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Abstract—This paper concerns body attitude (orientation)regton for free ranging animal. The main idea
of the proposed approach combines a quaterniordhamelinear observer with an Iterated Least Squares
Algorithm (ILSA) and exploits measurements from Midclectro-Mechanical-System (MEMS) sensors as
3-axis accelerometer, 3-axis magnetometer and 3-@wioscope to produce attitude estimates durieg th
entire range of the observed animal’'s body movemévibreover, the proposed observer allows estimgatin
the bias in gyroscope which is used to correctafigular velocity measurements in the attitude edion
step. Since, biologists use an index of DBA forleadng the energy consumption of the moving anjrtied
resulting estimations are then used to extracttjieamic Body Acceleration (DBA) of the animal. Note
that, this work is necessary in Bio-logging scieracel allows monitoring aspects of animal’s biology
(behavior, movement, and physiology) and envirorismiefhe performance of the algorithm is theorefjcal
proven and illustrated by an attitude estimatioanegle. Moreover, the efficiency of the proposedrapph

is showed with a set of experiments through sems@surements provided by an Inertial Measuremeitt Un
(IMU). We have also included some comparison reswith another method already applied in Bio-loggin

field in order to point out the improvements issiredn the proposed approach.

Keywords:Attitude andorientation estimation, nonlinear observer, bigialg analysis and interpretation,
Bio-logging, Dynamic Body Acceleration (DBA), queten.



1. Introduction

The rigid-body attitude and orientation estimatipnoblems are highly motivated from various
applications. For example, in rehabilitation andnbédical engineering [1,2,3,4], the attitude isduge
stroke rehabilitation exercises to record patient®vements in order to provide adequate feedbackhfo
therapist. In human motion tracking and biomeclaffic6], the attitude serves as a tool for physigito
perform long-term monitoring of the patients andstody human movements during everyday activities.
Moreover, the attitude estimation is extensivelgdim tracking of handheld microsurgical instrumigit

Recently, the problem of attitude and orientati@tking has been treated in another scientificlfiehe
Bio-logging. This latter is at the intersectionasfimal behavior and bioengineering and aims atimibta
new information on the natural world and providmgw insights into the hidden lives of animal's spsc
[8,9]. Bio-logging generally involves a free-rangirmnimal-attached device that records aspects ef th
animal’s biology (behavior, movement, physiolog¥pJL1] and its environment. Thirty years ago, saver
tagging technologies such as satellite tracking @hgos system) [12] and Time-Depth-Recorders (TDRs
[13] have been used to provide a basic knowledgéherfunction of free-ranging organisms. The recent
advances in electronic miniaturization and digit@flormation processing allowed researchers studying
animal’s biology with a high level of detail andess the full range of ecological scales.

The posture and orientation tracking of free-ragginimal represents one of the recent animal’sgiol
aspects studied in Bio-logging. Indeed, some rebearstarted to focus on this topic using low-cestsors
based on Micro Electro-Mechanical System (MEMS)htedogy as 3-axis accelerometer and 3-axis
magnetometer. The main idea is how it is possibkextract the gravity components of the body aniffiis
information is exploited after to deduce the cqumgling posture (attitude) and consequently theabyao
Body Acceleration (DBA).

The authors assumed in [14] that the gravity mesasants can be obtained from the running mean over a
one second interval of the total acceleration, femoelerometer, during the motion of the animakm;ithe
attitude is estimated by using the obtained gragtynponents and magnetometer's measurements. In a
second step, on the basis on the difference betwammelerometer's measurements and gravity's
components, the DBA is extracted. Neverthelesgumopinion, this approximation is not valid ovené
since it depends on other parameters as the asisdtcies and their movement’s types.

In [15], a low-pass filter is used to extract thawgty’s components (the lowest frequencies of ibéural
panel of animal’s movements) from the accelerateedings. Based on this information, the authors ca
deduce the attitude. Note that, the use of thig typfilter introduces, in many cases, an erroruatibe
attitude information since the gravity measurememésnot accurately extracted by the filter. Afieat, a
high-pass filter is used to extract the DBA of taeimal since it represents the highest frequencies
movements. The main idea in [16,17] is based orusieeof Iterated Least Squares Algorithm that coebi
measurements from accelerometer and magnetometsstitoate the attitude. In these works, the authors
assume that the animal doesn’t move at a largéidraof gravity (static and quasi-static situatiaidree-
ranging animals) which leads to consider that &roebeter’'s readings measure only the earth’s gravite

DBA estimation is not addressed in this paper. Otharks as [18] use simply some formulas existing i



navigation literature to deduce the attitude bamediccelerometer and magnetometer measurements. The
same assumptions of the work in [16,17], are camnedialso in [18].

