Y,k (·)−ψ(M)

Y,k (·)‖2k,M ]. Using Proposition 4.12(i)(ii), it follows that ‖ψ̃(M)
Y,k (·)−ψ(M)

Y,k (·)‖2k,M
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is bounded above by ‖S̃(M)
Y,k (·)− S

(M)
Y,k (·)‖2k,M , which equals

∆2
k

Mk

Mk∑

m=1

|fk(X(k,m)
k , y

(M)
k+1(X

(k,m)
k+1 ), z

(M)
k (X

(k,m)
k ))− fk(X

(k,m)
k , y

(M)
k+1(X

(k,m)
k+1 ), zk(X

(k,m)
k ))|2

≤
L2
f∆

2
k‖zk(·)− z

(M)
k (·)‖2k,M

(T − tk)1−θL
.

Collecting the bounds on the three terms and substituting them into (29) and applying Proposition

4.10 yields

E‖yk(·)− y
(M)
k (·)‖2k,M ≤ TY1,k + 6E[(ξ∗Y,k(Xk))

2] +
3C2

4.7KY,k

Mk

+
3L2

f∆
2
k

(T − tk)1−θL
{E[‖zk(·)− z

(M)
k (·)‖2k,M ] + 2Ē(Z,M, k)}

≤ TY1,k + 6E[(ξ∗Y,k(Xk))
2] +

3C2
4.7KY,k

Mk

+ 3L2
f∆kCπ

{
5E(Z,M, k) +

4056(KZ,k + 1)qC2
y log(3Mk)

∆kMk

}
. (30)

Analogously to (29), one obtains the upper bound

E‖zk(·)− z
(M)
k (·)‖2k,M ≤ TZ1,k + 2E[‖EMk [ψ

(M)
Z,k (·)− ψZ,k(·)]‖2k,M ]

+ 2E[‖ψ(M)
Z,k (·)− E

M
k [ψ

(M)
Z,k (·)]‖2k,M ].

Since S
(M)
Z,k (.) depends only on the clouds {Cj , j > k} and its F (M)

k -conditional variance is bounded

above by qC2
4.7/∆k, it follows from Proposition 4.12(iv) that E[‖ψ(M)

Z,k (·)−E
M
k [ψ

(M)
Z,k (·)]‖2k,M ] is bounded

above by qC2
4.7KZ,k/(∆kMk) (computations similar to those for (9)). Defining ξ∗Z,k(x) := E(S

(M)
Z,k (∆Wk,X)−

SZ,k(∆Wk,X)|Xk = x,F (M)), it follows that EMk [ψ
(M)
Z,k (·)−ψZ,k(·)] solves OLS(ξ∗Z,k(·), KZ,k , νk,M ).

Therefore,

E‖zk(·)− z
(M)
k (·)‖2k,M ≤ TZ1,k + 2E[|ξ∗Z,k(Xk)|2] +

2qC2
4.7KZ,k

∆kMk
. (31)

Observe that (ξ∗Y,k(Xk), ξ
∗
Z,k(Xk)) solves a discrete BSDE with terminal condition 0 and driver fξ∗,k(y, z) :=

fk(Xk, y
(M)
k+1(Xk+1), z

(M)
k (Xk))− fk(Xk, yk+1(Xk+1), zk(Xk)). Combined with the local Lipschitz con-

tinuity of fk and a choice of (γ0, . . . , γN−1) ∈ (0,+∞)N such that

96(Rπ ∨ 1)C(12)(1 + T )(
1

γk
+∆k)

L2
f

(T − tk)1−θL
≤ 1, (0 ≤ k < N), (32)

and setting the weights Γk :=
∏k−1
j=0 (1+γj∆j), Proposition 3.2 (with (Y1,k, Z1,k) = (ξ∗Y,k(Xk), ξ

∗
Z,k(Xk))
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and (Y2, Z2) = (0, 0)) and Proposition 4.10 yield the bound

