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Abstract Product-driven systems (PDS) may enable
manufacturing companies to meet business demands more
quickly and effectively, by localizing decision as near as
possible to the material flows. However, the actual ar-
chitecture of a PDS is still not well defined. This pa-
per proposes a PDS architecture based on a particular
interpretation of the concept of stigmergy, where coop-
eration between production actors is achieved thanks to
attributes (informational pheromones) attached to prod-
ucts. This stigmergic design pattern is presented. Agent-
oriented components which implement it are presented,
are firstly applied to a laboratory platform, and secondly
on an industrial test-case.

Key words multi-agent systems; software architecture;
manufacturing control; product-driven control; stigmergy

1 Introduction

High competition between enterprises and market volatil-
ity lead enterprises to be more agile [6]. Agility, from
the point of view of production control, may be seen
as the ability to operate with a high level of coordina-
tion and proactivity throughout the supply-chain, and
at the same time to react efficiently to disturbances on
the shop floor while taking into account the increasing
process complexity (variabilities, high product variety,
reconfiguration issues).

Historically, “centralized” approaches have been im-
plemented thanks to MRP? systems and ERP, with tools
and methods mainly based on operational research con-
cerning production activity control (PAC). Facing the
eighties’ market challenges other decision making philoso-
phies and strategies have emerged. Requirements for more
and more reactivity and flexibility have led to the imple-
mentation of “distributed” approaches such as anthro-
pocentric and visual management methods (kanban, op-

erators empowerment , etc). Unfortunately these new
ways to pilot and control the material flows have led to
“black boxes” in management systems, and have high-
lighted the need to more and more real-time closed-loop
information systems. On the other hand, it has been
shown [14] that in such kanban systems, very short term
priority management is always a key issue. Gradually,
following information technology improvements, it seems
obvious that to give to the physical system entities deci-
sion making capabilities could be a new way to face this
ever unsolved issue. That’s why holonic manufacturing
[2] and agent-based manufacturing [16] systems try to
bring intelligence as near as possible to the physical sys-
tem.

The product-driven paradigm [20] is based on the as-
sumption that the product is the core object of this kind
of system. Indeed, the product is the common object
shared by a vast majority of “actors” (i.e. by any com-
pany decision-making entities), each one having its own
point-of-view on this product. For instance centralized
decision system which focus on business aspects, and
distributed decision systems which focus on operational
ones. The main postulate in product-driven systems is
that products are able to be active and are at the core of
an enterprise architecture which integrates every actor in
the company, from the central systems to the processes,
products and also operators, into the same ambient in-
formation system. Therefore, the product become an ac-
tive object in its environment [17].

Many researches and industrial works relative to the
product-driven paradigm have been done. Amongst them,
product-driven systems|21], intelligent products [17] [18]
and product-centric systems [20] [25] can be cited by au-
thors. All have been driven by the availability of new
identification technologies such as radio-frequency iden-
tification, by the development of embedded systems such
as wireless sensors networks, and by the spreading of dis-
tributed architecture like multi-agents systems. In fact,
many points of view of this paradigm co-exists. Accord-



ing to [18] [17] these kind of systems can be implemented
with (i) various levels of intelligence given to the prod-
uct, (ii) different ways to locate intelligence (on the net-
work or on the product) and (iii) different aggregation
levels of intelligence. From these features, several classes
of systems could be distinguished, leading to various in-
terpretations of this concept.

Therefore, developing product-driven systems (PDS)
raises numerous issues, ranging from conceptual to log-
ical and technical ones. Example of architectural (logi-
cal) issues are for instance: how to structure the control
system 7 What entities should exist 7 What kind of de-
cisions should be allocated to the products, or to the
other actors 7 How should products interact with their
environment ?

In this paper, we focus on architectural aspects of
PDS: in particular, what decisions should (or shouldn’t)
be allocated to the product ? Indeed, if it is widely pro-
posed to make the product active, its precise role in-
side the control system is seldom given, and the design
patterns required to actually develop such a system are
not always well-defined. This paper contributes to bridge
this gap by proposing an architectural pattern based on
a revisited interpretation of stigmergy to design product-
driven systems.

