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Abstract 21 

The mapped rivers and streams of the contiguous United States are available in a 22 

geographic information system (GIS) dataset called NHDPlus.  This hydrographic dataset 23 

has about 3 million river and water body reaches along with information on how they are 24 

connected into networks.  The USGS National Water Information System provides 25 

stream flow observations at about 20 thousand gages located on the NHDPlus river 26 

network.  A river network model called RAPID is developed for the NHDPlus river 27 

network whose lateral inflow to the river network is calculated by a land surface model.  28 

A matrix-based version of the Muskingum method is developed herein which RAPID 29 

uses to calculate flow and volume of water in all reaches of a river network with many 30 

thousands of reaches, including at ungaged locations.  Gages situated across river basins 31 

(not only at basin outlets) are used to automatically optimize the Muskingum parameters 32 

and to assess river flow computations; hence allowing the diagnosis of runoff 33 

computations provided by land surface models.  RAPID is applied to the Guadalupe and 34 

San Antonio River Basins in Texas, where flow wave celerities are estimated at multiple 35 

locations using 15-minute data and can be reproduced reasonably with RAPID.  This 36 

river model can be adapted for parallel computing and although the matrix method 37 

initially adds a large overhead, river flow results can be obtained faster than with the 38 

traditional Muskingum method when using a few processing cores, as demonstrated in a 39 

synthetic study using the Upper Mississippi River Basin. 40 

41 
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1. Introduction 42 

Land surface models (LSMs) have been developed by the atmospheric science 43 

community to provide atmospheric models with bottom boundary conditions (water and 44 

energy balance) and to serve as the land base for hydrologic modeling.  Over the past two 45 

decades, overland and subsurface runoff calculations done by LSMs have extensively 46 

been used to provide water inflow to river routing models that calculate river discharge 47 

[De Roo, et al., 2003; Habets, et al., 1999a; 1999b; 1999c; 2008; Lohmann, et al., 1998a; 48 

1998b; 2004; Maurer, et al., 2001; Oki, et al., 2001; Olivera, et al., 2000].  However, 49 

river routing within LSMs has traditionally been done using gridded river networks that 50 

best fit the computational domain used in LSMs.  Today, geographic information system 51 

(GIS) hydrographic datasets are increasingly becoming available at the continental scale 52 

such as NHDPlus [USEPA and USGS, 2007] and the global scale such as HydroSHEDS 53 

[Lehner, et al., 2006].  These datasets provide a vector-based representation of the river 54 

network using the “blue line” mapped rivers and streams.  Furthermore, observations of 55 

the river systems are now widely available in databases such as the USGS National Water 56 

Information System for the United States in which thousands of gages are available along 57 

with their exact location on the NHDPlus river network.  Most studies mentioned above – 58 

with the exception of Habets et al. [2008] – use a limited number of gages throughout 59 

large river basins, often focusing on gages located at river mouths.  As the spatial and 60 

temporal resolutions of weather and climate models and their underlying land surface 61 

models increase, using gages located across basins would help diagnosing the quality of 62 

LSM computations.  The latest work on general circulation models by the international 63 

scientific community, especially by the intergovernmental panel on climate change 64 
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[Solomon, et al., 2007], opens potential studies of the evolution of water resources with 65 

global change.  Using mapped streams and water bodies in LSMs could benefit the 66 

resulting assessment of the impact of global change in water resources by providing 67 

estimation of changes at the “blue line” level.  Furthermore, the use of parallel computing 68 

is quite common in regional- to global-scale atmospheric and ocean modeling, but 69 

comparatively infrequent in modeling of large river networks.  Generally, parallel 70 

computing can be utilized to either solve problems of increasing size [as done with the 71 

ParFlow model: Jones and Woodward, 2001; Kollet and Maxwell, 2006; Kollet, et al., 72 

2010] or to decrease computation time [see, for example: Apostolopoulos and 73 

Georgakakos, 1997; Larson, et al., 2007; Leopold, et al., 2006; von Bloh, et al., 2010].  74 

These two types of approaches to parallel computing are respectively referred to as 75 

scalability and speedup of calculations and the work presented herein focuses on the 76 

latter.  Apostolopoulos and Georgakakos [1997] investigated the speedup of streamflow 77 

computations using hydrologic models in river networks as a function of network 78 

decomposition and of the computing time ratio between vertical and horizontal water 79 

balance calculations.  Simple river routing within LSMs being traditionally performed by 80 

carrying computations from upstream to downstream, one way to speedup river flow 81 

modeling is to use a sequential river routing code to compute independent basins on 82 

different processing cores, as done in Leopold et al. [2006] and in Larson et al. [2007].  83 

Such methods allow avoiding inter-processor communication but result in imbalanced 84 

computing loads when some basins are much larger than others.  Leopold et al. [2006] 85 

partly addressed load imbalance by using parallel computing for surface water balance, 86 

but the river routing part remains sequential.  von Blow et al. [2010] implemented a 87 
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routing method in which computations do not have to be carried in order from upstream 88 

to downstream, therefore obtaining almost perfect speedup.  The work developed herein 89 

investigates a way to obtain speedup while retaining traditional upstream-to-downstream 90 

computations which are used in most river routing schemes.   91 

The present study links a land surface model with a new river network model called 92 

RAPID using NHDPlus for the representation of the river network and USGS National 93 

Water Information System (NWIS) gages for the optimization of model parameters and 94 

the assessment of river flow computations.  All models and datasets used herein are 95 

available at least for the contiguous United States.  The work presented here focuses first 96 

on the Guadalupe and San Antonio Basins in Texas (see Figure 1) together covering a 97 

surface area of about 26,000 km
2
.  These basins have about 5,000 river reaches and their 98 

corresponding catchments in the NHDPlus dataset (see Figure 2) out of 3 million for the 99 

United States.  These two basins are also chosen for study because of significant 100 

contributions to surface water flow from groundwater sources, because of a large 101 

reservoir, at Canyon Lake, where the impacts of constructed infrastructure on flow 102 

dynamics have to be considered, and because these rivers flow out into an estuarine 103 

system at San Antonio Bay.  A synthetic study of the performance of RAPID in a parallel 104 

computing environment is also presented using the Upper Mississippi River Basin (see 105 

Figure 3), which has about 180,000 river reaches in NHDPlus and covers an area of about 106 

490,000 km
2
. 107 

The research presented in this paper aims at answering the following questions: how can 108 

a river model be developed for calculation of flow and volume of water in a river network 109 

of thousands of “blue-line” river reaches?  How can the connectivity information in 110 
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NHDPlus be used to run a river network model in part of the United States?  How can 111 

flow at ungaged locations be reconstructed?  How can model computations be assessed 112 

and optimized based on all available measurements?  How can parallel computing be 113 

used to speedup upstream-to-downstream computations of river flow within a large river 114 

network?   115 

First, the development of the RAPID model presented.  Then, the modeling framework 116 

for calculation of river flow in the Guadalupe and San Antonio River Basins using runoff 117 

data from a land surface model is developed, followed by results.  Finally, the speedup of 118 

RAPID in a parallel computing environment is assessed.  119 

120 
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2. Model development 121 

The model presented here is named RAPID (Routing Application for Parallel 122 

computatIon of Discharge - http://www.geo.utexas.edu/scientist/david/rapid.htm).  123 

RAPID is based on the traditional Muskingum method that was first introduced by 124 

McCarthy [1938] and has been extensively studied in the literature in the past 70 years.  125 

The Muskingum method has two parameters, k and x , respectively a time and a 126 

dimensionless parameter.  Among the most noteworthy papers related to the Muskingum 127 

method, Cunge [1969] showed the Muskingum method is a first-order approximation of 128 

the kinematic and diffusive wave equation and proposed a method known as the 129 

Muskingum-Cunge method – a second-order approximation of the kinematic and 130 

diffusive wave equation – in which the Muskingum parameters are computed based on 131 

mean physical characteristics of the river channel and of the flow wave.  Koussis [1978] 132 

proposed a variable-parameter Muskingum method based on the Muskingum-Cunge 133 

method where k  varies with the flow but x  remains constant on the grounds that the 134 

Muskingum method is relatively insensitive to this parameter.  Other variable-parameter 135 

Muskingum methods allow both k and x to vary [see, for example: Miller and Cunge, 136 

1975; Ponce and Yevjevich, 1978], although these variable-parameter methods fail to 137 

conserve mass [Ponce and Yevjevich, 1978].  Notable large-scale uses of the variable-138 

parameter Muskingum-Cunge method include Orlandini and Rosso [1998] and Orlandini 139 

et al. [2003].  More recently, Todini [2007] developed a mass-conservative variable-140 

parameter Muskingum method known as the Muskingum-Cunge-Todini method.   141 

As a first step, the traditional Muskingum method with temporally-constant parameters 142 

calculated partly based on the work of Cunge [1969] is used in this study because there 143 

http://www.geo.utexas.edu/scientist/david/rapid.htm
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are significant challenges to overcome in adapting the Muskingum method for river 144 

networks, in efficiently running it within a parallel computing environment and in 145 

developing an automated parameter estimation procedure before more sophisticated flow 146 

equations are used.  However, the physics of flow could be improved with many 147 

variations based on the Muskingum method or adapted to the Saint Venant equations.  148 

