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An axisymmetric PIC code based on isogeometric analysis∗

A. Back† A. Crestetto† A. Ratnani† E. Sonnendrücker†

Abstract

Isogeometric analysis has been developed recently to use basis functions resulting from the
CAO description of the computational domain for the finite element spaces. The goal of this
study is to develop an axisymmetric Finite Element PIC code in which specific spline Finite
Elements are used to solve the Maxwell equations and the same spline functions serve as shape
function for the particles. The computational domain itself is defined using splines or NURBS.

1 Introduction

The Vlasov equation describes the evolution of charged particles in an electromagnetic field, which
can consist of an applied and a self-consistent field. The latter being computed using Maxwell’s
equations. So we consider the system of the Vlasov-Maxwell equations. Physical problems described
by this system are varied and it is necessary to develop methods adapted for each one of them.

We are interested here in the emission of electrons in a diode with hemispherical cathode. The
problem is a priori three-dimensional and we can use cylindrical coordinates (z, r, θ). Moreover this
problem is such that the unknowns do not depend on θ so that we can assume 2D axisymmetric
geometry.

The IsoPIC code that we describe in this paper is a (z, r) axisymmetric Vlasov-Maxwell solver.
Thanks to symmetry in θ direction, it is enough to give the description of the domain for a

section (for example θ = 0). The isogeometric analysis approach will be applied, and we will
construct a mapping F transforming a square into the section.

For the Maxwell equations, we consider in a first stage only the transverse electric mode (denoted
by TE). The electric and magnetic field components considered are Er, Ez and Bθ. To solve them,
we use spline finite elements. This article begins with their definition, their properties and their
application to solve our system.

Since their introduction, B-splines have had a large success because their implementation is
based on fast and stable algorithms. They are used in industry and in academic research for
interpolation, computer aided design and data fitting. Recent work by Hughes and his co-authors
[14, 16, 15] and the introduction of isogeometric analysis added another dimension to their use,
creating an interface between simulation and modeling.

Before the recent work of Hughes [14], the use of splines as basis functions in the finite element
method was rare and mostly limited to uniform B-splines using periodic conditions, although the
web-splines developed by Hoellig and others proposed a strategy for dealing with boundary condi-
tions [13, 12]. The idea of isogeometric analysis, using geometric transformations based splines and
NURBS is easier for most applications. Compared with usual finite elements, the main change due
to the isogeometric analysis is undoubtedly the emergence of the k-refinement, a strategy that can
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increase the regularity of functions with the interfaces of the mesh to reduce the number of degrees
of freedom.

Modern techniques of finite elements for Maxwell’s equations are based on the ideas of differ-
ential geometry and more precisely the existence of discrete spaces that define an exact De Rham
sequence. Following the pioneering ideas of Bossavit [5, 6] a complete theory has been developed
[11, 2]. Buffa and al. [8, 7] have extended the isogeometric analysis to the steady state Maxwell’s
equations, providing a discrete exact De Rham sequence, in discrete spaces based on B-splines.
The isogeometric analysis approach for studying unsteady Maxwell’s equations has been studied
by two of the authors [18].

The present article describes an axisymmetric Vlasov-Maxwell Particle In Cell (PIC) method
based on isogeometric analysis. It is organized as follows: After recalling briefly the principles of
isogeometric analysis, we introduce an axisymmetric Maxwell solver based on this approach. Then,
we present the emission and the motion of particles in generalized coordinates on a patch. We
study the conditions for extraction of particles in a diode with hemispherical cathode. And finally
numerical results obtained with the code are proposed.

2 Isogeometric Analysis

In this section, we give a brief description of using B-splines in a finite element method. More
details can be found in [14, 16].

2.1 B-Splines

Let T = (ti)16i6N+k be a non-decreasing sequence of knots.

Definition 2.1 (B-Spline). The i-th B-spline of order k is defined by the recurrence relation:

Nk
j = wk

jN
k−1
j + (1− wk

j+1)N
k−1
j+1 ,

where

wk
j (x) =

x− tj

tj+k−1 − tj
, N1

j (x) = χ[tj ,tj+1[(x).