To circumvent these problems, we propose in thepthe addition of 3-axis gyroscope measurements
to the sensors already used. The use of gyroscepsurements in Bio-logging has never been donedefo
in our knowledge. In fact, the previous works irsthrea are based only on 3-axis accelerometeB-axis
magnetometer. Moreover, regarding other applicat@s aerial and marine vehicles, one can notetllat
application considered here (Bio-logging) is caaisted by the lack of GPS data. The main guidelinghis
paper is to use a nonlinear observer that exglbEMS sensors readings from the nine sensor chaoitets
above. The orientation reconstruction is based rontexative procedure where the raw sensor data are
combined with a previous estimate of the orientatiocompute an update for the estimated oriemt4ti®].

The proposed approach combines a strap-down sybtsad on the integral of the angular velocityhvaith
Iterated Least Squares Algorithm (ILSA) that usestiiEs magnetic field and gravity vector to caldela
attitude measurements. These latter are then asmaihtpensate those predicted by the gyroscope khan
the knowledge of the estimated attitude, it is fidesto reconstitute the DBA of the animal in order
evaluate its locomotor activities and daily diaty] (sleeping, walking/flying, running, and huntjn@uch
information on the DBA is a major objective in eoBbgging approach and provides important insigytis
some of the stresses faced by free-ranging aniespiscially the one studied in this work: the kiegguin.

The paper is organized as follows: section 2 ptesdre problem statement related the Bio-logging
concept. Section 3 describes the rigid body attitandd its kinematical model. Section 4 gives sostaild
about the used sensors in this paper. The attitodénear observer design and its stability condsgi are
depicted in section 5. Section 6 is devoted to Kitan results that illustrate the efficiency oktbbserver.

Section 7 is dedicated to a set of experimentdiaatly some conclusions are given in section 8.

2. Problem statement

The concept of Bio-logging refers to the use ofoaatnous electronic devices to monitor something
related to free-ranging animal itself and then tiadg its behaviour, physiology and ecology. Thegkin
penguin is one of the major model of diving birtisdged in Strasbourg University thanks to the Rigding
technology [10,11]. Then, knowing in details itsdging activities and understanding its energetitegy
need the development of new Bio-loggers. This geraT of logger mainly contains 3-axis acceleromete
3-axis gyroscope, and 3-axis magnetometer. The pemguin will be equipped with this kinematical ¢eg
(see Fig. 1). The prototype will then collect andres the sensor’'s data until the animal (king p@mgu
returns to a place where the tag can be recovéxier that all calculations are performed offling b
extracting the measurements recorded on the mep®y using a computer. Before deploying this new
logger, the goal in this paper is to be able toveonthis complex set of row data in relevant infation:
attitude and energy expenditure (DBA). The algonghthat will exploit the measurements from 3-axis
accelerometer, 3-axis magnetometer and 3-axis gypasare the main concerns of this work.
3. Rigid body attitude description

There is one major question to be considered wlesigding an algorithm for rigid-body rotations teat

what representation to use? In this study we vg# quaternion representation due to its simplicity.
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3.1. Coordinate systems of a rigid body
The attitude estimation problem of rigid-body reqsi the transformation of measured and computed

guantities between various frames. The attitude ofgid-body is based on measurements from sensors

attached to a rigid-body (the animal in our cage (GSig. 1(a))). Since the measurements are pertbimthe

body frame, we describe in Fig. 1(b) the orientaiid the body frameFB(xB, Y, zB) with respect to the
navigation frameF, (x, y ,z ) (attached to the earth: North, East, Down).

3.2. The unit quaternion
In this paper, we consider the unit quaternion ihdefined by:

.

q=00+qi+q2j+q3k=[cosg *using} | b 0Q (1)
2 2 Olect

with q,, q,, g, and g, are real numbers,, j, andk represent the components of the vectofEuler axis),

@ is the rotation angle ang|,, =[qL (o} qa]T is the imaginary vector.

We invite the reader to refer to [20,21] for moegailed description of quaternion algebra.

3.3. The rigid body kinematic equation
The quaterniorg 0 Q satisfies the following rigid body kinematical féifential equation [22]:

1
=§qDWq ()
where a)qz[o a)T]T is the equivalent update quaternion relative te #mngular velocity vector

w=lw, w, T of the rigid body measured by the gyroscope ampidessed in the body fra and
(w0, @, w,] gid body y the gyroscop y frang,

[0 denotes the quaternion product defined in (18)r2) we can derive the following expression:

[ % }1
qvect 2

Where[qject] represents the skew-symmetric matrix. It is defimeappendix.