2.1 Calculation of flow and volume of water in a river network 149 

In a network of thousands of reaches, matrices are needed for network connectivity and 150 

flow computation.  The backbone of RAPID is a vector-matrix version of the Muskingum 151 

method shown in Equation (1) and derived subsequently in this section. 152 

 153 

            t t t t t t              
e e

1 1 2 3I C N Q C Q C N Q Q C Q  (1) 154 

 155 

where t is time and t is the river routing time step.  The bolded notation is used for 156 

vectors and matrices.  I is the identity matrix.  N is the river network matrix.  1C , 2C and 157 

3C are parameter matrices.  Q is a vector of outflows from each reach, and e
Q is a vector 158 

of lateral inflows for each reach.  Such a vector-matrix formulation of the Muskingum 159 

method has to our knowledge never been previously published. 160 

Equation (1) is used for river network routing and can be solved using a linear system 161 

solver.  The vector-matrix notation provides one flow equation for the entire river 162 

network, therefore avoiding spatial iterations.  For a river network with m river reaches, 163 

all vectors are of size m and all matrices are square of size m .  Each element of a vector 164 

corresponds to one river reach in the network.  For performance purposes, all matrices are 165 
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stored as sparse matrices (only the non-zero values are recorded).  A five-reach, two-node 166 

and two-gage river network is used here to clarify the mathematical formulation of the 167 

river network model and is shown in Figure 4a).  The river network is made up of a 168 

combination of river reaches similar to that of Figure 4b). The model formulation is 169 

presented here for a small river network but can be generalized to any size of river 170 

network.   171 

Q is a vector of the outflows jQ of all reaches of the river network, where j is the index 172 

of a river reach within the network: 173 

 174 
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 176 

e
Q is a vector of flows e

jQ that are lateral inflows to the river network.  Lateral inflows 177 

include runoff, groundwater or any type of forced inflow (outflow at a dam, pumping, 178 

etc.): 179 

 180 

    
[1, ]

e

j j m
t Q t


   

e
Q  (3) 181 

 182 

e
Q is provided by a land surface model, whose time step is coarser than the river routing 183 

time step.  Two assumptions are made in the development of RAPID, one regarding the 184 
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temporal variability of e
Q  and one regarding the location at which e

Q  enters the river 185 

network.  In this study, the river routing time step is 15 minutes and inflow from land 186 

surface runoff is available every 3 hours.  In the derivation of Equation (1), e
Q is 187 

assumed constant (i.e.    t t t e e
Q Q ) over all 15-minute river routing time steps 188 

included within a given land surface model 3-hour time step.  This partial temporal 189 

uniformity simplifies the river network model formulation, limits the quantity of input 190 

data and facilitates the coupling with land surface models.  This assumption is valid at all 191 

times except at the last routing time steps before a new e
Q is made available by the land 192 

surface model.  Also, the external inflow e
Q  is assumed to enter the network as an 193 

addition to the upstream flow.  With these two assumptions, the Muskingum method 194 

applied to reach 5 in Figure 4b) gives the following: 195 

 196 
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 

 (4) 197 

 198 

where 1C , 2C and 3C are the Muskingum parameters that are stated in Equation (6).  The 199 

reader should note that these two assumptions are equivalent to using a unit-width lateral 200 

inflow along with a term 4C  as found in available literature [see, for example: Fread, 201 

1993; NERC, 1975; Orlandini and Rosso, 1998; Ponce, 1986].  Equation (1) is a 202 

generalization of Equation (4) using a vector-matrix notation.   203 
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N is a network connectivity matrix.  Berge [1958] proposed the concept of matrices 204 

associated with graphs.  This concept can be applied to the river network in Figure 4a) in 205 

order to create the network matrix N  given in Equation (5) in both full and sparse 206 

formats.  The network connectivity matrix is a square matrix whose dimension is the total 207 

number of reaches in the network.  A value of one is used at row i  and column j if reach 208 

j flows into reach i  and zero is used everywhere else. 209 

 210 

 

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0 1 1

0 0 0 0 0

0 0 1 1 0 1 1

   
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   
    
   
   
      

N  (5) 211 

 212 

The upstream inflow to the network can therefore be computed by multiplying the 213 

network connectivity matrix N by the vector of outflows Q .  In case of a divergence in 214 

the river network (when going downstream) or in case of a loop, a unique reach (the 215 

major divergence) is used to carry all the upstream flow and the other reaches (minor 216 

divergences) carry only the flow that results from their lateral inflow.  This formulation 217 

could be modified to take into account given fractions of flows that separate into different 218 

parts of a divergence if that information is available.   219 

1C , 2C and 3C are diagonal matrices with their diagonal elements being the coefficients 220 

used in the Muskingum method [McCarthy, 1938], respectively 1 jC , 2 jC and 3 jC such 221 

that:  222 
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  223 
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 (6) 224 

 225 

where jk is a storage constant (with dimension of a time) and jx  a dimensionless 226 

weighting factor characterizing the relative influence of the inflow and the outflow on the 227 

volume of the reach j .  The Muskingum method is stable for any [0,0.5]x , regardless 228 

of the value of k  and t [Cunge, 1969].  For any j : 1 2 3 1j j jC C C   . 229 

In RAPID, the parameters k  and x  of the Muskingum method are allowed to differ from 230 

one river reach to another, and corresponding vectors are defined in Equation (7): 231 

 232 

 
[1, ] [1, ]

     ,     j jj m j m
k x

 
       k x  (7) 233 

 234 

The constants defined in Equation (6) are used as the diagonal elements of the matrices 235 

1C , 2C and 3C .  Equation (8) shows an example for 1C .  2C and 3C  are treated similarly.   236 

 237 
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 239 

The sum  1 2 3C C C equals the identity matrix. 240 

The calculation of the volume of water in a given reach can be needed for coupling with 241 

groundwater models.  Here, the first order, explicit, forward Euler method is applied to 242 

the continuity equation to calculate the volume of water in each river reach of the 243 

network, as shown in Equation (9) where the first, second and third terms of the right-244 

hand-side are the volume of water that respectively were in the river reach, flowed into 245 

the reach, and discharged from the reach: 246 

 247 

          t t t t t t t t         
e

V V N Q Q Q  (9) 248 

 249 

where V is a vector of the volume of water jV in each river reach j : 250 

 251 

    
[1, ]j j m

t V t


   V  (10) 252 

 253 

Details on the massively-parallel implementation of the matrix-based Muskingum 254 

method presented in this section, and of the automated parameter estimation presented in 255 

the section below are given in Appendix A.   256 

2.2 Parameter estimation 257 

In order to estimate the parameters k  and x  to be used in RAPID, an inverse method is 258 

developed.  The principle of an inverse method is to optimize the parameters of a model 259 

so that the outputs of the model approach observations.  A cost function reflecting the 260 
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difference between model calculations and observations is needed to assess the quality of 261 

a set of model parameters.  The best set of parameters is chosen as the set that minimizes 262 

the cost function, and is determined through optimization.  A square-error cost function 263 

 is chosen:  264 

 265 

  
       
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t t
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k x G  (11) 266 

 267 

where the summation is made daily.  The T in exponent is for vector transpose.  ot  and 268 

ft are respectively the first day and last day used for the calculation of  .  The model 269 

parameter vectors k  and x  are kept constant within the temporal interval [ , ]o ft t , and the 270 

cost function is calculated several times with different sets of parameters during the 271 

optimization procedure.  f is a scalar that allows   to be on the order of magnitude of 272 

10
1
 which is helpful for automated optimization procedures.   tQ is the daily-average 273 

outflow vector, calculated based on the mean of all routing time steps in a given day.  274 

 tg
Q  is a vector with the total number of river reaches for dimension, with the daily 275 

value observed  g

jQ t corresponding to reach j where gage measurements are available, 276 

and zero where no gage is available.  G  is a sparse diagonal matrix that allows the dot-277 

product to survive only where gages are available, so that  G has a value of one on the 278 
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diagonal element of index j if a gage is available on reach j and zero everywhere else.  279 

Using the example network given in Figure 4a), G  and  tg
Q take the following form:  280 

  281 
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 283 

According to Fread [1993], [0.1;0.3]x  in most streams.  By analogy with the kinematic 284 

wave equation, Cunge [1969] showed that the parameter k of the Muskingum method is 285 

the travel time of a flow wave through a river reach.  For a given river reach j of length 286 

jL where a flow wave of celerity jc travels, jk is obtained by dividing the length by the 287 

celerity of the wave, as shown in Equation (13): 288 

 289 

 
j

j

j

L
k

c
  (13) 290 

 291 

Although the routing model defined by Equation (1) allows for variability of the 292 

parameters ( , )j jk x  on a reach-to-reach basis, attempting to automatically estimate model 293 

parameters independently for all the reaches of a basin would be a costly undertaking.  294 