First, section 2 will review the literature on intelli-
gent products, state the architectural issues faced while
designing product-driven systems, and remind the prin-
ciple of stigmergy. Then, the proposition of a stigmer-
gic architecture will be enunciated in section three, and
its implementation will be demonstrated in section four.
Finally, section five will present an application of our
approach on an industrial test case.

2 Problem Statement
2.1 Application domains of product-driven systems

As stated in the introduction, in the eighties, people were
(re)introduced in the reactive decision making processes.
The main reason for that was that only operators had
decision-making abilities and at the same time were in
contact with the physical processes. In case of disturbing
event, operators could perceive the event, gather accu-
rate information and take decisions. In PDS, the main
idea is to give these reaction capacities to the products
(and to other parts of the physical system), because they
are directly concerned by these events. However, one of
the main issues to solve in the definition of a PDS archi-
tecture is what entities to define, and how to structure
their interactions.

In holonic manufacturing systems, the structure of
the control system is mapped from the physical entities.
In the PROSA [26] reference architecture, three types
of control entities (or agents) are associated to phys-
ical elements : Product Holons, that gather the knowl-
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edge about making products, Resource Holons, that con-
trol the devices used to transform products, and Order
Holons, that represent and control the production of an
item or a lot. Finally, Staff Holons help achieving coor-
dination amongst the system.

Likewise, the ADACOR architecture [15] defines four
manufacturing holons classes : product, task, operational
and supervisor holons, the first three being quite similar
to the product, order and resource holon of the PROSA
architecture, while the supervisor holon introduces coor-
dination and global optimization in decentralized control
and is responsible for the formation and coordination of
groups of holons.

While the holonic approach focuses on the manufac-
turing domain, other approaches try to consider more
broadly the whole life-cycle of the products. The con-
cept of the Internet of Things aims at allocating to ev-
ery object a global identifier, that serves as a key to
access to further product data, stored on the network.
The EPCGlobal architecture proposes to store an identi-
fier on the product, and introduces the concept of object
name server (ONS) to locate the database server where
the product data are, while the Dialog system [13] pro-
poses to store this address on the product too, in the
form of an universal resource identifier (URI).

Applications are mainly in supply-chain management.
For instance, the product-centric approach [12], sees the
product as a mean to easily integrate a changing network
of enterprises. Classical integration technologies based
on central databases fail to cope with frequent recon-
figurations of supply chains, faced with interoperability,
information structure mappings issues. Using product
agents, the global interaction network between the part-
ner of the supply chain can be discovered and updated
continuously [23].

2.2 Architectural patterns

Object-oriented programming patterns have been ap-
plied to manage product life-cycle information through-
out the supply chain [9]. Most often, the Composite and
Observer (or Model-View-Controler) patterns are used,
respectively to deals with aggregation of products’ com-
ponents, and to automatically notify many peers when
the state of a product changes.

On the other hand, some patterns have also been pro-
posed to determine the relationships between entities in
the system. The simplest pattern is a master/slave coor-
dination, where agents receive requests, that are broken
down into sub-requests sent to slave agents. Likewise,
reports are aggregated and sent back to the original re-
quest initiator. This pattern define a hierarchical struc-
ture (as in [1]) that enable to achieve high performance
levels but that is often rigid and therefore not able to
adapt to changing operation conditions. To solve some of
this issues, unconstrained, dynamic or partial hierarchies
have been proposed [4], but remains hard to implement.
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Another approach is to use negotiation or auction-
based patterns. These approaches are based on the emer-
gence of a complex global behavior from simple local en-
tities that interacts. Because only elementary behaviors
are defined, such emerging systems are able to adapt eas-
ily to changes. However, their global behavior is hard to
predict and misbehaviors such as famine, deadlocks and
livelocks can degrade performance. The design of such
system is often inspired by human or animal behavior.
For instance the contract-net protocol [22] is one of the
most widely used negotiation pattern, and has been in-
dustrially applied, for instance at Daimler [5].