T
~Ouect

ISqO + |:q\>/<ect:| “ (3)

4. Sensor measurement models
The sensor configuration considered in this papesists of 3-axis gyroscope, 3-axis accelerometdr a

3-axis magnetometer [23]. A detailed study of thesesors is given in [24,25].

4.1. Gyroscope
The 3-axes gyroscope measures the angular velagity[a)ex Wg, a)GZ]T in Fg such as:
@ = w+Dbg + g (4)

T . :
where a):[a)x w, a)z] represents the real angular velocity vector exga@s$n the body framé&,; and

d, 00°% is a zero-mean white Gaussian noiselJ° is a function varying slowly in time and represegt
a bias that corrupted the rate gyro measuremehis.blas can be modelled by a Gauss-Markov prdéégs

as:



by =N+, (5)
where N =71, is a diagonal matrix of the time constantand g, = [ bx  Oby JbZT is assumed to be
modelled by zero-mean white Gaussian noise.

4.2. Accelerometer

The 3-axes accelerometer measures the specifie ﬂopc[ fo f, fZ]T in the body frame~; such as:
f=M(a)(a+ Gea) + 95 (6)
where gvectz[o 0 g]T, g=9.8Im/$ and az[aX a, aZ]T represent the gravity vector, the
gravitational constant and the inertial (linear) celeration expressed inF , respectively.
5 =0

fx

Oty Oy z] is a zero-mean white Gaussian noise Mh(iq) is the rotation matrix defined in

appendix. Since a normalized quaternion is useu tf).., is also normalized to a unit vector such as:

[0 0 98] _

=———=[0 0 7
gvec m [ ]] ()

4.3. Magnetometer
The 3-axes magnetometer measures the earth’s nafieket h :[@ h, hZJT in Fg such as:

h=M{(q) m+4, (8)

wherem=[|njcog(6) 0 |nf sir(H)]T represents the magnetic field vector expresses] in

Note that the theoretical model of this vector,rastto the reality, is given in [27] and considansiagnetic

field vector with a dip anglé#=60 and density|m|=0.5Gauss. Note tha#j, 00° is a zero-mean white
Gaussian noise andM (q) is the rotation matrix defined in appendix. In tkeme way as for the
accelerometerm is normalized such as:

_[mleod) ofmisitd] oo g3 .,
I mFcog(8)+| ni” sif(6) [ % }

5. Attitude nonlinear observer design

The proposed algorithm concerns the rigid-bodytuate estimation. Previous works in this area have
been interested to estimate the orientation of aildnal and its DBA [14,15,16,17,18]. All these huats
are based on data from two low-pass sensors asesmoeter and magnetometer and are limited to the
lowest frequencies of the natural panel of animai@vements. Thus, to improve the performance of the
attitude estimation in the entire range of the ole@ body frequencies, we propose to extend theosen
configuration by adding 3-axis gyroscope (high baidth). Nevertheless, this sensor is used to oltaen
angular velocity but its measurements are corruptitll bias (see equations (4) and (5)). So, we ssigg

including the estimation of rate gyros biases mphoposed solution.



5.1. Design of the system dynamics

To achieve our goal, let us consider the followiglinear systerbtained from (3) and (5):

q }[ _q/red ]w

Lb}z 2 |3q0+[q/<ect:|
N, +4
y=0,

(10)

where q00* and b, 00° are the system states composed of four elementuaternion and three

elements of gyro-bias, respectively. The outputhié system denoted by, OO is determined by an

Aiding System (A.S) that exploits measurements f@axis accelerometers and 3-axis magnetometers.
Using equation (4), the nonlinear system can b#aemisuch as:

4 4 G
, 1190 -
a|_|5 0o T _q2 [%_be_de]
67| % T4 (11)
% G O
L -N7h; +9, i
y=0q,

5.2. Structure of the observation

In order to estimate the attitude, the followingnlveear observer can be designed by using systéjn (1

A

- —6{2 _ae
A 1 QO _QS qz -
—| ~ N —bg +K ect er
[Aq]:zqg o (12)
bG _612 éh @0
L _N_lkb - Iﬂ)q/ect er

where and BG represent the estimated statks, k, LIl represent the observer gaimsis a time constant

and Qe o = [qveq a Yvecta et QI represents the vector part of the quaternion eggarThis latter is
obtained from the product between the measurecquah ¢, and the estimated quaternign

~~ T
U =0 06 =) %o gyl (13)

Based on [28], a detailed mathematical analysithefobserver convergence and the global stabitiey a
derived [29]. Suppose tha@ =0 andq,, =q.