Therefore, the search for optimal parameters is limited to determining two multiplying 295 

factors k and x such that: 296 
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 297 

    ,    0.1
j

j k j x

j

L
k x

c
      (14) 298 

 299 

To minimize the influence of the initial guess on the optimization procedure, three 300 

different initial guesses for  ,k x  are used.  Out of the three corresponding optimal 301 

 ,k x  obtained, only the one couple leading to the minimum value of the cost function 302 

 is kept.  Therefore, the optimization procedure leads to only one optimal couple 303 

 ,k x  for a given basin in the network.  Note that – as a first step – x is here constant 304 

over a given basin on the grounds that the Muskingum method is relatively insensitive to 305 

this parameter [Koussis, 1978].  Some data available in NHDPlus (such as mean flow, 306 

mean velocity, slope, etc.) associated with available formulations for x [for example: 307 

Cunge, 1969; Orlandini and Rosso, 1998] could be used to improve the proposed 308 

method.  309 
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3. Application  310 

RAPID is designed to handle large routing problems.  Given a river network and 311 

connectivity information as well as lateral inflow to the river network, RAPID can run on 312 

any river network.  In this study, a framework for computation of river flow in the 313 

Guadalupe and San Antonio River Basins is developed that uses a one-way modeling 314 

framework with an atmospheric dataset, a land surface model and RAPID as the river 315 

model.  This section presents how the Guadalupe and San Antonio River Basins are 316 

described in the NHDPlus dataset, how a land surface model is used to provide lateral 317 

inflow to the river network, and how the meteorological forcing is prepared.     318 

3.1. RAPID used on NHDPlus 319 

There are a total of 5175 river reaches with known direction and connectivity within the 320 

NHDPlus description of the Guadalupe and San Antonio river basins (as shown in Figure 321 

2).  These 5175 reaches have an average length of 3.00 km and the average catchment 322 

defined around them is 5.11 km
2
 in area; all are used for this study.  Details on the fields 323 

used in the NHDPlus dataset including the unique identifier COMID used for all river 324 

reaches and their corresponding catchments; and on how NHDPlus is used with RAPID 325 

are given in Appendix B.  In this study, the vector of outflows in all river reaches Q  was 326 

arbitrarily initialized to the uniform value of 0 m
3
s

-1
 prior to running RAPID. 327 

3.2. Land surface model and coupling with RAPID 328 

Within this study, the core physical model governing the one-dimensional vertical fluxes 329 

of energy and moisture is the Community Noah Land Surface Model with Multi-Physics 330 

Options, hereafter referred to as Noah-MP [Niu, et al., 2010].  Noah-MP offers multiple 331 

options for choosing the modeling of certain physical phenomena.  In this study, the soil 332 
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moisture factor for stomatal resistance is of “Noah type” [Niu, et al., 2010] and the runoff 333 

scheme is from “SIMGM” [Niu, et al., 2007].  The soil column is 2 meter deep, below 334 

which is an unconfined aquifer.  In order to represent the characteristics of the structural 335 

soil over the model domain, the saturated hydraulic conductivity, which is determined by 336 

the soil texture data, is enlarged by factor of ten (through calibration).  The soil 337 

hydrology of Noah (soil moisture) is run at an hourly time step and runoff data are 338 

produced every three hours.  In this study, the state variables of Noah were initialized 339 

through a spin-up method. 340 

Noah-MP calculates the amount of water that runs off on and below the land surface.  341 

This quantity is used to provide RAPID with the water inflow from outside of the river 342 

network.  David et al. [2009] presented a coupling technique using a hydrologically 343 

enhanced version of the Noah LSM called Noah-distributed [Gochis and Chen, 2003] 344 

that allows physically-based modeling of the horizontal movement of surface and 345 

subsurface water from the land surface to a river reach.  In interest of a simpler coupling 346 

scheme, the work of David et al. [2009] has been modified.  In this study, a flux coupler 347 

between Noah and RAPID is developed using the catchments available in the NHDPlus 348 

dataset.   349 

The NHDPlus catchments contributing runoff to each river reach were determined as part 350 

of the NHDPlus development using a digital elevation model and its associated flow 351 

accumulation and flow direction grids.  These grids have a native resolution of 30 m.  352 

The map of catchments is available in NHDPlus in both gridded (at 30-m resolution) and 353 

vector formats in a shapefile.  Running a land surface model at a 30-m resolution is very 354 

resource demanding.  Therefore, a coarser resolution of 900 m cell size is chosen.  The 355 
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shapefile of NHDPlus catchment boundaries is converted to a grid of size 900 m.  Within 356 

this conversion process, the accuracy of the boundaries of the catchments is lowered but 357 

the catchment boundaries are reasonably respected and the computational cost of the land 358 

surface model calculations is reasonable.  For each 3-hour output of the Noah model, 359 

surface and subsurface runoff data is superimposed onto the catchment grid, and all 360 

runoff that corresponds to the catchment of each river reach is summed and used as the 361 

water inflow to the river reach.  Figure 5 shows the principle of the flux coupler in which 362 

the 900-m runoff data generated by the Noah model is superposed to the 900-m map of 363 

NHDPlus catchment COMIDs to determine the lateral inflow for NHDPlus reaches used 364 

by RAPID.  365 

Therefore, no horizontal routing is used between the land surface and the river network in 366 

the proposed scheme.  This differs from some other models that use runoff from a one-367 

dimensional model to force a river routing model.  For instance, the two dimensional 368 

wave equation is used in Gochis and Chen [2003] or the linear reservoir equation is used 369 

in Ledoux et al. [1989]. 370 

The coupling method used here can be adapted to any land surface model that computes 371 

surface and subsurface runoff on a grid.  This coupling technique is automated in a 372 

Fortran program.   373 

3.3. Meteorological forcing 374 

Land surface models need meteorological forcing in order to compute the water and the 375 

energy balance at the surface.  The Noah LSM requires seven meteorological parameters: 376 

precipitation, specific humidity, air temperature, air pressure, wind speed, downward 377 

shortwave and downward longwave radiation.  Hourly precipitation is obtained from 378 
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NEXRAD and downscaled from its original resolution (4.763 km) to 900 m using the 379 

method developed in Guan et al. [2009]. All other meteorological parameters are 380 

downloaded from the 3-hourly North American Regional Reanalysis (NARR) and 381 

converted from its original resolution (32.463 km) to 900 m using a simple triangle-base 382 

linear interpolation.  All meteorological data are prepared for four years (01 January 2004 383 

– 31 December 2007).   384 

 385 

386 
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4. Calibration and results for the Guadalupe and San Antonio River Basins 387 

The framework for computation of river flow that is developed in the previous section is 388 

used to calculate river flow in all 5175 river reaches of the Guadalupe and San Antonio 389 

River Basins for four years (01 January 2004 – 31 December 2007).  In this section, flow 390 

wave celerities in several sub-basins are estimated from measurements, the model 391 

parameters used in RAPID are presented, and flows computed are compared to observed 392 

flows.  Issues related to the time step used in RAPID and to the simulated wave celerities 393 

are also presented.   394 

4.1. Estimation of wave celerities 395 

The USGS Instantaneous Data Archive (http://ida.water.usgs.gov/ida/) provides 15-396 

minute flow data that can be used to determine the flow wave celerity.  Data at fifteen 397 

gaging stations within the two basins studied are obtained from IDA over two time 398 

periods (01 January 2004 – 30 June 2004 and for 01 January 2007 – 30 June 2007).  The 399 

maximum lagged cross-correlation between hydrographs at two consecutive gaging 400 

stations is used to determine the flow wave celerity.  The lagged cross-correlation  is a 401 

measure of similarity between two wave forms as a function of a lag time lag applied to 402 

one of them, as shown in Equation (15). 403 

 404 
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where aQ and bQ are the flows measured at the upstream and downstream station, 407 

respectively; and the summation is here made every 15 minutes for 6 months.  Figure 6 408 

shows the correlation as a function of increasing lag time between three different sets of 409 

consecutive gaging stations.  The lag time giving the maximum correlation is taken as the 410 

travel time travel for the flow wave between the two stations.  The travel times are 411 

estimated for eleven sets of two stations and are shown on Table 1.  Travel times of 0 s 412 

are reported at two stations, where the flow wave is probably too fast to be captured by 413 

15-minute measurements.  The wave celerity c is then computed using Equation (16) 414 

 415 

 
travel

d
c


  (16) 416 

 417 

where d is the distance between two stations.  The NHDPlus Flow Table Navigator Tool 418 