N−1∑

k=i

∆kE[|ξ∗Y,k(Xk)|2]Γk +
N−1∑

k=i

∆kE[|ξ∗Z,k(Xk)|2]Γk

≤ 6C(12)(1 + T )
N−1∑

k=i

∆k+1
∆k

∆k+1

L2
f (1/γk +∆k)

(T − tk)1−θL
E
[
|yk+1(Xk+1)− y

(M)
k+1(Xk+1)|2]Γk

+ 6C(12)(1 + T )

N−1∑

k=i

∆k

L2
f (1/γk +∆k)

(T − tk)1−θL
E[|zk(Xk)− z

(M)
k (Xk)|2

]
Γk

≤ 1

16

N−1∑

k=i

∆k

(
Ē(Y,M, k) + Ē(Z,M, k)

)
Γk

≤ 1

8

N−1∑

k=i

∆k

(
E(Y,M, k) + E(Z,M, k)

)
Γk

+ 127

N−1∑

k=i

∆kΓk

{
(KY,k + 1) +

(KZ,k + 1)q

∆k

}C2
y log(3Mk)

Mk
. (33)

Combining (33) with (30) and (31), it follows that

N−1∑

k=i

∆k

(
E(Y,M, k) + E(Z,M, k)

)
Γk (34)

≤
N−1∑

k=i

∆k

(
Ẽ(k) + 15L2

f∆kCπE(Z,M, k)
)
Γk +

6

8

N−1∑

k=i

∆k

(
E(Z,M, k) + E(Z,M, k)

)
Γk

where we set

Ẽ(k) := TY1,k + TZ1,k + C2
4.7

(3KY,k

Mk
+ 2q

KZ,k

∆kMk

)
+ 3L2

f∆kCπ × 4056(KZ,k + 1)qC2
y

log(3Mk)

∆kMk

+ 6× 127
(
(KY,k + 1) +

(KZ,k + 1)q

∆k

)
C2
y

log(3Mk)

Mk
.

Observe that C(12) ≥ 3, 3L2
f∆kCπ × 4056 ≤ 3×4056

192×3 ≤ 22 using the constraint on Cπ given in the

statement of Theorem 4.11: it readily implies that Ẽ(k) ≤ E(k). In addition, 15L2
f∆kCπ ≤ 15

192×3 ≤ 1/8

implies that the inequality (34) becomes

N−1∑

k=i

∆k

(
E(Z,M, k) + E(Z,M, k)

)
Γk ≤

N−1∑

k=i

∆kE(k)Γk +
7

8

N−1∑

k=i

∆k

(
E(Z,M, k) + E(Z,M, k)

)
Γk

≤ 8
N−1∑

k=i

∆kE(k)Γk. (35)

The choice γk = 192(Rπ ∨ 1)C(12)(1 + T )L2
f/(T − tk)

1−θL makes (32) valid and then, 8Γk ≤ C4.11

(similarly to (17)) and this completes the proof of (27).
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We now establish (26). Observe that Proposition 3.2 gives a direct estimate on E[|ξ∗Y,i(Xi)|2]Γi:
similarly to (33), one obtains (using previous inequalities)

E[|ξ∗Y,i(Xi)|2]Γi ≤
1

8

N−1∑

k=i

∆k

(
E(Y,M, k) + E(Z,M, k)

)
Γk +

127

800

N−1∑

k=i

∆kE(k)Γk.

Plugging this inequality into (30) and using L2
fCπ ≤ 1/(192× 3) leads to

E(Y,M, i)Γi ≤ TY1,iΓi +
3C2

4.7KY,i

Mi
Γi +

6

8

N−1∑

k=i

∆k

(
E(Y,M, k) + E(Z,M, k)

)
Γk

+
6× 127

800

N−1∑

k=i

∆kE(k)Γk +
15

576
∆iE(Z,M, i)Γi +

3× 4056

576× 800
E(i)Γi.

Using (35) leads to (26). �

5 Numerical experiments

We consider a BSDE with terminal condition Φ(x) := sin(|x|2α) for α ∈ (0, 1/2]; this is a Hölder

continuous function with exponent 2α. The time horizon is T = 0.2, and the model of the explanatory

process (forward SDE) is Xt = Wt. Setting ψ(t, x) = sin
(
(T − t+ |x|2)α

)
and φ(t, x) = cos

(
(T − t+

|x|2)α
)
, we define a driver which is quadratic in z (but independent of y):

f(t, x, z) := |z|2 − |∇ψ(t, x)|2 − (∂t +
1

2
∆)ψ(t, x).