We note some important properties of a B-splines basis:

• B-splines are piecewise polynomial of degree p = k − 1.

• Positivity.

• Compact support; the support of Nk
j is contained in [tj , .., tj+k].

• Partition of unity:
∑N

i=1N
k
i (x) = 1, ∀x ∈ R.

• Local linear independence.

• If a knot t has a multiplicity m then the B-spline is C(p−m) at t.

Let (Pi)16i6N ∈ R
d be a sequence of control points, forming a control polygon.

Definition 2.2 (B-Spline curve). The B-spline curve in R
d associated to T = (ti)16i6N+k and

(Pi)16i6N is defined by:

M(t) =
N∑

i=1

Nk
i (t)Pi.
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Figure 1: (left) A B-spline curve and its control points, (right) B-splines functions used to draw
the curve. N = 9, p = 2, T = {000, 14

1
4 ,

1
2
1
2 ,

3
4
3
4 , 111}.

Remark 2.3. In figure 1, we show an example of a B-spline curve. The basis here is simply
Bernstein polynomials. In figure 2, we show the impact of inserting knots starting from a given
knot vector. We remark the regularity of the new basis, for the repeated knot 3

4 . This refers as the
k-refinement. The use of elements with high regularity at the interface of cells, allows us to reduce
the dimension of the associated discrete space. More details on the impact of the k-refinement can
be found in [18, 14, 10].

Remark 2.4. In order to use B-splines to treat 2D or 3D problems, we need to use multivariate
B-splines, which can be constructed by a tensor product. This will generate a mapping F that maps
a rectangular grid Patch, onto the physical domain Ω. In figure 4, we show the impact of the
h-refinement. Remark that using refinement strategies does not affect the mapping F.

2.2 Grid generation

Starting from a coarse grid, a new grid can be constructed by refinement, which can be done in
three different ways:

• using the patch parameter h, by inserting new knots. This is the h-refinement, it is the
equivalent of mesh refinement of the classical finite element method.

• using the degree p, by elevating the B-spline degree. This is the p-refinement, it is the
equivalent of using higher finite element order in the classical FEM.

• using the regularity of B-splines, by increasing / decreasing the multiplicity of inserted knots.
This is the k-refinement. This new strategy does not have an equivalent in the classical FEM.

Figure 2: Using h-refinement with p = 2, T = {000, 111}, T = {000, 12 , 111} and T =
{000, 12 ,

3
4
3
4 , 111}.

To define the computational mesh, we use alternatively h and p-refinement, see figure 3. The
minimal degree of the basis functions is imposed by the domain design. When inserting knots, we
can use uniformly-spaced knots or non uniformly-spaced ones.
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Figure 3: Grid generation. (left) after h-refinement, N1 = 17, N2 = 5, (right) after p-refinement,
p1 = p2 = 3.

2.3 Spline finite elements on general domains

In order to use the spline finite elements on general domains, we shall use the ideas of isogeometric
analysis and consider domains defined with NURBS that can be obtained via CAD software and
use these NURBS to map a rectangular domain on the physical domain.

Let Q be a cell in the physical domain. Q̃ is the parametric associated cell and such that
Q = F(Q̃). Let JF be the Jacobian of the transformation F, that maps any parametric domain
point (ξ, η) into physical domain point (x, y).

Q

F

Patch 
Physical Domain

K
Q

F

Patch 
Physical Domain

K

Figure 4: Mapping from the patch to the physical domain: (left) initial patch, (right) patch after
h-refinement in the η direction.

For any function v of (x, y), we associate its representation in the parametric domain

ṽ((ξ, η)) = v ◦ F((ξ, η)) = v((x, y)).

The basis functions Ri will not be affected by these changes, the reader can always know if we are
working in the physical or parametric domain thanks to

(x, y) = F(ξ, η), x = α(ξ, η) and y = β(ξ, η).

Then,

α1 =
∂α

∂ξ
, α2 =

∂α

∂η
, β1 =

∂β

∂ξ
, β2 =

∂β

∂η
.