(http://www.horizon-systems.com/nhdplus/tools.php) is used to estimate the curvilinear 419 

distance between two stations along the NHDPlus river network that are shown on Table 420 

1.  The wave celerity has been estimated for eleven sub-basins within the Guadalupe and 421 

San Antonio river basins. Table 2 shows the values that are obtained for the two time 422 

periods considered, as well as their average.  Figure 7 shows the corresponding sub-423 

basins as well as the locations of all gaging stations.   424 

4.2. Parameters used in RAPID 425 

RAPID needs two vectors of parameters k  and x that can either be determined using 426 

physically-based equations, through optimization, or a combination of both.  In this 427 

study, daily stream flow data are obtained from the USGS National Water Information 428 

http://www.horizon-systems.com/nhdplus/tools.php
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System (http://waterdata.usgs.gov/nwis) in order to use the built-in parameter estimation.  429 

Within the Guadalupe and San Antonio river basins, NWIS has 74 gages that measure 430 

flow, 36 of them having full records of daily measurements the four years studied (01 431 

January 2004 – 31 December 2007).  These 36 stations are used for parameter estimation. 432 

Four sets of model parameters – denoted by the superscripts , ,  and     – are used in 433 

this study.  These sets of parameters are all based on Equation (14) which is used with a 434 

uniform wave celerity of 0 1 11 0.28c km h m s     throughout the basin or with the 435 

celerities jc determined based on the IDA lagged cross-correlation study. 436 

The first set, ( , )α αk x is obtained from parameter estimation shown in Equation (11) using 437 

the uniform wave celerity 0 10.28c m s  and the resulting values of the two multiplying 438 

factors k and x of Equation (14) are: 439 

 440 
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 442 

The parameters ( , )β βk x are determined without optimization using the celerities 443 

jc determined based on the IDA lagged cross-correlation study and set to:  444 

 445 

 
     ,     0.1

1               ,     1

j

j k j x

j

k x

L
k x

c

   

 

 

 

   

 

 (18) 446 

http://waterdata.usgs.gov/nwis


 24 

 447 

The third set of parameters ( , )γ γk x is obtained through optimization using the celerities 448 

jc determined based on the IDA lagged cross-correlation study and the resulting values 449 

are:   450 

 451 
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 453 

The optimization converges to a value of k that is 38% smaller than that estimated with 454 

the IDA lagged cross-correlation, suggesting that a faster flow wave in the river network 455 

produces better flow calculations.  In the present study, routing on the land surface from 456 

the catchment to its corresponding reach is not modeled.  Therefore, one would expect 457 

that the optimized flow celerity in the river network would be slower than that estimated 458 

from river flow observations, which is not the case here.  This suggests that runoff is 459 

either produced too slowly or too far upstream of each gage; maybe because runoff in 460 

land surface models is often calibrated based on a lumped value at the downstream gage 461 

of a basin, as was done here with Noah-MP.  Further details on the quality of runoff 462 

simulations are given in Section 4.4. 463 

The fourth set of parameters ( , )δ δk x is determined for a better match of celerity 464 

calculations, as explained later in this paper.   465 

4.3. Time step of RAPID simulation  466 
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Cunge [1969] showed that the Muskingum method is stable for any [0,0.5]x  and that 467 

the wave celerity computed by the Muskingum method approaches the theoretical wave 468 

celerity of the kinematic wave equation if the time step of the river routing equals the 469 

travel time of the wave (for 0.5x  ), as shown in Equation (20):  470 

  471 

 [1, ]          
j

j

L
j m c

t
 


 (20) 472 

 473 

However, both the celerity of flow and the length of river reaches vary along the network; 474 

and the model formulation of RAPID allows for only one unique value of the time step 475 

t be chosen.  In the Guadalupe and San Antonio River Basins, the mean length is 3 km 476 

and the median length is 2.4 km.  The probability density function and the cumulative 477 

density functions for the lengths of river reaches are shown in Figure 8.  The celerities 478 

estimated earlier are on the order of 12.5c m s  .  Using the median value of the reach 479 

length along with 12.5c m s  , Equation (20) gives 960t s  .  In order to have an 480 

integer conversion between the river routing time step and the land surface model time 481 

step (3 hours), a value of 900 15mint s   is chosen.    482 

4.4. Analysis of the quality of river flow computation 483 

For various model simulations, the average and the root mean square error (RMSE) of 484 

computed flow rate are calculated using daily data and are given in Table 3.  The Nash 485 

efficiency [Nash and Sutcliffe, 1970] is bounded by the interval  ,1  and gives an 486 

estimate of the quality of modeled river flow computations when compared to 487 
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observations; and is also given in Table 3.  An efficiency of 1 corresponds to a perfect 488 

model and 0 corresponds to a model producing the mean of observations. The results 489 

shown for a lumped model correspond to when runoff from Noah is accumulated at the 490 

gage directly without any routing.  The average values of flow in RAPID simulations are 491 

tied to the amount of runoff water calculated by the Noah LSM and the bias generated by 492 

the land surface model cannot be fixed by RAPID.  However, the internal connectivity of 493 

the NHDPlus river network is well translated in RAPID and mass is conserved within 494 

RAPID since the flow rates in the lumped simulation and in all four simulations of 495 

RAPID are the same.  Figure 9 shows the ratio between observed and lumped stream 496 

flow at 17 gages located across the Guadalupe and San Antonio River Basins.  This ratio 497 

is around unity downstream of the Guadalupe and San Antonio Rivers, but is greater than 498 

7 upstream; suggesting that runoff is most likely overestimated at the center of the basin.  499 

Additionally, runoff is largely underestimated at two stations just downstream of the 500 

outcrop area of the Edwards Aquifer: the Comal River at New Braunfels and the San 501 

Marcos River at San Marcos.  These stations measure large average stream flow 502 

(respectively 10.59 m
3
/s and 5.9 m

3
/s) although draining a relatively small area 503 

(respectively 336 km
2
 and 129 km

2
), and are actually two of the largest springs in Texas.  504 

These flows are much larger than the lumped runoff (respectively 0.67 m
3
/s and 0.26 505 

m
3
/s), which is expected because the modeling framework presented herein does not does 506 

not explicitly simulate aquifers. 507 

However, the RAPID simulations ( , )α αk x , ( , )β βk x and ( , )γ γk x  lead to a smaller RMSE 508 

and a higher Nash Efficiency than the lumped runoff.  This shows that an explicit river 509 
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routing scheme with carefully-chosen parameters allows obtaining better stream flow 510 

calculations than a simple lumped runoff scheme, as expected.   511 

Within the different RAPID simulations, the set of parameters ( , )γ γk x gives the best 512 

results for RMSE and Nash efficiency, followed by ( , )β βk x , ( , )α αk x and ( , )δ δk x .  513 

Therefore, a greater spatial variability in the values of k contributes to the quality of 514 

model results, and the built-in optimization in RAPID further enhances these model 515 

results.  An example hydrograph for the Guadalupe River near Victoria TX is shown in 516 

Figure 10, and is computed using ( )γ γk ,x . 517 

4.5. Comparison between estimated and computed wave celerities 518 

In order to assess the capacity of the modeling framework to reproduce surface flow 519 

dynamics, the celerity of the flow wave in outputs from RAPID are computed.  Fifteen-520 

minute river flow is computed with RAPID, and the lagged cross-correlation presented 521 

earlier is used to calculate the wave celerity within the RAPID simulation.  Table 2 shows 522 

the celerities that are computed from RAPID outputs.  In the first three sets of model 523 

parameters used, the wave celerities simulated in RAPID are greater than those observed.  524 

One can also notice than even for ( , )β βk x , the model-simulated celerities are different 525 

than the observed celerities which are used to determine the vector βk itself.  This was 526 

predicted by Cunge [1969] who showed that the difference between the celerity of the 527 

kinematic wave equation and that computed using the Muskingum method is a function 528 

of both x and the quotient jt L .  Only the specific values 0.5x  and t verifying 529 

j jt L c  allow obtaining the same celerity.  Furthermore, the work herein is done in a 530 
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river network, and the celerity estimated between two points does not correspond only to 531 

the main river stem but rather to a combination of all river reaches present in the network 532 

in between the two points.  The ratio of the average celerities from RAPID using 533 

( , )β βk x over the average observed celerities is 1.54.   As a final experiment, a new set of 534 

parameters ( , )δ δk x is created to account for the faster waves in RAPID.     535 

 536 
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 538 

Table 2 shows that the parameters ( , )δ δk x allow for wave celerities that are closer to the 539 

observed ones than the celerities obtained with the other sets of parameters.  The average 540 

flow wave celerity over the 11 calculations in RAPID is within 3% of that estimated with 541 