Theorem 1: Consider the kinematic equation (11) for a timeyiray g(t) and with measurements given by

O, and ;. Let (q(t)fb(t)) denote the solution of (12). Define error varisblg, =40 ¢, and

b, = b; - bs. Then, the errOEQgr(t) by (t)} is globally asymptotically stablefa1 0 0 0 0 0 . For



almost all initial conditions (de, (1), b (%)), the trajectory(d(t),ﬁ;(t)) converges to the trajectory

(a(t).bs)-

The stability theorem’s proof is given in appendix.

5.3.Measurement method of the system’s output

In literature, the problem of optimal attitude deteation algorithm using two sensor’s measurements
(vector observations) is known as the Wahba's prol30]. A solution for this problem was provided i
[16] for example to estimate the attitude of Elepth@eal. Note that this algorithm is limited to tlogvest
frequencies of the natural panel of animal’'s moveisid16]. In this paper, the used algorithm proside

attitude measurements,, as output for the system (11) and as measurenberdalculate the quaternion
error ¢, for the observer. This algorithm is an estimatsing the earth’s magnetic fielsh defined in (9),

the gravity vectorg,,., given in (7) as the observations and the real areasents from the accelerometer
and magnetometerf( and h) to deduce the attitude,,. For that, one uses the Iterated Least Squares

algorithm [16]:

Iterated least squares algorithm procedure (1L SA):

1) Take measurements df andh. Note thath represents the magnetic field expressegjn
2) Initialize q,=[1 0 0 " andg,=[1 0 0 ' (quaternion error).

A

3) Calculated,.,= g0 fO§* andrm= g0 hO §*. Note thatg, ., and m represent the estimated gravity

A1 . - N A 7
and magnetic fields expressedfp. G is the quaternion inverse expressectqbﬁ/:[oo —qfect] :
4) Calculate the navigation err@g,.y = 9y~ Jec @nd do the same fodrm= m- fr in order to form

z=[0M 0G| -
X T X T T
5) Calculate the observation matri@z[[—z[m] J [—2[ e } }

6) Calculate the pseudo-inveréb?:[oT OT 0.
7) Update the quaternion erragy, = cr[OT O]_l O z. a is a constant that fixes the convergence speed.

8) Update the estimated quaterniap;(k+1) = q,(K O q.

9) Return to step 3 and repeat until the convergemeestableq,, is reached.

5.4.Discussion on the proposed nonlinear observer impletation

The flow-chart of computations performed by the pmsed approach is summarized in Fig. 2. A
frequency analysis of the accelerometer and magrettrs signals shows that these sensors have a low
bandwidth. In quasi-static motion, the acceleratiod magnetic field measurements are used in 184 to
estimate the attitude. This algorithm fails to kabe accurate attitude in dynamic situations sitie

accelerometer measures also the DBA (consideredisisrbance for the algorithm). The gyroscope’s

7



analysis signal shows that this sensor has a hgiuéncy bandwidth. Its only use in dynamic situaican

produce better attitude estimation but for shenetidue to the integration of bifis (equation (4)). Then we

can see that physically these three signals havplementary frequency spectra [26].

Then the resulting structure of the proposed olesenv this paper is complementary: it blends low
frequency region of the accelerometer and magneatndata (based on the quaternion estimated ubing t
ILSA), where the attitude is typically more acceratvith high frequency region (high bandwidth) bét

gyroscope measurements, where the integratioreddnigular velocity yields better attitude estimates

6. Simulation results

This section aims at illustrating the performanod accuracy of the nonlinear observer designed 2. (
Some simulations were carried out using Matlab.atbieve these simulations, one starts by generating
rigid body attitude theoretical example that was slibject of angular velocity measurements ovesez

Then, one chooses to simulate the followings amgala values:

for t<25sec for 2%t< 50sec
@, (t) =-0.8sin( 1.2) @, (t)= 1.3sif 1.4t
o ()=11c0§ 0.5 ;@ (t)=- 0.6eds -0 a4
w, (t) =0.4sin( 0.3) w,(t)= 0.3sifi 0.5t

In a first step, the kinematic differential equati(8) is used to obtain the continuous time mofion
guaternion representation (see Fig. 3(a)) basetherconsidered angular velocity measurements ii. (14
This motion is used in these simulations as refaremd will be estimated after by the proposedmbseln

a second step, the specific forée and magnetic fieldh measurements are created using equations (6) and

(8), respectively, and the rotation matrix defined(20). The angular velocity measurements are also
assumed to be corrupted by a bias. Fig. 3(b) displae temporal evolution of this bias. MoreoveDBA
vector was added to the acceleration measuremzitsity out more realistic simulations (see Fig)B(To
represent the sensor imperfections, an additivdamnzero-mean white Gaussian noise was considered f
all measurements (see Table 1). Finally, the samgptate was chosen as 100Hz for all measuremehts. T

observer gaink, and k, that guarantee convergent estimates, are setdaegadio the considered sensor
noise levels and sampling rate Bs=100, k, =200. The constant time in equation (12) is chosen as