By Itô formula, we verify that the analytic solution of this BSDE is Yt = ψ(t,Wt) and Zt =

∇xψ(t,Wt) = 2αW⊤
t φ(t,Wt)(T − t + |Wt|2)α−1. To obtain a locally Lipschitz BSDE satisfying the

condition (AF), we use the truncation procedure given in Section 2.2. Using the notation of that

section, we take θ = 2α and Cu = 2α. Recalling the soft truncation function T·(·), the driver f(t, x, z)

above is replaced by f̄(t, x, z) := f(t, x, TCu(T−t)(θ−1)/2(z)) in order to perform computations. In what

follows, we take α = 0.4.

We now choose numerical parameters to ensure that the quadratic error of the approximation

converges at rate 1 with respect to the number of time-points N in the time-grid. Note that the

analysis in this section will be slightly different from that of Section 4.4, due to the use of a terminal

condition that is not continuously differentiable. Therefore, we adapt the arguments of that section

to the current context. To discretize the BSDE, we use a uniform time-grid, i.e. ∆i = T/N . We

regress on piecewise-constant functions on hypercubes. We set the outer boundary of the hypercubes

at (−2
√
ti, 2

√
ti)

q for each time-point ti, in other words at 2σ’s of the explanatory process. The cube

width is fixed arbitrarily at δ = 4
√
T/k for a parameter k running over positive integers. Then,

Ki = kqi for ki = ⌈4√ti/δ⌉. The number of time points N is chosen to be N = c−2
0 k2 for an arbitrary

constant c0 > 0, which implies that δ = 4
√
T/(c0

√
N).

Let us check that the approximation error induced by this choice of basis is O(N−1); we remind
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the reader that the approximation error is equal to

max
0≤i≤N−1

∑

H

inf
αH∈R

E[|yi(Wti)− αH |21Wti
∈H ] +

N−1∑

i=0

∑

H

inf
αH∈(Rq)⊤

E[|zi(Wti)− αH |21Wti
∈H ]∆i,

where the sum over H indicates the sum over the hypercubes. We focus on the terms zi, the analysis

for yi being similar. Let wH be any point in a given hypercube H: in each of the above terms, we

can take αH = zi(wH), as this bounds the inf value from above. Then a first order Taylor expansion

yields zi(Wti)− zi(wH) = [
∫ 1

0
∇xzi(λWti + (1− λ)wH)dλ](Wti − wH), whence

∑

H

inf
αH∈(Rq)⊤

E[|zi(Wti)− αH |21Wti
∈H ] ≤ qδ2

∫ 1

0

∑

H

E[|∇xzi(λWti + (1− λ)wH)|21Wti
∈H ]dλ

=: qδ2
∫ 1

0

∑

H

ηi(H,λ)dλ.

Since δ2 = O(N−1), our strategy now is to show that

N−1∑

i=0

∑

H

ηi(H,λ)∆i = O(1), uniformly in λ ∈ [0, 1], (36)

which implies that the approximation error on z is O(N−1) as required.

Actually, a direct computation shows |∇xzi(x)|2 ≤ c2ψ(T − ti+ |x|2)2α−2 for some constant cψ. We

discuss the estimate (36) according to two different cases.

1st case: ti ≤ T/2. Then |∇xzi(x)|2 ≤ c2ψ(T/2)
2α−2, and therefore ηi(H,λ) ≤ c2ψ(T/2)

2α−2
P(Wti ∈

H). This implies
∑N−1
i=0

∑
H ηi(H,λ)1ti≤T/2∆i = O(1).

2nd case: ti ≥ T/2. Define c1 := 8
√
q/c0; the role of this constant will become apparent in the

following computations. We split the expectation E[|∇xzi(λWti + (1 − λ)wH)|21Wti
∈H ] according to

the three partioning events:

{|Wti | ≤ c1
√
T − ti}, {c1

√
T − ti < |Wti | ≤ c1

√
T}, {c1

√
T < |Wti |}.