IDA flows.  Unfortunately, these closer wave celerities also lead to a decrease in the 542 

quality of RMSE and Nash Efficiency.  Therefore, model celerities closer to celerities 543 

estimated from observations can be obtained, but generally deteriorate other statistics of 544 

calculations.  Again, this might be due to runoff being produced too slowly or too far 545 

upstream of each gage. 546 

4.6 Potential improvement of spatial variability in RAPID parameters 547 

In the work presented here, the parameter x is spatially and temporally constant over the 548 

modeling domain and the parameter k is temporally constant but varies at the river reach 549 

level based on the length of each reach and on the celerity of the flow wave going 550 
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through it.  Flow wave celerities are estimated for 11 sub-basins based on flow 551 

observations and the spatial variability of k presented in this study is therefore partly 552 

limited by the size of the sub-basins used for flow wave estimation.  However such an 553 

approach for computation of RAPID parameters allows taking into account wave 554 

celerities that are estimated based on observations made at high temporal resolution as 555 

well as verifying the modeling framework through reproduction of estimated wave 556 

celerities.  In a separate study applying RAPID to all rivers of Metropolitan France, 557 

David et al. [2011] present a physically-based formulation of k and a sub-basin 558 

optimization for both k and x , therefore allowing further spatial variability of 559 

parameters.  David et al. [2011] show that using a combination of reach length, river bed 560 

slope and basin residence time for the parameter k and applying the optimization 561 

procedure to sub-basins both improve the efficiency and the RMSE of RAPID flow 562 

computations.  Such work could be adapted to the study herein based on information 563 

provided in the NHDPlus dataset – for example reach length, mean annual flow velocity 564 

and river bed slope – which would be advantageous when applying RAPID to domains 565 

larger than the Guadalupe and San Antonio River Basins where estimation of wave 566 

celerities everywhere may require excessive amounts of computations.   567 

4.7 Statistical Significance 568 

Changes in the routing procedure – i.e. no routing or routing using various RAPID 569 

parameters – lead to various changes in the values of efficiency and RMSE, as shown in 570 

Section 4.2.  The statistical significance of the changes can be assessed in order to 571 

determine whether or not various routing experiments are effective.  For two different 572 

routing procedures used, the efficiency (respectively RMSE) at one gage can be 573 
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compared to the efficiency (respectively RMSE) at the same gage, although variability of 574 

efficiency (respectively RMSE) between independent gages can be large.  Therefore, 575 

there is a logical pairing of efficiency and RMSE calculated at a given gage between two 576 

experiments and hence matched pair tests are appropriate to assess the statistical 577 

significance.  Several common options are available for matched pair tests (with 578 

increasing level of complexity): the sign test, the Wilcoxon signed-ranked test [Wilcoxon, 579 

1945] and the paired t-test.  The sign test has no assumption on the shape of probability 580 

distributions of samples used but is quite simple since only the sign of differences 581 

between two paired samples is accounted for.  The Wilcoxon signed-ranks test 582 

incorporates the magnitude of differences between paired samples under the assumption 583 

that differences between pairs are symmetrically distributed.  The paired t-test may be 584 

used when the differences between pairs are known to be normally distributed.  The 585 

assumption of the Wilcoxon signed-ranks test (symmetry) is not as restrictive as that of 586 

the paired t-test (normality).  In case where small sample sizes are used – as done in this 587 

study – testing for symmetry or normality may not be meaningful.  Additionally, 588 

violations of the symmetry assumption in the Wilcoxon signed-ranks test have minimal 589 

influence on the corresponding p-values [Helsel and Hirsch, 2002].  These two reasons 590 

motivate the use of the Wilcoxon signed-ranks test in the study herein.  The null 591 

hypothesis 0H for this test is that the median of differences between two populations is 592 

zero.  The purpose of changes in the routing procedure being to improve results by 593 

increasing the efficiency and decreasing the RMSE, alternate hypotheses can assume that 594 

one population tends to be generally either larger ( 1H ) or smaller ( 2H ) than the other.  595 
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Therefore, p-values corresponding to one-sided tests are used in this study.  Low 596 

significance levels mean that 0H is unlikely, hence that a significant change is observed.  597 

The Wilcoxon signed-ranks test sorts pairs with nonzero difference based on the absolute 598 

value of the differences and sums all positive (respectively negative) ranks in a variable 599 

named W  (respectively W  ).  The corresponding p-values vary with the number of 600 

nonzero differences and with the value of W  and W  .  Fortran programs were created to 601 

compute the exact value of the test statistic (not using a large-sample approximation) as 602 

well as the corresponding p-values.  Table 4 shows the results of the Wilcoxon signed-603 

ranks test for both efficiency and RMSE and for several paired experiments using two 604 

different routing procedures.  The same 15 stations named on Figure 7 and used in Table 605 

3 serve here for statistical significance assessment and the corresponding 15 values of 606 

efficiency and of RMSE are utilized as sample values.   607 

Several conclusions can be drawn from Table 4.  First, the Wilcoxon signed-ranks tests 608 

comparing results obtained by RAPID with parameters  ,  and   to a lumped runoff 609 

approach show that the null hypothesis can be rejected for a one-sided test at a 10% level 610 

of significance in all cases, except for the efficiency between RAPID with  parameters 611 

and a lumped approach at a 13% level of significance.  All these tests validate that the 612 

improvements mentioned in Section 4.2 (increased efficiency and decreased RMSE) are 613 

statistically significant and confirm that an explicit river routing scheme allows obtaining 614 

better stream flow calculations than a simple lumped runoff scheme, as expected.  615 

Second, comparisons between RAPID using  and  parameters show that sub-basin 616 

variability in wave celerities is advantageous to a spatially uniform wave celerity 617 
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approach at a 19% level of significance for efficiency and at a 7% level for RMSE.  618 

Third, comparisons between RAPID using  and  parameters confirms that wave 619 

celerities close to those determined from observations deteriorate results at a 3% level of 620 

significance for both efficiency and RMSE.  Finally, one cannot conclude on the 621 

statistical significance of the comparison between RAPID using  and  parameters 622 

concerning the improvement of optimization procedure.  However, since RAPID 623 

using parameters produce better average values than RAPID using  parameters and 624 

since the statistical significance of RAPID using parameters compared to a lumped 625 

approach is better than that of RAPID using  parameters compared to lumped approach, 626 

the optimization can still considered advantageous. 627 

 628 

629 
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5. Synthetic study of the Upper Mississippi River Basin, speedup of parallel 630 

computations 631 

Through the use of mathematical and optimization libraries that run in a parallel 632 

computing environment, RAPID can be applied on several processing cores.  The work 633 

presented above focuses on the Guadalupe and San Antonio River basins together 634 

forming a river network with 5,175 river and water body reaches, which size do not 635 

justify the use of parallel computing.  However, all the tools and datasets used are 636 

available for the Contiguous United States where the NHDPlus dataset has about 3 637 

million reaches.  Adapting the proposed framework to simultaneously compute flow and 638 

volume of water in all mapped water bodies of the contiguous United States would 639 

require solving matrix equations of size 3 million.  For such a large scientific problem, 640 

parallel computing can be helpful if speedup can be achieved, i.e. if increasing the 641 

number of processing cores decreases the total computing time.   642 

5.1 Synthetic study used for assessment of parallel performance  643 

As a proof of concept, the evaluation of the parallel computing capabilities of RAPID is 644 

presented here using the Upper Mississippi River Basin (shown on Figure 3) which has 645 

182,240 river and water body reaches available as Region 07 in the NHDPlus dataset.  646 

The number of computational elements for the Upper Mississippi River Basin is about 35 647 

times larger than the combination of the Guadalupe and San Antonio River Basins, and 648 

about 16 times smaller than the entire Contiguous United States.  The river network of 649 

the Upper Mississippi River Basin is fully interconnected, all water eventually flowing to 650 

a unique outlet. 651 
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In order to assess the performance of RAPID, the same problem consisting in the 652 

computation of river flow in all reaches of the Upper Mississippi River Basin, over 100 653 

days, at a 900-second time step is solved for all results reported in Section 5.3.  For this 654 

performance study, the runoff data symbolized by vector e
Q in Equation (1) are 655 

synthetically generated and set to  1 m
3
 every 3 hours for all reaches and all time steps 656 

and the vectors of parameters k  and x  are temporally and spatially uniform as shown in 657 

Equation (22): 658 
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5.2 Basics of solving a linear system on computers 662 

Numerically solving a linear system is typically an iterative process mainly involving 663 

two-steps at each iteration: preconditioning followed by applying a linear solver.  664 

Preconditioning is a procedure that transforms a given linear system through matrix 665 

multiplication into one that is more easily solved by linear solvers, hence decreasing the 666 

total number of iterations to find the solution and saving time.  If the linear system is 667 

triangular, preconditioning is sufficient to solve the problem, and a linear solver is not 668 

needed.  In a parallel computing environment, a matrix is separated into diagonal and off-669 

diagonal blocks, each processing core being assigned one diagonal block and its adjacent 670 

off-diagonal block.  Solving a linear system in parallel is made using blocks and parallel 671 

preconditioning is determined based on elements in the diagonal blocks.  Preconditioning 672 

is sufficient to solve a given parallel linear system if the system is diagonal by blocks – 673 
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i.e. all off-diagonal blocks are empty – and if each diagonal block is triangular; in most 674 

other cases iterations of preconditioning and applying a linear solver are needed.   675 