7 =80sec

In this set of simulations, one chooses to initi@lihe actual states of the quaterngprand the nonlinear

observer with random values (see Table 1). Moreotrex theoretical bias and the estimated one are
initialized with different initial conditions (seslso Table 1). Notice that this choice allows tosirate the
convergence of the filter although it was initializfar from the actual states. It is important tress that
these simulations cannot replicate the real-wdtlthon because the motion of the king penguiasisally
unknown during its dives. Nevertheless, the nuraéri@alues are used to demonstrate the feasibifityuo
approach.

In order to evaluate the overall attitude and l@asmation performance, one chooses to plot the tim

history evolution of the estimation errors on thgatgrnion and bias. Fig. 4 depicts the exponential
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convergence of the estimation errors towards zenming the simulated motion. Despite the nonlinear
observer and the theoretical models of the quaiermind bias were initialized with different initial
conditions, one can note that the estimated quatersnd bias converge rapidly towards their thecaét
values. Notice that one has tried to change th@lirionditions and the same performance was oddain
These simulations demonstrated also that the rearinbserver copes well with the rate gyro biastaed
error level of the two vectors of acceleration amagnetic fields. Note that the estimated bias éus the
observer to compensate the drift in the gyroscopeasurements and consequently to increase tooattit

estimation accuracy.
7. Experimental results

7.1.Experimental setup

In order to evaluate the efficiency of the propospgroach in real-world application, an experimenta
setup was developed resorting to an inertial andnegc sensor module. In this study, an Inertial
Measurement Units (IMU) was employed: the MTi-Gnfr Xsens Technologies [31], which outputs data at
a rate of 100Hz. This MEMS device is a miniatuight weight, 3D digital output sensor (it output® 3
accelerations, 3D angular rates, and 3D magnetids)j with built-in bias, sensitivity, and tempenat
compensation. Note that the MTi-G is a GPS enhardétlde and Heading Reference System (AHRS).
Table 2 summarizes the sensor data specificatiotisei MTi-G. In addition, this device is designedrack
the body 3-D attitude output in Euler angles andteunion representations. The attitude from the 7T
computed using an internal algorithm based on X&etended Kalman Filter (XEKF) [31]. Note that the
MTi-G serves as a tool for the evaluation of pragmbattitude estimation algorithm efficiency, andrmat be
used on free-ranging animals due to its dependem@a energy source as well as its heavy weighkemi

unsuitable for use on a large species.

7.2.Performance evaluation

In this section, the experiments are achieved astkd on a domestic animal such a dog to validete t
proposed approach in a first step. The MTi-G iadhted to the back of the animal with xigz axes aligned
with those of the dog (see Fig. 5(a))). Inertialgmetic measurements (see Fig. 5 (b)) and attitude a
recorded using MTi-G during the motion of the daogl &ransmitted to a computer via USB port. It skidog
noted that the range of frequencies movements efdthly during these experiments is composed of two

periods of movement with low and high frequenciespectively. In the first period (between 0 andsEQy),

the motion of the dog is composed of low accelerafirofile (the 3D-accelerations are betweeidm /&
and +10m/<). In the second period (between 100sec and 1708&c)notion dynamics increase and the

accelerometer outputs are betweePOm/s and +20m/<& (see Fig. 5(b)). The recorded inertial and

magnetic measurements are used to generate theaesti attitude using the proposed nonlinear observe
The outputs of the MTi-G (the calculated attitudel ®BA) are considered as reference of the motfadhe
dog. Fig. 6(a) plots the evolution of the differereetween the calculated quaternion using the MaRG

the one estimated by the proposed approach. Altheage parts of the motion are with high dynamies,



can remark that the errors on quaternion comporte@sn’t exceed 0.03 oy, ¢, g, and 0.05 org;,. Itis

clear that this mismatch between the estimatetuidétiby our approach and the MTi-G is small. There
can conclude about the performance of the nonliobserver in estimating the attitude of the anievan in
dynamic situations. Although our approach didn'plek a GPS data as done in MTi-G, it is able to
reconstruct the orientation of the dog given by fidRS with a small error. In our knowledge, the
difference between the quaternion outputs of thémia filter in the MTi-G and the proposed nonlinear
observer is due to the errors committed by the XsKalman filter as indicated in the Technical

documentation of the MTi-G (errorgitch/ roll :1° and yaw: 3°) [31].