We have for the determinant of the Jacobian det(JF) = α1β2 − α2β1 and for JF−1

JF =

(
α1 α2

β1 β2

)
, JF−1 =

1

∆

(
β2 −α2

−β1 α1

)
.

Let u be a (scalar or vector) function defined on the physical domain. When we use the patch
coordinates, we will write it ũ, idem for the used spaces.
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2.4 Boundary conditions

The boundary conditions are very easy to handle. Thanks to the mapping, the boundary of the
physical domain is mapped into the boundary of the patch. Periodic boundary conditions can be
handled by using periodic splines with an adapted knot vector [4]. Perfect conductor and Silver-
Müller boundary conditions are also implemented in a straighforward manner.

3 Axisymmetric Variational formulation of the 2D Maxwell equa-
tions

The 2D Maxwell equations, in the TE mode, read




−∂E
∂t

+ curlB = J,

∂B
∂t

+ curlE = 0,

divE = ρ.

For the axisymmetric geometry, we have:

E =

(
Ez

Er

)
, B = Bθ, curlE = ∂zEr − ∂rEz, divE = 1

r
∂r(rEr) + ∂zEz and curlBθ =

(
1
r
∂r(rBθ)
−∂zBθ

)
.

Variational formulation: As usual, to derive the variational formulation of the Maxwell
equations, we will take the weak form of one equation (Ampère or Faraday), and keep the other
one in the strong form. Multiplying each of the Maxwell equations by a test function and integrating
on the physical domain Ω, we obtain for the Ampère equation

−
∂

∂t

∫

Ω
E ·Ψ dX +

∫

Ω
curlB ·Ψ dX =

∫

Ω
J ·Ψ dX, ∀Ψ ∈ H(div,Ω).

And, for the Faraday equation,

∂

∂t

∫

Ω
B φ dX +

∫

Ω
curlE φ dX = 0, ∀φ ∈ H1(Ω).

Now by using the Green formula
∫

Ω
(curlG) · F dX =

∫

Ω
G curlF dX −

∫

Γ
(G× n) · F dS , ∀ F ∈ H(curl,Ω), ∀ G ∈ H1(Ω), (1)

and if we are dealing with perfectly conducting boundary conditions, we get

∂

∂t

∫

Ω
B φ dX +

∫

Ω
E · curlφ dX = 0.

In the case of axisymmetric geometry, the measure dX considered is simply dX = rdrdz.
Operators expressions: We have, E ·Ψ = EzΨz +ErΨr, J ·Ψ = JzΨz + JrΨr, E · curlφ =

Ez
1
r
∂r(rφ)− Er∂zφ, and curlB ·Ψ = Ψz

1
r
∂r(rB)−Ψr∂zB. Therefore,

−
∂

∂t

∫

Ω
(EzΨz + ErΨr) rdrdz +

∫

Ω
(Ψz∂r(rB)− rΨr∂zB) drdz =

∫

Ω
(JzΨz + JrΨr) rdrdz,

and,

∂

∂t

∫

Ω
B φ rdrdz +

∫

Ω
(Ez∂r(rφ)− rEr∂zφ) drdz = 0.
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3.1 Construction of the finite element spaces

An important feature of the functional spaces we chose for the variational formulation is that they
form an exact sequence. Depending on the variational formulation we choose, we need to work
with different exact sequences. As we have relaxed the Faraday equation, the following function
spaces are involved

curl div
H1(Ω) −→ H(div,Ω) −→ L2(Ω)

∪ ∪ ∪
V −→ Wdiv −→ X

(2)

In order to keep the specific features of Maxwell’s equations at the discrete level we need to
construct finite dimensional subspaces endowed with the same structure. The involved discrete
spaces are denoted by V ⊂ H1(Ω), Wdiv ⊂ H(div,Ω) and X ⊂ L2(Ω). In our case, we shall look
for (Eh, Hh) ∈Wdiv × V .