Finally, bio-inspired systems, like swarm intelligence
[10] are a novel approach to achieve a completely decen-
tralized control while using very simple agents.These ap-
proaches, which take their roots in the biological study of
self-organized behaviors in social insects, have inspired
emerging research in manufacturing control. Their de-
centralized nature and adaptability to uncertain per-
forming conditions are some of the key drivers to their
application in manufacturing control. In particular, a
swarming approach seems to be able to cope with the
huge number of products and their limited computing
and memorization capacities.

2.8 Stigmergy

Stigmergy is a concept that comes from the study of an-
imal behavior (ethology), where it is defined as a class
of mechanism that mediate animal-animal interactions,
in particular for social insects. It has been first observed
in the case of nest-constructing termites by Grassé [11],
who coined the word stigmergy from the Greek roots
stigma (mark, sign) and ergon (work). He observed that
coordination between the numerous individuals implied
in nest building was achieved using pheromones. Phero-
mones are chemical substances released by an insect that
causes another individual of the same species to react.
Termites release pheromones on the building material
(soil pellets), thus influencing the behavior of other ter-
mites. The result of the process are the columns, vaults,
etc, which will finally constitute a very complex nest
(fig. 1).

Other studies on bees or wasps have shown that the
current configuration of the construction can be the stim-
ulus for the next task [24]. Nest-building behaviors have
been modeled using micro-rules of the form “if configu-
ration then building decision”, where the configuration
depends of the combs directly around the builder insect.

Using stigmergy, a global coordination of the com-
plex process involving many entities is done without
any global design, and only through indirect interactions
through cues deposited on the environment, and a stim-
ulus/reaction sets of behavioral rules. So stigmergy can
be defined as a coordination mechanism of many workers
by the mean of pieces of information deposited on their
common work.

Fig. 1 "Cathedral" termite mount in the Northern Territory
of Australia. Researchers have been amazed during a long
time that such small and nearly blind insects are able to
erect these huge and complex structures (photo by Andrew
Finegan, available under a Creative Commons Attribution
license)

The key point of stigmergy is that there is no di-
rect communication between actors, only indirect com-
munication through cues deposited on the environment.
Thanks to this indirect communication mechanism, the
communication abilities of the workers can be very sim-
ple (for example there is no need to route data to its
receiver); likewise, the workers don’t have to memorize
information for later use : indeed, the environment itself
retains the information about its completion, and the
rules that determine the reaction of the workers to the
stimuli of the environment are far more simpler than the
collective work achieved.

One of the most famous application of stigmergy is
the ant colony optimization algorithm (ACO) [7]. This
algorithm comes from the modeling of the behavior of
foraging ants. To find the shortest path between their
ant-hill and a food source, ants release pheromones to
mark their tracks. It has been shown that the pheromone
path converges to the shortest path between the anthill
and the food. Moreover, if an obstacle is added on the
track, or if the food is moved, the system is able to
adapt to the new situation. ACO has been used to solve
traveling-salesman kind of optimization problems. It has
also been transposed in the domain of manufacturing
control [25].

In this last application, orders generate various kind
of ants, who search the better route for their orders
in the network of manufacturing resources, and release
pheromones on the resources which correspond to their
intension of using this resource sometime in the future
(thus providing proactivity).

From the study of this proposition, it appears that a
major question is how to project the stigmergic pattern
to the control of an artificial system. Indeed, if ACO is



the source of inspiration, it seems natural to map ants
to products and ant-tracks to products-routes. However,
if the wider concept of stigmergy is considered, it seems
natural to map the manufacturing transformation and
control processes to worker insects, and the products to
their environment, too. This point of view has a deep
impact on the underlying architecture, especially on the
role of the products.

3 Proposition
3.1 Stigmergy-based pattern

In this paper, stigmergy is applied to the manufacturing
context by interpreting products as the common work,
and operators, decision systems and processes as the
workers. That differs significantly from approaches based
on ant colony optimization which identify resource reser-
vation as the common work (the path) and products as
workers (ants).