Dynamic Body Accelerations (DBA) of the dog canmeasured using the estimated quaternion from the

nonlinear observer or with the MTi-G, based onftilewing equation [32]:

a= inv(M(fJ)) f— Qeot (15)
where M (Q) is defined in (20) 9, IS the gravity vector and is the accelerometer reading.

Fig. 6(b) plots the evolution of the difference voe¢n the calculated DBA using the MTi-G and the

proposed nonlinear observer. We can remark thatdifierence is around.sm/s on a, or a, and

0.15m /" on a, for the period between 0 and 100sec. During hig,tthe motion of the dog is composed

of low motion dynamics (walk and trot). After thalhe acceleration profile increases since the moigo
faster (gallop). During this period (between 10@ dvOsec), the differences on the DBA components
increase (see Fig. 6(b)). In our knowledge, thffedénce increases due to two facts: firstly, thation of

the dog, after 100sec, is faster than before wbéshcause some errors on the attitude estimataon the
nonlinear observer. Secondly, it is important tess that the Xsens Kalman Filter committed som@m®0n

the quaternion estimation (in fast motion) [31].e8h errors will be observed also on the dynamig/ bod
acceleration (using equation (15)). In conclusiwa,can see that the obtained results in the Fniet out
that one can estimate the DBA of the animal wigmell error and satisfactory accuracy for biolagigthis
information will be necessary in future to assesergy expenditure of the studied animal’'s species
especially the king penguin.

It is important to stress that the relevance ofgteiminary experimental results for the final Apgtion on

the penguin can be justified by two reasons. irgtl our knowledge, some parts of the motion dyicarof

the dog will look like to those of the king penguiBecondly, the structure of our estimation appmnoac
doesn’t depend on the animal species. Consequéh#dypbserver can estimate the motion of each anima

with the same accuracy.

7.3.Performance comparison with previous Bio-logging work

In order to show the efficiency of the proposed rapph based on the addition of gyroscope
measurements, we choose to compare it with anatie¢hod developed recently in the Bio-logging field
[14] (it is called after in this section “method4]1) and which uses only accelerometer and magnetem
measurements. Then, we consider the same motithre efog and the obtained measurements showed.in Fig
5(b) are used also in the method_[14] to providedstimated attitude. Fig. 7 plots the differeroesveen
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the calculated Euler angles obtained from MTi-G #&muke estimated from the nonlinear observer aad th
method_[14]. Notice that the estimated Euler angkfes Roll, &: Pitch, ¢ : Yaw) from the nonlinear

observer areleducedrom the estimated quaternion values based on #tbamatical transformation given

in [33]. We can remark from Fig. 7 that the metHdd] fails to estimate the attitude during the tpa&riods

of motion of the dog (between [0-100sec] and [1@0skc]). The difference between the MTi-G and the
method_[14] reaches 50° for roll, 40° for pitch &B@0° for yaw. These degraded performances can be
explained by the fact that the attitude estimabased on accelerometer and magnetometer is valjdabn
static and quasi-static situations (low frequenamegvements) since these sensors suffer from weak
dynamics (low-pass sensors). This method is ndhlsiéi to be applied for a free motion because the
accelerometer outputs contain the effect of the DBAr example, the attitude estimation error is enor
important when the DBA has more high values (faaregle at t=50sec (for roll and yaw), at t=100sec (f
roll, pitch and yaw)). Figure 7 shows also that tieserver is not sensitive to the effect of the DBA
provides the smallest difference compared with rgult of the method_[14]. This mismatch is always
smaller than 3° for roll and pitch and 5° for yaswen during fast motions (for example at t=50se¢ an
t=100sec). In static and quasi-static situatiores rtfismatch is smaller than 2°. The conclusion & the
addition of gyroscope measurements to the accebtmmand magnetometer readings, which are usdtkin t
method_[14], can enhance the precision of attiestanates mainly during the dynamic situationshefdog
(running, fast rotation...).

In these experiments, the calculated attitude ByMfi-G is considered as reference since it usegover a
GPS data to improve the attitude estimates qudlityen to evaluate the accuracy of the observertiaad
method_[14], one uses the Root Mean Square DeridfRMSD). Indeed, this criterion allows measuring
differences between Euler angles calculated byMfiieG and those estimated from the observer and the

method_[14]. One chooses to use the following Gdtewith a sliding window:

RMSQiging (KW= (16)

where

x : Euler angles (roll, pitch or yaw) calculated bg MTi-G.

X : Euler angles (roll, pitch or yaw) estimated frtme chosen method (method_[14] or nonlinear obsgerve

| : The measurement’s window.

The measurement’s window is chosenlas?2 to have a more precise evaluation of RBSD for each
method. Table 3 illustrates the mean RMSQ;,, oOn roll, pitch and yaw for the two approaches. The
smallest values are obtained with the nonlineaedas which prove its performance. Then, one cafedu
about the usefulness of gyroscope measurementgptove the quality of the motion tracking.