3.2 Spline finite elements on patch grids

We shall now start constructing the actual subspaces V ⊂ H1(Ω), Wdiv ⊂ H(div,Ω) and X ⊂
L2(Ω). Our discrete spaces will be constructed using B-splines. The key point of our method is
the use of the recursion formula for the derivatives:

N
p
i
′
(t) = p

(
N

p−1
i (t)

ti+p − ti
−

N
p−1
i+1 (t)

ti+p+1 − ti+1

)
. (3)

It will be convenient to introduce the notation D
p
i = p

N
p−1

i (t)
ti+p−ti

. Then the recursion formula for

derivatives (3) simply becomes
N

p
i
′
(t) = D

p
i (t)−D

p
i+1(t). (4)

Let us first consider a rectangular domain Ω. We consider the following discrete functional
spaces:

V = span{Np
i (x)N

p
j (y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},

Wdiv = span

{(
N

p
i (x)D

p
j (y)

0

)
,

(
0

D
p
i (x)N

p
j (y)

)
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}

}
,

X = span{Dp
i (x)D

p
j (y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}.

As proved in the article by Buffa et al. [8], these spaces verify the same exact property as the
spaces they approximate.

Let us now define coordinate changes conserving either the curl or the divergence of a vector
field. Let us start from a vector field Ψ(ξ, η) = (Ψ(1)(ξ, η),Ψ(2)(ξ, η))T defined on the parametric
domain Q̃. Using the transformation formula:

Ψ =

(
(−Ψ(2) ◦G

∂G1

∂y
+Ψ(1) ◦G

∂G2

∂y
), (Ψ(2) ◦G

∂G1

∂x
−Ψ(1) ◦G

∂G2

∂x
)

)T

for the vector fields of Wdiv which conserves the divergence, using the diffeomorphism G = F−1,
we get Ψ(1) = 1

∆(α2Ψ
(2) + α1Ψ

(1)), and Ψ(2) = 1
∆(β2Ψ

(2) + β1Ψ
(1)) .

So let Ψ = (Ψ(1),Ψ(2))T be a function in Wdiv, and Ψ = (Ψ(1),Ψ(2))T be a function in W̃div.

To preserve the divergence, the corresponding space of W̃div on the physical domain is

Wdiv = {Ψ = (
1

∆
(α1Ψ

(1) + α2Ψ
(2)),

1

∆
(β1Ψ

(1) + β2Ψ
(2)))T , Ψ ∈ W̃div},
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which can also be written

Wdiv = span

{
1

∆
Ñ

p
i (ξ)D̃

p
j (η)

(
α1

β1

)
,
1

∆
D̃

p
i (ξ)Ñ

p
j (η)

(
α2

β2

)}
.

3.3 Discrete equations

Let Wdiv = span{
−→
ψ b, b ∈ ΓE} the basis for Wdiv, the discrete space associated to the electric field.

Let V = span{ϕb′ , b
′ ∈ ΓH} the basis of V , it discretizes the space associated to the magnetic field.

The mass matrices for the electric and magnetic field are respectively

MW
b,b′ =

∫

Ω

−→
ψ b ·

−→
ψ b′rdrdz, and MV

b,b′ =

∫

Ω
ϕbϕb′rdrdz.

The matrix for the curl is

Kb,b′ =

∫

Ω
curlϕb ·

−→
ψ b′rdrdz =

∫

Ω
(r∂rϕb + ϕb)ψ

z
b′ − (r∂zϕb)ψ

r
b′drdz

=

∫

Ω
r(∂rϕbψ

z
b′ − ∂zϕbψ

r
b′)drdz +

∫

Ω
ϕbψ

z
b′drdz.

This is the contribution of two terms. The first one ”r(∂rϕbψ
z
b′−∂zϕbψ

r
b′)” which differs from the

cartesian formulation by a multiplication by r. The second one ”ϕbψ
z
b′” is due to the axisymmetric

geometry.

3.4 Domain parametrization using Splines/NURBS curves

The parametrization of the domain by curves defined with aid of B-splines and NURBS is a recent
topic. Indeed, it is about creating the mesh of the boundary of the domain from a description
in terms of curves. Few articles that discuss the topic provide strategies to build these meshes
[1, 9, 17, 20].

In our case, the problem is different. We must be able to create a mesh from the description of
the boundary and this mapping must be C1.