5.3 Parallel speedup of the synthetic study 676 

For comparison purposes, the traditional Muskingum method was also implemented in 677 

RAPID in order to assess the performance of the matrix-based Muskingum method 678 

developed herein.  Figure 11 shows a comparison of computing time between the 679 

traditional Muskingum method shown in Equation (4) and applied consecutively from 680 

upstream to downstream and the Matrix-based Muskingum method used in RAPID.  681 

Only one processor in used for all results in Figure 11 but the computation method 682 

differs.  The matrix  1I C N  being triangular (see Appendix B), solving the linear 683 

system of Equation (1) can be limited to matrix preconditioning if using only one 684 

processing core.  In a parallel computing environment,  1I C N is separated in blocks, 685 

each diagonal block corresponding to a sub-basin.  With several processing cores, matrix 686 

preconditioning would be sufficient to solve Equation (1) if  1I C N  could be made 687 

diagonal by blocks, each diagonal block being a triangular matrix.  In a river network that 688 

is fully interconnected such as that of the Upper Mississippi River Basin  1I C N  689 

cannot be made diagonal by blocks because the connectivity between adjacent sub-basins 690 

would always appear as an element in an off-diagonal block matrix (cf. Equation (23) 691 

when i and j are connected but belong to different sub-basins).  This limitation would 692 

not apply if one was to compute the Mississippi River basin on one (or on one set of) 693 

processing core(s) and the Colorado River Basin on another (or on another set of) 694 

processing core(s) for example.  Therefore, when solving Equation (1) on several 695 
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processing cores for the Upper Mississippi River Basin, preconditioning is not sufficient 696 

and iterative methods need be used.  An iterative method implies several computations 697 

including preconditioning, matrix-vector multiplication and calculation of residual norm 698 

at each iteration.   699 

On one processing core, solving the matrix-based Muskingum method with 700 

preconditioning only is about twice as long as solving the traditional Muskingum method, 701 

as shown in Figure 11.  This extra time can be explained because the computation of the 702 

right-hand-side of Equation (1) is approximately as expensive as solving the traditional 703 

Muskingum method and approximately as expensive as preconditioning.  However, the 704 

computation of the right-hand-side is done only once per time step regardless of the 705 

number of iterations if using an iterative linear solver and scales very well because all 706 

operations require no communication except for the product N Q which involves little 707 

communication.  Figure 11 also shows the computing time when using an iterative solver.  708 

The sole purpose of the first iteration in an iterative solver is to determine an initial 709 

residual error that is to be used as a criterion for convergence in following iterations.  710 

This first iteration mainly involves preconditioning and calculation of a residual norm.  711 

On one processing core only, the second iteration converges because preconditioning is 712 

sufficient.  The two iterations and calculations of norms explain the doubling of 713 

computing time between preconditioning only and an iterative solver on one unique 714 

processing core that is shown in Figure 11.  Overall, the overhead created by an iterative 715 

solver over the traditional Muskingum method is about a factor of four.  Again, both 716 

preconditioning and calculation of residual norms scale well although the latter can be 717 

limited by communications.  Therefore, the main issue with using a matrix method is the 718 
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number of iterations needed before the iterative solver converges because all other 719 

overhead dissipates with an increasing number of processing cores used.  Surprisingly, 720 

the number of iterations needed for the iterative solver to converge increases much less 721 

quickly than the number of processing cores used, hence allowing to gain total 722 

computation time with increased number of processing cores and to produce results faster 723 

than the traditional Muskingum method as shown on Figure 12.  This suggests that even 724 

in a basin where all river reaches are interdependent, some upstream and downstream 725 

sub-basins can be computed separately in an iterative scheme given that they are distant 726 

enough from each other.  The physical explanation is that flow waves are not fast enough 727 

to travel across the entire basin within one 15-minute time step.  This de-coupling of 728 

computations could not be achieved by using the traditional version of the Muskingum 729 

method, since computations are not iterative and have to be performed going from 730 

upstream to downstream.  Figure 12 shows that the total computing time with an iterative 731 

matrix solver on 16 processing cores is almost a third of the time needed by the 732 

traditional Muskingum method and keeps decreasing further with more processing cores.  733 

However, as the number of cores increase, the relative importance of the computation of 734 

residual norms within the iterative solver increases up to taking almost half of the solving 735 

time, as shown in Figure 12.  This limitation will most likely disappear as computer 736 

technology advances and communication time decreases.  One should note that the output 737 

files match on a byte-to-byte basis and hence model computations are strictly the same 738 

regardless of the method used; i.e. traditional Muskingum method or Matrix-based 739 

Muskingum method, iterative or not.  This strict similarity between output files and the 740 

slow increase in iterations are also verified for the study of the Guadalupe and San 741 
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Antonio River Basins presented above; hence the use of synthetic data and simplified 742 

model parameters does not influence the trends in speedup.   743 

Computing loads are balanced for all simulations in this study, i.e. the number of river 744 

reaches assigned to each processing core is almost identical across cores.  Figure 13 745 

shows how sub-basins of the Upper Mississippi River Basin are divided among 746 

processing cores as well as the longest river path of the basin.  The longest path goes 747 

through 8 sub-basins on 8 cores, and 14 sub-basins on 16 cores.  If one were to apply the 748 

traditional Muskingum method on several processing cores with the division in sub-749 

basins shown in Figure 13, computations would have to be made sequentially from 750 

upstream to downstream, each core having to wait for its upstream core to be done prior 751 

to starting its work.  Hence, assuming that the total computing time can be evenly divided 752 

by the total number of nodes and neglecting communication overhead, one could only 753 

hope to decrease computing time by a factor of 8/8 1  (no gain) for 8 cores and by a 754 

factor of 16/14 1.14  for 16 cores.  The iterative matrix solver provides much better 755 

results (a decrease by a factor of 2.90  for 16 cores).   756 

River flow is a causal phenomenon that mainly goes downstream.  Therefore, when using 757 

an upstream-to-downstream computation scheme and unless dealing with completely 758 

separated river basins, one cannot expect to obtain perfect speedup i.e. decreasing of 759 

computing time by a factor equal to the number of cores.  However, today’s 760 

supercomputers having tens of thousands of computing cores, one could leverage such 761 

power to save human time.  Additionally, the matrix method developed here can be 762 

directly applied to a combination of independent river basins in which case speedup 763 

would be ideally perfect.  Furthermore, matrix methods such as the one developed here 764 
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could be adapted to more complex river flow equations – like variable-parameter 765 

Muskingum methods or schemes allowing for backwater effects – in order to save total 766 

computing time.  Finally, the splitting up into sub-basins used here is very simple and 767 

optimizing this partition by limiting connections between sub-basins or taking into 768 

account flow wave celerities relatively to basin sizes could respectively help limit the 769 

number of communications and the number of iterations in the linear system solver.   770 

771 
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Conclusions 772 

NHDPlus is a GIS dataset that describes the networks of mapped rivers and water bodies 773 

of the United States.  One of the main advantages of NHDPlus is that connectivity 774 

information for the river networks is available.  Therefore, this dataset offers possibilities 775 

for the development of river routing models that simultaneously calculate flow and 776 

volume of water in all water bodies of the nation.  Furthermore, the USGS National 777 

Water Information System has thousand of gages located on the NHDPlus network which 778 

can be used to assess the quality of such river models across river basins (not only at 779 

basin outlets).  The research presented in this paper investigates how to develop a river 780 

network model using NHDPlus networks and how to assess model computations and 781 

optimize model parameters with USGS stream flow measurements.  All tools and 782 

datasets used herein are available for the contiguous United States, but this research 783 

addresses two smaller domains.  The combination of the Guadalupe and San Antonio 784 

River Basins in Texas is used in a 4-year case study, and the Upper Mississippi River 785 

Basin is used in a speedup study with synthetic data.  Graph theory is applied to a river 786 

network to create a network matrix that is used to develop a vector-matrix version of the 787 

Muskingum method and applied in a new river network model called RAPID.  It has been 788 

shown that a GIS-based hydrographic dataset can be used as the river network for a river 789 

model to compute flow in large networks of thousands of reaches, including ungaged 790 

locations.  A simple flux coupler for connecting a land surface model with an NHDPlus 791 

river network is presented.  No horizontal routing of flow from the land surface to the 792 

river network is used in this study, and such an addition would help improve model 793 

calculations.   An inverse method is developed to estimate model parameters in RAPID 794 
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using available gage measurements located across the river basins.  Wave celerities are 795 

estimated in several locations of the basin studied.  RMSE and Nash efficiency of 796 

computed flow rates in four RAPID simulations are compared with a basic lumped model 797 

where runoff is directly accumulated at the gage, with gage measurements and among 798 

themselves.  RAPID produces better RMSE and Nash efficiency than the lumped model 799 

and the improvements are statistically significant.  Although the quality of RAPID 800 

calculations is tied to the quantity of runoff generated by the land surface model that 801 

provides runoff, mass is conserved within RAPID since the average flow rate is 802 

conserved.  Spatial variability of parameters enhances the RMSE and Nash efficiency of 803 