After that, the same the estimated attitude, gimeBuler angles by the method_[14], is transforrteed
guaternion representation [33] to be used in eqoat{20) and (15) to deduce the DBA of the dogrdyits
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motion. Since the components of the DBA are obthimme calculates the norm of this accelerationgusi

the following equation:

laf, =&+ & + & (17)

The obtained values of DBA from Fig. 6(b) are uge@&quation (17) to calculate the correspondingmor
Fig. 8 plots the difference between the norm of D&#culated by the MTi-G and the one estimated from
each approach. In this figure, the difference betwéhe MTI-G and method_[14] is usually high and
especially at t=50sec, t=80sec, and t=100sec famele. This is due to the attitude estimation arror
observed in Fig. 7. It is clear that the nonlinelaserver is able to calculate accurately the ndrtheoDBA
since the difference in Fig. 8 is too small everdymamic situation of the motion’s dog (between H0d
170sec). The norm of the DBA is well estimated beeathe attitude estimation in Fig. 7 is too precls
conclusion, Fig. 8 shows that the nonlinear obseprevides the smallest difference compared with th
result of the method_[14].

The same criterion presented in equation (16) edu® evaluate the accuracy of each method in the

determination of DBA. In this equatiox, and X represent:

X : The DBA norm calculated by the MTi-G.

% : The DBA norm estimated from the chosen methodifot [14] or nonlinear observer).

Table 3 presents also the mean RMSQy,, on the norm of DBA for the nonlinear observer ahed

method_[14]. The smallest value is obtained aldb wie nonlinear observer which proves its efficien

7.4.Discussion

The estimation results obtained in the last expemis allow making some conclusions: (1) the anisnal’
motion is composed of low and high DBA. Then, cdesing only the quasi-static case is not sufficient
the attitude estimation problem. (2) The attitudéneation based on accelerometer and magnetonseter i
valid only at low frequencies movements since theesesors suffer from weak dynamics (low-pass sehsor
Then during the motion of the dog, we can seettimestimation error for method_[14] is more impatt
when DBA happens. (3) The gyroscope has often laagelwidth (high-pass sensor) and then its addition
the accelerometer and magnetometer can improvpréusion of the attitude estimation even in theque
when the animal exhibits high frequencies motioaning, prey pursuit, fast rotation...). The set of
experiments performed in this paper confirmed ittés Since the proposed observer gives better @stim

results in dynamic situations (high frequenciesiomt

8. Conclusion

This paper concerns especially the orientation Bpdamic Body Acceleration (DBA) estimation for
free-ranging animals. An approach based on thetiadddf gyroscope is proposed to improve the atétu
and DBA estimation. The main guideline is to usacalinear observer coupled with an lterated Least
Squares Algorithm (ILSA) and that exploits seng@dings from 3-axis gyroscope, 3-axis acceleronaetdr
3-axis magnetometer. The proposed observer alltsesestimating the bias in gyroscope which is used

correct the angular velocity measurements in ttiudé estimation step. Afterward, the estimateitiuate is
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exploited to calculate the DBA of the animal. Therfprmance of the nonlinear observer is theordtical
illustrated by an attitude estimation example. Moex, the efficiency of the proposed approach is
demonstrated with a set of experiments performedaaomestic animal under several motions. Some
comparisons with another method developed prewouslBio-logging are also included to show the
contribution of the proposed approach in the paar future works will focus on the experimental
evaluation of the algorithm using the first profmy“P3D+" that is under development in our labomato
This logger will be attached to the king penguin aeployed in the Crozet island (South Pole). Btep

will give us the opportunity to know the spatialemtation and the body acceleration of the kinggoém
during its dives which helps the biologist to stistyne aspects of its behaviour and energetic indlise,

we will interest in other research to estimate 3Beposition of the animal using a fusion betweeertial

sensors and GPS measurements to study the divfitepof the king penguin.