The easiest approach, which involves using NURBS to describe the quarter of circle of the diode,
leads to a mapping which is continuous at the crossing of some nodes and not C1, see Fig. 5. We
thus opted for a version in the spirit isoparametric analysis using only B-splines. The elements used
to describe the boundary improve this description by increasing the degree of splines. A quarter of
the circle is constructed by interpolation, by choosing a degree, determined by the user.

Remark 3.1. In our numerical tests, we have token the weights equal to 1, and changed the knot
vector T = {000 1

3
1
3

2
3
2
3 111} into T = {000 0.2 0.4 0.6 0.8 111}, in order to have a mapping

which is C1.

Remark 3.2. In figure 8, we give the description used to construct the domain, using NURBS.

A version of the domain, obtained by keeping the control points and weights equal to 1 (in
which case the NURBS become B-splines), is presented later. This domain is used for validation,
before looking a more advanced version.

4 PIC method for Vlasov equation

All the equations are solved on the patch. Since we have to change coordinates to map the physical
domain into the patch, we must compute the Maxwell equations, the equations of motion, the
densities of current and charge and the emission of particles in a general coordinates system.
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Figure 5: Diode: (left) the Jacobian of the mapping and the control points, (right) the mesh.

4.1 The PIC Method

To solve the Vlasov equation

∂f

∂t
+V · ∇Xf − (E+V ∧B) · ∇V f = 0,

we use the PIC method [19], [3]. We consider a set of N macro-particles with Xk being as the
position, Vk as the velocity, and ωk as the weight. The particles represent the distribution function
f . We approach f by a sum of Dirac functions centered in the positions and in the velocities of
particles:

f(X,V, t) ≈ fN (X,V, t) =

N∑

k=1

ωkδ(X−Xk(t))δ(V −Vk(t)). (5)

The motion of particles is described by the equations of motion in which the electric and magnetic
fields are used. They are obtained by solving the Maxwell equations which involves the charge
density ρ and the current density J. We present the different steps of the PIC method:

Mesh Generation

��

Computation of
fields on the mesh

  Initialization of
positions and velocities //

Interpolation of
charge and current

densities on the mesh

44

Emission of new
particles

��

Motion of particles

OO

Interpolation of fields
on the particles

oo

The most important steps that we develop in the following are:

- the description of equations of motion,

- the computation of charge density and current density,

- the condition for the emission of the particles.
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4.2 The equations of motion

In our case, we move the particles in the patch, because it is easier to localize the particles on it.
Let us explain how to obtain the equations of motion in generalized coordinates.

The equations of motion in Lagrangian mechanics are the Lagrange equations, also known as
the Euler-Lagrange equations. There are available in any coordinate system:

d

dt

∂L

∂q̇
(q, q̇, t) =

∂L

∂q
(q, q̇, t),

where L(q, q̇, t) is the Lagrangian.
To write and solve the equations of motion in any coordinate system, we must know the Lagrangian
to obtain the Lagrange equations. We start from its expression in cylindrical coordinates, where
denoting by A the vector potential and φ the scalar potential, it has the form

L(z, r, θ, ż, ṙ, θ̇, t) =
1

2
m(ṙ2 + r2θ̇2 + ż2)− e(Arṙ +Aθθ̇ +Az ż − φ(z, r, θ)).

Now, we define the map F which transforms the cylindrical coordinates F (ξ, η, θ) = (z, r, θ)
into a new coordinate system (ξ, η, θ). It is denoted by F (ξ, η, θ) = (z, r, θ). But, since we work in
2D axisymmetric geometry, we have θ̇ = 0, and so the map is simplified by F (ξ, η) = (z, r).
In this coordinate system, the Lagrangian has the form

L(ξ, η, θ, ξ̇, η̇, , θ̇, t) =
1

2
m(Mξ ξ̇

2 +Mη η̇
2 + 2Mξη ξ̇ η̇)− e

(
Aξ ξ̇ +Aη η̇ − φ(ξ, η, θ)

)
,

with (Aξ, Aη, Aθ) the components of the vector potential in the coordinate system (ξ, η, θ) and with

Mξ = (
∂r

∂ξ
)2 + (

∂z

∂ξ
)2, Mη = (

∂r

∂η
)2 + (

∂z

∂η
)2, Mξη =

∂r

∂ξ

∂r

∂η
+
∂z

∂ξ

∂z

∂η
.