RAPID calculations.  Wave celerities are reproduced within a few percents with the 804 

model proposed, although wave celerities closer to those estimated from gage data 805 

generally deteriorate the other statistics of calculations.  This deterioration might be due 806 

to runoff being produced too slowly or too far upstream of each gage.  The parameters 807 

used in this study are simple, but could be improved based on information available in 808 

NHDPlus such as slope, mean flow and velocity of all reaches or by using modified 809 

versions of the Muskingum method with time-variable parameters although the latter 810 

would necessitate modification of the optimization procedure developed herein.  The 811 

matrix formulation in RAPID can be transferred in a parallel computing environment.  A 812 

synthetic study of the Upper Mississippi River Basin shows that although a large initial 813 

overhead is added by the matrix method, this overhead decreases with increasing number 814 

of processing cores.  More importantly, an iterative matrix solver allows de-coupling of 815 

sub-basins – even if the main river basin is fully interconnected – hence permitting 816 

computation of sub-basins separately if they are distant enough from each other.  As 817 
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consequence, while producing the exact same results as the traditional Muskingum 818 

method, the matrix-based Muskingum method decreases the total computing time when 819 

run on several processing cores.  Such a gain in computing time would be highly 820 

beneficial if addressing larger scales, like the entire Contiguous United States which 821 

would represent a square matrix of size 3 million.   822 

823 
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Appendix A – Implementation of RAPID 839 

The river network routing model is coded in Fortran 90 using the Portable, Extensible 840 

Toolkit for Scientific Computation (PETSc) mathematical library [Balay, et al., 1997; 841 

Balay, et al., 2008; Balay, et al., 2009] and the Toolkit for Advanced Optimization 842 

(TAO) optimization library [McInnes, et al., 2009].  PETSc can be used to create 843 

matrices and vectors and to apply a variety of linear operations such as matrix-vector 844 

multiplications or linear system solving.  TAO offers multiple methods for unconstrained 845 

and constrained optimization.  Both PETSc and TAO are built upon the Message Passing 846 

Interface [Dongarra, et al., 1994] – a standard for communications between processing 847 

cores – and  can seamlessly be run in a sequential or a parallel computing environment.  848 

In this study, sparse matrices are stored using the sequential AIJ format when using one 849 

processing core and the MPIAIJ format when using several cores.  Linear systems are 850 

solved within PETSc either by preconditioning only or with preconditioning associated to 851 

a Richardson method.  The preconditioning methods used herein are ILU on one 852 

processing core, and bloc Jacobi on several cores.  The optimization method used in TAO 853 

is a line search algorithm called the Nelder-Mead method.  The netCDF file format [Rew 854 

and Davis, 1990] is utilized for both inputs and outputs.  RAPID is run on single- and 855 

multiple-processor workstations as well as on Lonestar 856 

(http://www.tacc.utexas.edu/resources/hpcsystems/#lonestar), a supercomputer running at 857 

the Texas Advanced Computing Center (TACC).  This Dell Linux Cluster has 1,460 858 

nodes, each node with 8 GB of memory and with two dual-core sockets.  Lonestar has a 859 

total of 5,840 computing cores.  860 

861 

http://www.tacc.utexas.edu/resources/hpcsystems/#lonestar
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Appendix B – NHDPlus used in RAPID 862 

NHDPlus [USEPA and USGS, 2007] is a geographic information system (GIS) dataset 863 

for the hydrography of the United States.  This dataset provides the mapped streams and 864 

rivers as well as the catchments that surround them.  NHDPlus is based on the medium 865 

resolution 1:100,000 scale national hydrographic dataset (NHD).  One of the main 866 

improvements in NHDPlus is the network connectivity available in the value added 867 

attributes (VAA) table for the river network.  Each NHDPlus reach in the national 868 

network is assigned a unique integer identifier called COMID.  NHDPlus catchments also 869 

have a COMID, the same COMID being used for the reach and its local contributing 870 

catchment.  Nodes are located at the two ends of each NHDPlus river reach.  A unique 871 

integer identifier is given to all nodes in the national river reach network.  The VAA table 872 

includes FromNodeand ToNode fields that give which node is upstream and which is 873 

downstream of a given reach.  Two reaches that are connected in a river network share a 874 

node, and the reach j flows into the reach i  if    ToNode j FromNode i .  The 875 

NHDPlus connectivity between reaches, catchments and nodes is illustrated for three 876 

catchments of the Guadalupe and San Antonio basins in Figure 14. 877 

In its current formulation, RAPID can handle several upstream reaches but only one 878 

unique downstream reach.  However, divergences exist in mapped river networks, as they 879 

do in NHDPlus.  The VAA table offers a Divergence field to each of the river reaches 880 

(with values of 0 – not part of a divergence, 1 – main path of a divergence, 2 – minor path 881 

of a divergence).  In the current formulation of RAPID, the main part of a divergence 882 

carries all the upstream flow.  The FromNode , ToNode  and Divergence fields are used to 883 
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populate the network matrix given in Equation (5), by means of the following logical 884 

statement: 885 

 886 

      2

,( , ) [1, ] ,     2 1i ji j m if FromNode i ToNode j and Divergence j N            (23) 887 

 888 

where ,i jN is the element of N located at row i  and column j .  Therefore, upstream to 889 

downstream connection is conserved if the downstream reach is the major branch of a 890 

divergence or if it is not part of a divergence at all, but the connection is not made for a 891 

minor branch of a divergence.   892 

The VAA table also has information on the relative location – upstream or downstream – 893 

of NHDPlus reaches.  This information is available in a field called Hydroseq consisting 894 

of a unique integer attributed to all NHDPlus reaches.  Sorting the Hydroseq field in 895 

decreasing order prior to computations guarantees that all upstream elements are 896 

computed prior to solving the flow equations for any given river reach.  This organization 897 

of computations allows the matrix  1I C N of Equation (1) to be made lower triangular 898 

which increases the ease and speed of solving this linear system.   899 

900 
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Table 1  Travel time (s) for the flow waves estimated using the lagged cross-correlation in the Guadalupe and San 

Antonio River Basins, both from IDA measurements and from RAPID model runs; and distance (km) between gaging stations 

  

Location of the two consecutive streamflow gages 

Ingram - 
Kerrville 

Kerrville 
- 

Comfort 

Comfort - 
Spring 
Branch 

Sattler - 
Gonzales 

Gonzales - 
Cuero 

Cuero - 
Victoria 

Schroeder - 
Victoria 

Bandera - 
Macdona 

Macdona 
- 

Elmendorf 

Elmendorf - 
Falls City 

Falls City - 
Goliad 

Travel 
time (s) 

from IDA 

2004 7200 18900 60300 162900 132300 70200 0 20700 0 126000 162000 

2007 6300 18900 59400 131400 108900 70200 8100 37800 15300 91800 126000 

average 6750 18900 59850 147150 120600 70200 4050 29250 7650 108900 144000 

Travel 
time (s) 

from 
RAPID 

outputs 

RAPID (k,x) 6300 8100 35100 90000 29700 38700 5400 50400 29700 22500 52200 

RAPID (k,x) 6300 8100 46800 128700 84600 36000 4500 24300 8100 91800 124200 

RAPID (k,x) 4500 6300 27900 88200 60300 31500 2700 15300 6300 58500 80100 

RAPID (k,x) 9000 9000 72900 174600 117900 75600 5400 37800 16200 140400 193500 

Distance (km) 13.77 40.40 100.85 203.50 110.72 100.71 24.44 116.36 71.73 79.16 137.16 
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Table 2 Wave celerities (m/s) estimated using the lagged cross-correlation in the Guadalupe and San Antonio River 

Basins, both from IDA measurements and from RAPID model runs 

Wave celerity (m/s) 