According to this interpretation, a stigmergic prod-
uct is defined as a physical object able to carry data
(that will called annotations and that are the computer
equivalent of pheromones). Likewise, actor are defined
as any system that contributes to the elaboration of the
product, either directly by transforming its morphology
or its position (physical resources), or indirectly by pro-
ducing and consuming control annotation attached to
the products. Actors, is a very generic concept, that can
includes a great variety of systems, such as for instance,
observation devices, operators, decision and information
systems, processes, etc (fig. 2).

The stigmergic product is closely related to the con-
cept of holonic product, in the sense that a holonic prod-
uct enables to see the physical part and the informational
part as a complete object. The key architectural point
is that there is a relation between each product and its
annotations (and vice versa). The actual location of the
data i.e. directly on a device carried by the product, or
on a network emplacement such as a remote database
does not concern us in this paper.

The stigmergic pattern is summarized by an UML
class diagram presented figure 3.

Actors can interact with products by reading or writ-
ing their attributes. Depending of the kind of actor, three
categories of attribute can be defined, corresponding to
the product’s present, future, and past:

— what the product currently is;

— the requirements that it will have to meet, from the
point of view of physics (customer specifications), or
of the point of view of control, such as a centralized
decisions (e.g. a scheduled processing date);

— the history of what was made: this includes physical
transformations (morphological and spacial changes),

and control decisions, such as the results of distributed

decision processes (e. g. a routing decision).
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Fig. 2 The active product : a physical part carrying anno-
tations, able to communicate with its environment. Various
kind of actors interact with it by reading/writing its annota-
tions
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Fig. 3 UML Class Diagram of the proposed stigmergic pat-
tern.
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Fig. 4 UML use case diagram, focusing on attribute setting/updating functions. Interaction between actors and attribute

types is highlighted in this diagram

Let these attribute classes be called respectively Prod-
uctState, ProductRequirement, and ProductionReport.

Moreover, it is possible to classify actors in two types :
Process Actors that perform a physical transformation
of the products (machining, transportation or assem-
bly/disassembly stations), and Business Actors that fo-
cus on information- and decision-related activities. The
role of business actors will be to initialize the product’s
requirements (what needs to be done) according to the
customers requests, and to update them if needed. Pro-
cess actors have to write on the product’s report at-
tributes, which may leads to changes in state attributes
as explained below.

But beyond simple product-actor interaction, the key
point of the proposed stigmergic architecture is to achieve
coordination between actors, only by changing the at-
tributes of the products and by reacting to such changes.

The specificity of our stigmergic approach lies (i) on
the specific interpretation of actors and products at-
tributes and (i) on the way to achieve the coordina-
tion between actors only indirectly through products at-
tributes. Two specific cases of this coordination can be
highlighted:

— coordination between control actors. For instance, an
operator can be informed of centrally-made schedule

thanks to a priority attribute (as illustrated in section
5).

— coordination between a control actor and the obser-
vation system. Physical observation of the product
(e. g. an event reporting that product p is arrived
in station s) may trigger an attribute change, that
can then be perceived by the corresponding control
actor.

The product itself is able to observe its own attri-
butes, and can react to changes of one of its attributes
by modifying others. This feature enables the product
to manage its own life-cycle, by setting the value of at-
tributes describing its current state and requirements,
according to the transformations made. For instance, a
product may react to changes of several reports of physi-
cal transformation, by declaring itself to be quality com-
pliant or not.

It is also possible for an aggregated product to react
to notifications from its component by updating its own
attribute. A simple instance of this cascading attribute
update, is for instance updating the weight attribute of
an assembly when the weight attribute of one of the
assembly’s component change.

All these interactions are summarized in figure 4.



3.2 Interactions with the stigmergic product

According to our interpretation of stigmergy, the prod-
uct being the common work, actors interact with it by
deposing their pheromones, that is to say by modifying
their attributes. On the other hand, products emit these
pheromones, that can be perceived by the actors in its
environment,.