From this new Lagrangian, we can deduce the equations of motion in the new coordinate system:

det(J)
d ξ̇

dt
+ ξ̇2Kξ,η + η̇2Kη,η + 2 η̇ξ̇ Kηξ,η = −

e

mdet(J)
(((E+ q̇ ∧B) |ξ)Mη − (E+ q̇ ∧B) |η)Mξη)

det(J)
d η̇

dt
− ξ̇2Kξ,ξ − η̇2Kη,ξ − 2η̇ξ̇Kξη,ξ = −

e

mdet(J)
(((E+ q̇ ∧B) |η)Mξ − (E+ q̇ ∧B) |ξ)Mξη)

with

Kξ,ξ = HξVξ, Kξ,η = HξVη, Kη,η = HηVη, Kη,ξ = HηVξ, Kξη,ξ = HξηVξ, Kξη,η = HξηVη,

where

Hξ =

(
∂2z
∂2ξ
∂2r
∂2ξ

)
, Hη =

(
∂2z
∂2η
∂2r
∂2η

)
, Hξη =

(
∂2z
∂ξ∂η
∂2r
∂ξ∂η

)
, Vξ =

(
∂r
∂ξ

−∂z
∂ξ

)
, Vη =

(
∂r
∂η

−∂z
∂η

)
.

det(J) = ∂z
∂ξ

∂r
∂η

− ∂z
∂η

∂r
∂ξ

is the Jacobian of the change of coordinates F , the components of E, B are

the components of the electric field and the magnetic field in (ξ, η, θ) and q̇ =

(
ξ̇

η̇

)
.

Numerically, we consider ξ̇ and η̇ as independent variables with ξ̇ = dξ
dt

and η̇ = dη
dt
. We

then solve the resulting first order system of ordinary differential equations using the second-order
Runge-Kutta method.
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4.3 The Dirac mass with a change of variables

The Dirac mass at a point xk is denoted by δ(x− xk). It has the following properties:

1 =

∫

M

δ(x− xk)dx, and g(xk) =

∫

M

δ(x− xk)g(x)dx, for any continuous function g.

Let us consider the change of coordinates F (ξ, η) = x, M is a grid of the physical domain such
as F (M̃) =M , and Jac(ξ, η) the jacobian of F . Since the integral value does not change when we
change the coordinates we can deduce that

1 =

∫

M

δ(x− xk)dx =

∫

M̃

δ(F (ξ, η)− xk)Jac(ξ, η)dξdη =

∫

M̃

δ(ξ − ξk)δ(η − ηk)

Jac(ξk, ηk)
Jac(ξ, η)dξdη,

with F (ξk, ηk) = xk and because by definition δ(F (ξ, η)− xk) =
δ(ξ−ξk)δ(η−ηk)

Jac(ξk,ηk)
, so

g(xk) =

∫

M

δ(x− xk)g(x)dx =

∫

M̃

g(F (ξ, η))δ(F (ξ, η)− xk)Jac(ξ, η)dξdη = g(F (ξk, ηk)). (6)

4.4 Computing J and ρ with a change of variables

In the physical domain, we have ρ(X, t) = −
∫
V
f(X,V, t)dV, and J(X, t) = −

∫
V
f(X,V, t) VdV.

Replacing f by its sum of Dirac function (5), we have:

ρ(X, t) = −

N∑

k=1

ωkδ(X−Xk(t)),

J(X, t) = −
N∑

k=1

ωkVk(t)δ(X−Xk(t)).

Numerically, we have to compute the integral of these functions in space. It is easier to do it on
the patch. With help of previous part and the equality (6), we deduce
∫

M

J(X, t) ·ψdX =

∫

M̃

∑

k

ωkδ(F (ξ, η)−Xk(t))Vk(t)Jac(ξ, η)dξdη =
∑

k|Xk(t)∈M

ωkVk(t) ·ψ(Xk(t)),

and
∫

M

ρ(X, t)ϕdX =

∫

M̃

∑

k

ωkδ(F (ξ, η)−Xk(t))Jac(ξ, η)dξdη =
∑

k|Xk(t)∈M

ωkϕ(Xk(t)),

where M is a cell of a physical domain and M̃ a cell in the patch such as F (M̃) =M .