Appendix

¢ Quaternion proprieties

. . T T T T
Let us define the quaternion productqgf:[qao Qrect a} andq, :[q)O Qrect b] as:

Gho
18
{qvect bi| ( )

Wher(—:‘[qject a] is the skew-symmetric matrix, defined as:

T
an - q\/ecL a

qa D qb ) quCT, a |3><3an +|:qu€01 ail

X

Qa1 0 -05 O
I:q\)/(ect, a:|: Jo | =| ds 0 —04 (19)
Uaz Qo Oa 0
The rotation matrix, in terms of quaternion, carelkpressed such as:
2 +¢)-1 Aqa+aa) 294 g9
M(a)=|2(ae-aa) 24+ d4)-1 4 gq 99 (20)
s+ aw) 2o~ o9 2 G+ §-1
¢ Proof of the stability theorem

Proof: Let us consider the two error equations given by:

Cer =[Qero On %2 0er3]T =q'0 *S (21)
T A~

be :|:bex bey bez:| = bG_ b( (22)

Suppose thaty, = g and using the definition of quaternion productgiven in (18), equation (21) can be

written as:
Golo+ GG+ BB+ GG
0ol + 4O+ B G
O = bt Gt B~ GG (23)

“Ool~ 4%+ B+ &G
G+ - RG* GG
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Now, differentiating (22) and (23), then one obsain

B+ B+ 4O+ 4o+ Go+ Gg- G §g

o = G4~ B4+ 9%t ot ¢4 94 dg g
% -%%- 4% qo+ ¢ §¢ ¢ § (24)
%~ G+ %+ GG GG~ Y+ B+ GG

b =hs-hs

Substitute q=[t, & & @] . B =[f, B, be] .G=[& & & & and BG=[BGX be, bGz:|
given in (11) and (12).

Finally, the observation error dynamic’s is writi@s follows:

T
a0 [ e {oe}

Oer:_ X

2| T [20J4] [ ]S @)

l.)e =_N_lhe+ kbq/ect er
It is easily verified that:

[q; bg]:[+1 00000 ¢ (26)
and

[ B]=[-1 0000 0§ (27)
are the equilibrium states of the error dynamiés.(2
Let us consider a domaibD as:

D={q, 00%Y/ -1=q,()<1,{i=L.} andy,00> Jeo<hy(i)<+o { i=1}B (28)

Let us define two candidate Lyapunov functishsandV,. These functions are continuous, positive definite

bounded and belong to the clas$ as:

Vl =%b::‘r Qz+ kb((l_ er)z + iect erqve(;t e)v If Ché)‘2 O (29)

V2 =%h;rha+ kb((1+ qero)z + iect erqvect 9" If q@'< 0 (30)

In our case, the motion can change randomly, aewl df), can take positive or negative value according to

the value ofg. If we choose the case,, =0, then we consider the Lyapunov function in (2u&iion

(29) can be written also as:

Y% =%th,+ ko(2(1- ) (31)
When differentiating (31) and using (25), one atai

V=-2k 00+ H iy (32)
Finally, one obtains:

V = -k Ky ect erOvect e~ FeN™ b (33)

14



Since0<q, <1, then:

q\l—ect erAvect er™ 1- qze(D 20 (34)

When the gain:kq ,k, are positive constants, we can write:

V<0 (35)
It is clear thatV is negative semi-definite and for equilibrium stat(26) and (27), the condition

V(6 k) = V( a, k) =0 is satisfied. Thus{g,eenbe) ~ 0 and consequently,, - +1 (the norm of g, is

always equal 1). In the same way, for the cqgse<0, the associated Lyapunov function (30) leads o th
same result given by (33).

Let Y={(qer,be)D D/ V(¢ k)= 0} . Therefore, the only solution that can stay idelly in Y is the trivial

solutions in (26) and (27). Now, applying KrasowldaSalle's principle [34], one can conclude thaé t
equilibrium states (26) and (27) are globally asiatipally stable, which ends the proof.
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Tables

Tablel
Noise characteristics in the used sensors andlisitnditions for the desired states and the nealimbserver
Sensors Parameters Stapdgrd Units Quaternion Bias
deviations
Accelerometer O 0.002 m/  Theoretical T T
vales  db)=[z 0 04 o) =-2 1 03
Magnetometer 9, 0.007 Gauss
Gyroscope [ 0.01 rad/s  Observer . A T
=03 05 08 O =0 0
Bias X 0.01 rad/s  values 46) ﬁ {6) 9
Table2
Performance specification of MTi-G
Sensor performance Rate of turn Acceleration Magnetic field
Full scale +300 deg/s +50 m/< +750 mGaus
Bias stability ldeg/s 0.02m/¢ 0.1 mGaus:
Noise 0.05deg/s4 Hz 0.002m/é &/ Hz 0.5mGaus:
Alignment error 0.1dec 0.1dec 0.1dec
Table3
Mean of RMSRQi4i,y ON Euler angles and DBA for the nonlinear obsearet the method_[14]
Methods Nonlinear observer Method [14]
Mean of RMSRQgng (Roll) 0.4887 3.5164
Mean of RMSRQ4ng (Pitch) 0.3813 3.5464
Mean of RMSQgng (Yaw) 1.9654 9.5164
Mean of RMSQgng (DBA) 0.0579 0.5162
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