The question is to specify the most efficient mecha-
nism to implement these interactions. In social insects
behavior, pheromones are deposed directly on the en-
vironment, at the location where they are needed (i.e.
common work). Thus, an insect (worker) is instantly no-
tified of any relevant information in its current location-
context. This led appear two essential features of the
interaction with pheromones. First, the worker get only
information that are relevant in a particular context, sec-
ond, the worker don’t have the initiative of the commu-
nication.

In the proposed architecture, these features are pro-
vided by a subscription /notification mechanism. When a
product is created, it broadcasts a list of its attributes to
other actors. The actors can then respond by subscribing
to some attributes. A subscription is a pair

(attribute name, pattern)

When the attribute’s value changes and matches the pat-
tern, the subscriber is notified. The pattern enables to
filter out notifications that are not relevant for the actor.

This subscription-based mechanism can be implemen-
ted in various ways. For instance, in the object-oriented
approach, the model-view-controller can provide a way
to implement this notification mechanism. In this paper,
the multi-agent paradigm have been used. This ensure
a clear separation between entities (products and actors
are modeled as separate agents) and impose to spec-
ify the content language and interaction protocols that
are used for agents communication. Moreover, the multi-
agent approach may be able to scale well to the size of
industrial applications [19].

A content language has been defined to implement
communication among agents. Figure 5 shows two ex-
amples of such messages, encoded in the FIPA-SLO! lan-
guage [8]. Two main concepts have been used: the first
one is the concept of ‘attribute’, seen as the association
of a name and a value. Both name and value are strings.
The second concept is ‘holon’, defined by its name (a
string) and type (three types of holon have been defined:
product, resource and staff).

Several predicates and actions can be built on these
concepts. The predicates ‘owns’, ‘has-value’ and ‘matches’
describe respectively that a holon has a sequence of at-
tributes, that a holon’s attribute has a particular value,

! FIPA (the Foundation for Intelligent Physical Agents)
is an IEEE Computer Society standards organization that
promotes agent-based technology and the interoperability of
its standards with other technologies.
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and that a holon attribute value matches a particular
pattern (regular expression). The actions ‘change-value’
and ‘query-value’ are used to modify or query an at-
tribute value.

((owns
(holon
:name pl-pla2
:type product)
(sequence
epc color createBlocID state affectation assyDomne)

)

((action
(agent-identifier
:name pl-pla2@tracilog)
(change
rattribute (
attribute
:name affectation
:value p0))

D)

b

Fig. 5 Example of an attribute declaration message (a) and
of an attribute change request message (b) in the Fipa-SL0
language.

Several interaction protocols have also been used.
The FIPA-subscribe implements the notification mech-
anism. First, product agents declare their attribute list,
by broadcasting an INFORM message. Agents that want
to be notified when an attribute value matches a pat-
tern, initiate the subscription interaction with the prod-
uct agent. Moreover, other request-like protocols (such
as FIPA-Query and FIPA-Request) are used to query or
modify products attributes.

3.8 Structure of a stigmergic product

A stigmergic product is represented as an agent, that
is both connected to the physical product, and to other
agents representing production actors. At the core of this
agent is the product’s attribute base (fig. 6).

Physical observations received by an agent result in
modifications in the attribute base thanks to a sensor
processing subsystem. Several processing approaches can
be used: on the one hand, an attribute can take the direct
value of the event name, or one of the event’s parameters
(e. g. the epc attribute is assigned after the epc param-
eter of a RFID-reading event). On the other hand, the
attribute’s value can be indirectly computed from the
event. The most typical case is to use a finite-state ma-
chine for that task.

Product agents are able to communicate with other
actors about attribute values, thanks to two subsystems.
The first one notifies other agents of attribute changes
and responds to queries about attribute value, while the
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Product
Actor @ product_ID:
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get(): Object

set(new_value: Object)
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LPLLDL|DD
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Produg¢tState
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update ProductionRequirement update

update ProductionReport

Fig. 7 UML class diagram showing the various types of attributes, and their interactions with various product’s and actors’
subsystems

3.4 Architecture of a control system integrating

Message exchanges with other agents k ;
stigmergic products

— -

Rules .
(behavior)'%> Execution
& J Product and actors agents are the main component of