5 Particles emission

5.1 Short description of a diode

A diode is constituted of two semiconductors: a cathode rich in electrons and an anode which lacks
them. If we apply a positive tension at the anode and a negative one at the cathode, such that
the created potential drop is greater than a threshold value, electrons are extracted of the cathode
and move towards the anode. This phenomena allows an electric current to pass. The movement
of electrons near the cathode can create a vicious circle: they increase the potential drop, allowing
it to propagate in the diode, and new electrons are extracted and moved.
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Numerically, we can impose a negative electric field at the entry of the diode and allow it to
propagate. If it is strong enough, it extracts electrons of the cathode, they go towards the anode.
Our domain is meshed, so we look at each cell to see if the field satisfies the conditions of the
emission of particles.

5.2 Extraction conditions

At a given frequency, particles are created in each cell Ω respecting the following conditions:

- the cell Ω touches the cathode,

- the normal electric field to the cathode on Ω is greater than a threshold value.

Weights of created particles are positive and such that the following relation is respected: div E = ρ,

and in the same time, the normal electric field to the cathode is zero according to the Child-
Langmuir law. We integrate this relation on a cell Ω :

∫

Ω
div E dΓ =

∫

Ω
ρ dΓ.

The Stokes formula leads to:
∫
Ω div E dΓ =

∫
∂ΩE · n dγ. Besides, the approximation (5) gives:

∫

Ω
ρ dΓ =

∑

particle k∈Ω

−ωk

because particles are electrons, their charge is negative but their weight is positive. We obtain the
relation

∫

∂Ω
E · ndγ =

∫

∂Ω0

E · n dγ +

∫

∂Ω1

E · n dγ =
∑

particle k∈Ω

−ωk,

where ∂Ω0 is the boundary of Ω touching the cathode and ∂Ω1 is the union of other boundaries of
Ω. We want to make

∫
∂Ω0

E · n dγ vanish, the weight of injected particles is imposed such that we
have

∫

∂Ω1

E · n dγ =
∑

particle k∈Ω

−ωk.

6 Numerical results

6.1 Validation of the Maxwell solver

6.1.1 Verification of the order of convergence

We test the order of convergence of the Maxwell solver on a square in axisymmetric geometry.
Using the classical FEM discretization, the expected theoretical order for a refinement of order p
is p+ 1 for the magnetic field and p for the electric field.

Remark 6.1. We have noticed that we do not get this order using H-div formulation. The order
obtained is more of the form:
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• the convergence order for B is :

{
p− 1

2 , if p is even
p+ 1

2 , if p is odd

• the convergence order for Ez is p+ 1,

• the convergence order for Er is the minimum of the two previous ones.

However, using H-rot formulation we recover the classical order.

We solve numerically the Maxwell equations on a rectangle z ∈ (0, L) and r ∈ (0, R). Let m be
the mode, the analytic solution is

H(z, r) =
ω

c

λp

R

√
ǫ0

µ0
J1(

λp

R
r) cos(

mπz

L
) cos(ωt),

Ez(z, r) =
1

µ0
(
λp

R
)2J0(

λp

R
r) cos(

mπz

L
) sin(ωt),

Er(z, r) =
1

µ0

mπ

L

λp

R
J1(

λp

R
r) sin(

mπz

L
) sin(ωt),

where Jn are Bessel functions of the first kind order n. λp is the pth zero of J0.
We plot the error in L2 norm between the computed solution and the analytic solution based on

the maximum diameter of the mesh, denoted by h. For the tests we take [0, 1]× [0, 1] for the domain
and N the number of cells equal to 4, 8, 16, 32 and 64. The time step is h× 10−5, small enough so
that the order of the time scheme, which is 2 in our case, does not matter. We perform respectively
25, 50, 100, 200 and 400 iterations. The p-refinement is between degrees 0 and 3. We add the degree
used for the domain, here it is equal to 1. The curves are represented with logarithmic scale in the
figure 6.