In the first case, we simply use |∇xzi(x)|2 ≤ c2ψ(T − ti)
2α−2. In the second case, by triangular

inequality and δ ≤ 4
√
T − ti/c0, observe that |λWti + (1− λ)wH | ≥ |Wti | −

√
qδ = |Wti |(1−

√
qδ)

|Wti
| ) ≥

|Wti |(1 − 4
√
q

c0c1
) = |Wti |/2, therefore |∇xzi(λWti + (1 − λ)wH)|2 ≤ c2ψ|Wti/2|4α−4. In the third case,

|∇xzi(λWti +(1−λ)wH)|2 ≤ c2ψ(c
2
1T )

2α−2. The conclusion of the above partitioning is that we obtain

(for ti ≥ T/2)

∑

H

ηi(H,λ) ≤ c2ψ(T − ti)
2α−2

P(|Wti | ≤ c1
√
T − ti) + c2ψE

(
|Wti/2|4α−41c1

√
T−ti<|Wti

|≤c1
√
T

)

+ c2ψ(c
2
1T )

2α−2
P(|Wti | > c1

√
T ).

The above expectations and probabilities are bounded from above by changing variables to polar

coordinates and taking advantage of the fact that the distribution of Wti has a density bounded from
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above by (πT )−q/2 (owing to ti ≥ T/2); this gives

∑

H

ηi(H,λ) ≤ C(T − ti)
2α−2+q/2 + C(T − ti)

2α−2+q/2 + C

with a new constant C (depending only on α, cψ, q and T ). Observe that the condition 2α−2+q/2 > −1

is sufficient to complete the proof of (36). This condition is satisfied under our choice of α = 0.4 for

any dimension q, so we are done.

Finally, to ensure the correct rate of convergence in the statistical and interdependence errors,

in view of Theorem 4.11 one must choose the number of simulations Mi = O(N2Ki). For the tests

reported in Figures 1-2-3 in dimension q = 3, 5, 7, we have taken N = (0.5× k)2, Mi = 0.4N2Ki. On

these graphs, the quadratic error is plotted w.r.t. N (both in log scales). The best linear approximation

is also provided to estimate the convergence rate: this shows that the rate of convergence is close to

O(N−1) in all three cases, as predicted by our main result Theorem 4.11.
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Figure 1: Log quadratic error versus log(N) in dimension q = 3.
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A Proof of Proposition 4.12

We prove the statements (i)-(ii) simultaneously for µ = ν and µ = νM . Since K is finite dimensional,

there is an orthonormal (with respect to the norm ‖ · ‖L2(B(Rl),µ)) basis {p̃1, . . . , p̃K̃} with K̃ ≤ K: if

µ = ν, each p̃k is B(Rl)-measurable (deterministic) and if µ = νM , p̃k is F̃ ⊗B(Rl)-measurable. Define

by p̃(·) the l′ × K̃-matrix of functions
(
p̃1(·), . . . , p̃K̃(·)

)
. Then, setting

α⋆ =

∫

Rl

p̃⊤S dµ (37)

defined P̃-a.s. as a K̃-dimensional (column) vector, we readily check the Pythagoras relation

‖p̃ α− S‖2
L2(B(Rl),µ) = ‖p̃ α⋆ − S‖2

L2(B(Rl),µ) + ‖p̃ (α⋆ − α)‖2
L2(B(Rl),µ), P̃-a.s. . (38)

Then, clearly S⋆(ω, .) := p̃(ω, .)α⋆(ω) solves OLS(S(ω, ·),K, µ), and is P̃ ⊗ µ-a.e. unique. In view of

(37), the mapping S 7→ S⋆ is linear. The contraction property follows from (38) with α = 0.