Attributes the proposed architecture. However, other types of agents

7 :: | base E

Notification

are needed to integrate them into a real shop floor : they
need to be able to communicate with the shop floor’s

SrEes P ET hardware (processes, data acquisition systems, etc) and
processing control also with the enterprise’s information system.
4 ¥ Therefore, stigmergic products must be included in a
events to/from physical system control architecture that comprises other agents in order
(real or emulated) provide them with these services (fig. 8). The system can
Fig. 6 Internal structure of a stigmergic physical agent be broken into three subsystems;

— a hardware layer, with agents responsible of commu-
nication with shop floor devices (programmable logic
controller, RFID readers, vision systems, etc...);

— a production control layer, with a set of product
agents, communicating with other control agents (pro-
cess and business agents) thanks to the notification
mechanism presented above;

— an information system layer, with agents responsi-
ble with communication with enterprise applications
such as enterprise resource planing, product life-cycle
management, supply chain management, etc.

second one receives attribute change requests and imple-
ments them in the attribute base.

Finally, the product agent can execute a rule, that
represents its behavior. The rule is notified of attribute
change and can then modify local attributes.

Many components of this structure are generic and
can be re-used. However, when developing a new appli-
cation of a product-driven system, the only task is to
develop the rule and to define the product attributes.
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Fig. 8 Agent architecture that integrates stigmergic prod-
ucts

4 Implementation of the pattern
4.1 Material and methods

The proposed architecture have been implemented in
java using the FIPA-compliant JADE agent environment
[3]. The implementation is broken into two parts:

— a generic library that comprises the generic structure
of agents,

— a set of configuration files and classes, specific to a
case, that constitutes the agents’ configuration and
behavior rules.

The Tracilogis® platform has been used for this last
point. Using this platform it is possible to illustrate how
the stigmergic pattern can be applied on a concrete case.
While being simple, this platform nevertheless includes
an assembly station, one transformation and several rout-
ing stations (fig. 9). Therefore, it comprises several dif-
ferent situations that will be used to illustrate how the
stigmergic products interact in various situations.

The products are composed of:

— a support;

2 The Tracilogis platform is located on the "campus fiber"
at Epinal, France.
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Fig. 9 Tracilogis platform, with the assembly cell in front

— up to four wooden square pieces, yellow or orange;
— up to four wooden chips.

This product structure generates more than one thou-
sand different products, providing sufficient variety. Fig-
ure 10 shows some examples of assembled products.

Fig. 10 Examples of products on the Tracilogis platform

The experimental platform has four stations linked to
a conveyor belt (fig. 11) : M is an assembling station,
where square pieces are assembled on support; M- is a
transformation station, this transformation being mate-
rialized by putting some chips on the product; A; and
Ay are routing stations.

RFID
readers

Supports

Fig. 11 A overview of the material flow
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The product components are equipped with identi-
fication devices. The supports and square pieces carry
a RFID tag. RFID readers are placed in front of each
station, and additional readers enable to check products
integrity. The color of the square pieces is deduced from
reading their tag.

The production scenario is to respond to customer
requests as fast as possible. Due to the high number of
products configurations, the control system must be able
to cope with mixed flows. Moreover, the control system
must also deals with perturbations, like last minute or-
der modification, resource breakdown or uncontrollable
change of the flow (e.g. when a product is taken from
the conveyor belt and put back later elsewhere on the
belt).

4.2 Interactions between customers, products and
processes

The test-case system is controlled using a multi-agent
system. Agents have been associated to resources (M,
My, Ay and A,), and to products (both the support and
the square pieces). Business agents are present in the
system to enable customers to configure and generate
production orders (i.e. product agents). Finally, the plat-
form comprises additional agents, which are necessary
to communicate with the physical equipments (the pro-
grammable logic controller and the RFID subsystems),
or to offer common services (agent creation, directory fa-
cilitators, ...). The typical number of agents cooperating
is between 10 and 50.