6.1.2 Emission of particles in the diode

We studied qualitatively the extraction of particles in the domain representing the diode. We
impose at the beginning of the diode a tension that increases linearly until reaching a threshold
value, and is then constant. Particles are emitted at the cathode under the conditions of extraction
described previously. We take the time step dt = 1.0 × 10−2 and perform 25 000 iterations. We
represent the electric field Er and the particles at the time T=25, 50, 75, 100, 125, 150, 175 and
200 in the figure 7.
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Figure 6: L2 norm for the electric fields Ez, Er and the magnetic field Bθ, for splines with degrees
1, 2, 3, 4.

7 Conclusion and perspectives

We have developed the IsoPIC code which solves the Vlasov-Maxwell equations in 2D axisymmetric
geometry. It is based on isogeometric analysis. It is applied to emit electrons in a diode with a
hemispherical cathode, which we approximated using splines. The solution of the Vlasov equation
is performed with a PIC method by moving the particles emitted at the cathode.

The Maxwell solver in axisymmetric geometry gives good results. The theoretical orders of
convergence are checked on a square and the fields evolve correctly in the diode. Qualitatively, we
also have good results for the particles. The extraction seems to be good but we have to add a
confinement for which the TM mode, we have not implemented up to now, is needed.

We noticed that the conjugate gradient method is not good for our problem because the mass
matrix of the electric field in axisymmetric geometry is not well conditioned and this algorithm
does not converge fast enough. We did not notice this problem in cartesian coordinates where the
matrices are better conditioned. So we used the direct solver Pastix, which has the advantage to
be faster than iterative solvers for this kind of problems in 2D.

The equations of motion are written and implemented in a general coordinate system. We have
tested them in particular cases and we have compared the results with polar coordinates. The use
of generalized coordinates is a choice for this study, despite the bigger calculation time. We would
like to test later other possibilities, like cartesian coordinates with a mapping/inverse mapping to
handle the mesh.

This work needs to be continued addressing the following topics. On the one hand, we can
rewrite the Maxwell equations in order to not have to invert the mass matrix of the electric field.
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Figure 7: Electric field and electrons at time T=25, T=50 (first line), T=75, T=100 (second line),
T=125, T=150 (third line), T=175 and T=200 (last line).

On the other hand, we have to compute a Poisson solver, in order to consider more general cases.
In fact, if there are particles at initial time (which is not the case in this study), we have to solve
the Poisson equation initially. Then, the conservation of charge is obtained thanks to the exact
De Rham sequence. Finally, we can parallelize the Maxwell solver and the motion of particles
using GPU (Graphics Processing Unit), to reduce computation time. This kind of parallelization
is indeed very efficient in our costly computations, which do not require a lot of memory.
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[18] Ahmed Ratnani and Eric Sonnendrücker. Arbitrary high-order spline finite element solver for
the time domain maxwell equations. J. Sci. Comput. to appear.
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1st Knot vector {0 0 0 1
3

1
3

2
3

2
3 1 1 1}

2nd Knot vector {0 0 0 1 1 1}

Control Points Weights

(0.0, 0.1) 1.0
(0.1, 0.1) 1.0
(0.2, 0.1) 1.0

(0.2414213562373095, 0.1) 0.8535533905932738
(0.2707106781186547, 0.07071067811865475) 1.0

(0.3, 0.0414213562373095) 0.8535533905932738
(0.3, 0.0) 1.0

(0.0, 0.175) 1.0
(0.1, 0.175) 1.0
(0.2, 0.175) 1.0
(0.25, 0.175) 1.0
(0.325, 0.125) 1.0
(0.375, 0.0575) 1.0
(0.375, 0.0) 1.0
(0.0, 0.2) 1.0
(0.1, 0.2) 1.0
(0.2, 0.2) 1.0
(0.35, 0.2) 1.0
(0.4, 0.2) 1.0
(0.4, 0.1) 1.0
(0.4, 0.0) 1.0

Figure 8: Diode description using NURBS.

16