Location of the two consecutive streamflow gages 

Ingram - 
Kerrville 

Kerrville 
- 

Comfort 

Comfort 
- Spring 
Branch 

Sattler - 
Gonzales 

Gonzales 
- Cuero 

Cuero - 
Victoria 

Schroeder 
- Victoria 

Bandera 
- 

Macdona 

Macdona 
- 

Elmendorf 

Elmendorf 
- Falls City 

Falls 
City - 

Goliad 

from 
IDA 

2004 1.91 2.14 1.67 1.25 0.84 1.43 ∞ 5.62 ∞ 0.63 0.85 

2007 2.19 2.14 1.70 1.55 1.02 1.43 3.02 3.08 4.69 0.86 1.09 

average 2.05 2.14 1.69 1.40 0.93 1.43 3.02 4.35 4.69 0.75 0.97 

from 
RAPID 

outputs 

RAPID (k,x) 2.19 4.99 2.87 2.26 3.73 2.60 4.53 2.31 2.41 3.52 2.63 

RAPID (k,x) 2.19 4.99 2.16 1.58 1.31 2.80 5.43 4.79 8.85 0.86 1.10 

RAPID (k,x) 3.06 6.41 3.61 2.31 1.84 3.20 9.05 7.61 11.38 1.35 1.71 

RAPID (k,x) 1.53 4.49 1.38 1.17 0.94 1.33 4.53 3.08 4.43 0.56 0.71 
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Table 3 Comparison of observed and simulated flows at fifteen locations within the Guadalupe and San Antonio River 

Basins  

 
Average daily stream flow (m3/s) Flow ratio 

RMS error (m3/s) using daily 
averages Nash efficiency using daily averages 

Gaging station Observed Lumped 

RAPID 

(k,x) 

RAPID 

(k,x) 

RAPID 

(k,x) 

RAPID 

(k,x) Observed/Lumped Lumped 

RAPID 

(k,x) 

RAPID 

(k,x) 

RAPID 

(k,x) 

RAPID 

(k,x) Lumped 

RAPID 

(k,x) 

RAPID 

(k,x) 

RAPID 

(k,x) 

RAPID 

(k,x) 

Johnson Ck nr Ingram, TX 1.16 0.06 0.06 0.06 0.06 0.06 19.33 4.41 4.41 4.41 4.41 4.41 -0.05 -0.05 -0.05 -0.05 -0.05 

Guadalupe Rv at Kerrville, TX 4.15 0.14 0.14 0.14 0.14 0.14 29.64 15.04 15.04 15.04 15.04 15.04 -0.06 -0.05 -0.05 -0.05 -0.06 

Guadalupe Rv at Comfort, TX 9.97 0.81 0.81 0.81 0.81 0.81 12.31 26.57 26.51 26.51 26.52 26.53 -0.06 -0.06 -0.06 -0.06 -0.06 

Guadalupe Rv nr Spring Branch, 
TX 19.74 5.91 5.91 5.91 5.91 5.91 3.34 42.09 43.06 43.48 42.72 44.80 0.26 0.23 0.21 0.24 0.16 

Guadalupe Rv at Sattler, TX 22.04 6.62 6.62 6.62 6.62 6.62 3.33 40.08 39.85 39.77 39.94 39.57 -0.06 -0.04 -0.04 -0.05 -0.03 

Guadalupe Rv at Gonzales, TX 64.28 23.27 23.27 23.27 23.27 23.27 2.76 79.83 80.93 86.44 80.40 93.78 0.45 0.44 0.36 0.45 0.25 

Guadalupe Rv at Cuero, TX 73.23 52.63 52.62 52.61 52.62 52.60 1.39 76.86 56.41 64.91 55.52 82.74 0.59 0.78 0.71 0.79 0.53 

Guadalupe Rv nr Victoria 80.96 61.95 61.93 61.92 61.93 61.91 1.31 93.97 70.11 65.07 68.05 89.06 0.54 0.75 0.78 0.76 0.59 

Coleto Ck at Arnold Rd nr 
Schroeder, TX 3.45 8.78 8.78 8.78 8.78 8.78 0.39 15.43 15.44 15.45 15.46 15.44 0.03 0.03 0.03 0.02 0.03 

Coleto Ck nr Victoria, TX 3.99 13.72 13.72 13.72 13.72 13.72 0.29 21.82 22.61 22.46 22.26 22.65 0.10 0.03 0.05 0.06 0.03 

Medina Rv at Banderas, TX 5.30 0.75 0.75 0.75 0.75 0.75 7.07 10.78 10.77 10.77 10.77 10.77 0.05 0.05 0.05 0.05 0.05 

Medina Rv nr Macdona, TX 8.73 2.09 2.09 2.09 2.09 2.09 4.18 12.89 12.74 12.72 12.74 12.72 0.29 0.31 0.31 0.30 0.31 

San Antonio Rv nr Elmendorf, 
TX 25.05 7.95 7.95 7.95 7.95 7.95 3.15 39.91 39.27 39.23 39.41 39.16 0.34 0.36 0.36 0.36 0.37 

San Antonio Rv nr Falls City, TX 25.01 12.36 12.36 12.36 12.36 12.36 2.02 33.23 31.13 30.63 31.26 32.00 0.45 0.52 0.53 0.51 0.49 

San Antonio Rv at Goliad, TX 37.54 34.96 34.95 34.95 34.95 34.94 1.07 42.34 37.73 34.58 36.92 39.10 0.56 0.65 0.71 0.67 0.63 

Mean 25.64 15.47 15.46 15.46 15.46 15.46   37.02 33.73 34.10 33.43 37.85 0.23 0.26 0.26 0.27 0.22 
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Table 4  Results of the Wilcoxon signed-ranks test applied to fifteen stations for efficiency and RMSE and to various 

routing procedures 

Efficiency 
       

x y 
Number of non-
zero differences Total rank 

W+ (computed 
for y-x) 

p-value 
corresponding to 
W+ 

W- (computed 
for y-x) 

p-value 
corresponding to 
W- 

Lumped runoff RAPID (k,x) 11 66 51.0 0.06152 15.0 0.94922 

Lumped runoff RAPID (k,x) 11 66 47.0 0.12012 19.0 0.89697 

Lumped runoff RAPID (k,x) 11 66 51.0 0.06152 15.0 0.94922 

Lumped runoff RAPID (k,x) 10 55 22.5 0.70459 32.5 0.33008 

RAPID (k,x) RAPID (k,x) 10 55 37.0 0.18750 18.0 0.83887 

RAPID (k,x) RAPID (k,x) 10 55 28.5 0.48047 26.5 0.55811 

RAPID (k,x) RAPID (k,x) 12 78 13.0 0.98291 65.0 0.02124 

        
RMSE 

       

x y 
Number of non-
zero differences Total rank 

W+ (computed 
for y-x) 

p-value 
corresponding to 
W+ 

W- (computed 
for y-x) 

p-value 
corresponding to 
W- 

Lumped runoff RAPID (k,x) 13 91 25.5 0.92145 65.5 0.08966 

Lumped runoff RAPID (k,x) 13 91 26.0 0.91614 65.0 0.09546 

Lumped runoff RAPID (k,x) 13 91 25.0 0.92676 66.0 0.08386 

Lumped runoff RAPID (k,x) 13 91 42.5 0.59345 48.5 0.43299 

RAPID (k,x) RAPID (k,x) 11 66 15.0 0.94922 51.0 0.06152 

RAPID (k,x) RAPID (k,x) 12 78 41.0 0.45483 37.0 0.57495 

RAPID (k,x) RAPID (k,x) 12 78 64.0 0.02612 14.0 0.97876 
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Figure 1 Guadalupe and San Antonio Basins 
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Figure 2 NHDPlus river network and catchments for the Guadalupe and San 

Antonio Basins 
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Figure 3 Upper Mississippi River Basin 
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Figure 4 River network 
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Figure 5 Principle of flux coupler between Noah and RAPID 
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Figure 6 Lagged cross-correlation as a function of lag time 
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Figure 7 Wave celerities are estimated for eleven different sub-basins within the 

Guadalupe and San Antonio river basins.  Location of 36 gaging stations used for 

optimization and names of the 15 gaging stations used for estimation of wave celerities.  

The same sub-basins are used for distributed parameters in RAPID 
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Figure 8 Statistics of river reach lengths in Guadalupe and San Antonio River 

Basins 
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Figure 9 Ratio between observed and modeled stream flow at 16 gages, location of the 

Edwards Aquifer.  Location of the two largest springs in Texas. 
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Figure 10 Hydrograph of observed, lumped and routed flows for the Guadalupe 

River near Victoria, using (k

,x


) 
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Figure 11 Comparison of computing time between the traditional Muskingum 

method and matrix methods  
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Figure 12 Total computing time for matrix method with an iterative solver as a function 

of the number of processing cores, number of iterations needed, total computing time for 

the traditional Muskingum method. 
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Figure 13 Longest path in the Upper Mississippi River Basin and location of sub-basins 

when RAPID is used in a parallel computing environment with 8 and 16 processing 

cores, different colors correspond to different cores. 
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Figure 14 NHDPlus connectivity between reaches, nodes and catchments 
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Figure 13 Longest path in the Upper Mississippi River Basin and location of sub-basins 

when RAPID is used in a parallel computing environment with 8 and 16 processing 

cores, different colors correspond to different cores. 

Figure 14 NHDPlus connectivity between reaches, nodes and catchments 