To prove the conditional expectation property (iii) under µ = νM , observe that the Q-measurability

of each pj(X (m)) implies that of each p̃k(X (m)). Hence, by taking the conditional expectation Ẽ[·|Q]

in (37), it follows that

Ẽ[α⋆|Q] = Ẽ[

∫

Rl

p̃⊤S dνM |Q] =
1

M

M∑

m=1

p̃⊤(X (m)) Ẽ[S(X (m))|Q] =

∫

Rl

p̃⊤SQ dνM .

The proof is then completed by combining the above and using Ẽ[S⋆(·)|Q] = p̃(.)Ẽ[α⋆|Q].

To prove the bound on the conditional variance (iv), apply previous results with Q = G ∨ H and

write S⋆(X (m))− Ẽ[S⋆(X (m))|G ∨H] = p̃(X (m))(α⋆ − Ẽ[α⋆|G ∨H]). Using the orthogonality property

of p̃ and the expression of α⋆ as a summation over the sample yields

‖S⋆(·)− E[S⋆(·)|G ∨ H]‖2
L2(B(Rl),νM ) = |α⋆ − Ẽ[α⋆|G ∨ H]|2
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=
1

M2

M∑

m1,m2=1

Tr
(
p̃(X (m1))p̃⊤(X (m2))

(S(X (m2))− Ẽ[S(X (m2))|G ∨ H])(S(X (m1))− Ẽ[S(X (m1))|G ∨ H])⊤
)
.

The random variables {X (1), . . . ,X (M)} are independent, which implies that

{S(ω,X (m)) : m = 1, . . . ,M} are independent conditionally on G ∨H. Thus, the conditional expecta-

tion Ẽ(.|G ∨ H) of the (m1,m2)-term above is 0 for m1 6= m2, and so, by introducing the conditional

covariance matrix Σ(m) := E
[
(S(X (m))− E(S(X (m))|G ∨H))(S(X (m))− E(S(X (m))|G ∨H))⊤|G ∨H

]
,

it follows that

Ẽ

[
‖S⋆(·)− E[S⋆(·)|G ∨ H]‖2

L2(B(Rl),νM )

∣∣ G ∨ H
]
=

1

M2

M∑

m=1

Tr
(
[p̃p̃⊤](X (m))Σ(m)

)

≤ 1

M2

M∑

m=1

Tr
(
[p̃p̃⊤](X (m))

)
Tr(Σ(m)),

where we have used that Tr(AB) ≤ Tr(A)Tr(B) for any symmetric definite non-negative matrices A

and B. The proof is completed by observing that Tr(Σ(m)) ≤ σ2, 1
M

∑M
m=1[p̃

⊤p̃](X (m)) = Id
RK̃ and

K̃ ≤ K. �

B Upper bound of a deviation probability, uniform over a class

of functions

We recall, for the benefit of the reader, the definition of a covering number given in [24, Definition

9.3(c)]. For a more detailed account on covering, see Chapter 9 in the above reference.

Definition B.1. If G is a class of functions from R
d to R and x1:M := {x(1), . . . , x(M)} are M

(possibly random) points of Rd, an ε-cover (ε > 0) of G w.r.t. the Lp(p ≥ 1)-empirical norm ‖g‖M :=
(

1
M

∑M
m=1 |g(x(m))|p

) 1
p is a finite collection of functions g1, . . . , gn such that for any g ∈ G, we can

find a j ∈ {1, · · · , n} such that ‖g − gj‖M ≤ ε. The smallest integer n for which an ε-cover exists is

called the ε-covering number and denoted by Np(ε,G, x1:M ).

Lemma B.2. Let G be a countable set of functions g : Rd 7→ [0, B] with B > 0. Let X ,X (1), . . . ,X (M)

(M ≥ 1) be i.i.d. R
d valued random variables. For any α > 0 and ε ∈ (0, 1) one has

P
(
sup
g∈G

1
M

∑M
m=1 g(X (m))− E[g(X )]

α+ 1
M

∑M
m=1 g(X (m)) + E[g(X )]

> ε
)
≤ 4E

(
N1

(αε
5
,G,X 1:M

))
exp

(
− 3ε2αM

40B

)
,

P
(
sup
g∈G

E[g(X )]− 1
M

∑M
m=1 g(X (m))

α+ 1
M

∑M
m=1 g(X (m)) + E[g(X )]

> ε
)
≤ 4E

(
N1

(αε
8
,G,X 1:M

))
exp

(
− 6ε2αM

169B

)
.

The first inequality is stated in [24, Theorem 11.6] for B ≥ 1. The case B ∈ (0, 1) is obtained by a

direct rescaling of the functions. The second inequality is proved in [22].
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Proof of Proposition 4.9. Let Z := supg∈G

( ∫
Rd g(x)P ◦ X−1(dx) − 2

M

∑M
m=1 g(X (m))

)

+
. We prove

the result by taking advantage of the identity E[Z] =
∫∞
0

P(Z > ε)dε. Using the equality

P(Z > ε) = P

(
∃g ∈ G :

∫
Rd g(x)P ◦ X−1(dx)− 1

M

∑M
m=1 g(X (m))

2ε+
∫
Rd g(x)P ◦ X−1(dx) + 1

M

∑M
m=1 g(X (m))

>
1

3

)
,

and that the elements of G take values in [0, 2BLψ], it follows from Lemma B.2 that

P(Z > ε) ≤ 4E
[
N1(

ε

12
,G,X 1:M )

]
exp

(
− 2εM

507BLψ

)

where N1(
ε
12 ,G,X 1:M ) is the ε

12 -covering number of G with respect to the L1-empirical norm of

{X (1), . . . ,X (M)}, as given in Definition B.1. Define by TBK the set of functions {TBφ(·) : φ ∈ K}.
Since |ψ

(
φ1(x)−η(x)

)
−ψ

(
φ2(x)−η(x)

)
| ≤ Lψ|φ1(x)−φ2(x)| for all x ∈ R

d and all (φ1, φ2), it follows

that

N1(
ε

12
,G,X 1:M ) ≤ N1(

ε

12Lψ
, TBK,X 1:M ).

Next, [24, Lemma 9.2, Theorem 9.4 and Theorem 9.5] gives that

N1(
ε

12Lψ
, TBK, {X1, . . . ,XM}) ≤ 3

(48eBLψ
ε

log
(72eBLψ

ε

))K+1

whenever ε < 6BLψ.

Then the relation

∀x ≥ 12, 2e x log(3e x) ≤ 2e x[log(36e) +
3e x− 36e

36e
] ≤ e

1 + log(36)

6
x2 ≤ (

3

2
x)2

combined with previous inequalities implies that

P(Z > ε) ≤ 12
(36BLψ

ε

)2(K+1)

exp
(
− 2εM

507BLψ

)
whenever ε ≤ 2BLΨ. (39)

On the other hand, P(Z > ε) = 0 for all ε > 2BLΨ. Setting a = 36BLψ, b = 2/(507BLψ), it follows

that from (39) that

P(Z > ε) ≤ 12(
a

ε
)2(K+1) exp(−bMε), ∀ ε > 0.

Fix ε0 to be some finite value (to be determined later) such that

ε0 ≥ a

M(1 + ab)
. (40)

Using the fact that E[Z] is equal to
∫∞
0

P(Z > ε)dε, it follows that

E[Z] ≤ ε0 +

∫ ∞

ε0

12
(a
ε

)2(K+1)

exp(−bMε)dε

≤ ε0 +
12

bM

(
M(1 + ab)

)2(K+1)
exp(−bMε0).
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Now, taking ε0 = 1
bM log

(
12
(
(1 + ab)M

)2(K+1)
)
satisfies (40), because

1

bM
log

(
12
(
(1 + ab)M

)2(K+1)
)
≥ a

M

log(1 + ab)

ab
≥ a

M

1

1 + ab

using log(1 + x) ≥ x/(1 + x) for all positive x. Moreover, this choice of ε0 implies that

E[Z] ≤ 1

bM

(
1 + log(12) + 2(K + 1) log

(
(1 + ab)M

))

≤ 2(K + 1)

bM
log

(
(1 + ab) exp

[1
4
(1 + log(12))

]
M

)

which simplifies to the required result. �
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