A typical interaction scenario corresponds to the fol-
lowing sequence of messages. First, products are con-
figured from the business point of view and are then
introduced on the multi-agent system (fig. 12).

s

Process

Customer

~a
create - l —

active
product

declare attributes |

declare attributes
(state, reference)

\j

|

|

|

|
Subscribe |
(state match “stationM2”) |
|

|

|

|

I
[
[

Set attribute value

>

(reference=1234) !

|

|

|
|
|-
|

|

[

|

| (progM2, etc...)
|

|
lj update attributes
|

Fig. 12 Sequence diagram showing the initialization of a
stigmergic product agent

1. The customer-agent creates a new product-agent and
waits for agent initialization, then sets the ‘reference’
attribute of the agent.

2. The product agent declares its attributes. Actors sub-
scribes to some to them. For instance, M5 subscribes
to the attribute ‘state’, with value ‘stationMs’.

3. The newly created product agent reacts to the change
of its reference attribute, initializes its internal bill of
operations and set it progM;, progMs,... attributes
accordingly.

4. A physical product is associated with the product
agent by scanning its RFID tag. An association be-
tween the product ID and the epc code of the tag is
created, enabling event brokers to route RFID event
to the right product agent.

Then, products agents interact with the process, until
production finishes (fig. 13).

.

active

Product arrives pro‘dUCt
at station M2
.'PA
\

Customer

notify
(state = “stationM2”)

\
\
\
| L query
\ (progM2 ?)
\ ‘ (progM2=0011)
| \ Physical @)
! | transformation
| _ request
| I (reportM2 = done-0011) |
o notify \
I (optionally) |

Fig. 13 Sequence diagram between the active product and
the process, corresponding to the typical interaction occur-
ring during transformation

5. When the physical product arrives in a station (e. g.
in Ms), a RFID event is received by the product
agent, and the ‘state’ attribute is consequently changed
(e. g. ‘stationMy’)

6. The station’s control agent is notified of the new
value of the product’s state attribute. Consequently,
it queries the product about its requirements (e. g.
attribute progMs), and transforms the physical prod-
uct accordingly.

7. When the transformation ends, the station control
agent releases the product, and requests to change a
report attribute (e. g. reportMs). The product agent
reacts to this change by updating its internal bill
of operation and consequently modifying attribute
value.

This approach based on stigmergy enables a high
product variety (the flow can mix any number of differ-
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ent products), and also a high robustness (products are
able to interact with any resource at any time, allowing
them to find back their normal route). Comparatively,
an existing traditional implementation, developed by an
independent engineering company, allowed only to pro-
duce one type of product at a time, and was not able to
cope with flow disturbances.

The implementation of this system is a relatively sim-
ple task, because only the behavior rules and the at-
tribute base have to be implemented. Indeed, most of
the components are generics and may be re-used.

The most important feature of the system is the high
functional independence between products requirements
definition, products life-cycle management and product
transformation resources control. Since interactions are
based on product attributes, the system can also cope
with a completely asynchronous execution of all these
tasks.

4.8 Special case of assembly

The assembly between a support an square pieces is a
special case, because both types of pieces are controlled
by a product-agent. Therefore, three agents must in-
teract here: the product-agent associated with the sup-
port (5), the product agents associated with a square
piece (Sq), and the resource agent controlling manipula-
tor M;. In this situation, the stigmergic pattern can be
applied at a smaller scale (fig. 14).

create - {_—’_‘
declare attribute declare attribute

N

| (color, position, ...) "l
| subscribe - . \
\ (color) " subscribe
| | (position) \
Get color from
‘ RFID tag =2 :
L notify ‘ |
™ (color = “yellow”) |
\ request change | . !
| (position ="p2) Doty ™
position = “p.
| ‘ Physical (9
‘ [ transformation

Fig. 14 Sequence diagram between a support agent (‘p2’),
a square piece agent (‘p2-plal’) and assembly station M.

Agent S creates agent Sgq, gets its ‘color’ attribute,
decides to assemble it at some position or to discard it,
and sets its ‘destination’ attribute accordingly. Agent M;
is notified of the ‘destination’ attribute of Sq, moves the
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square piece, and finally reports this action. Cooperation
between agents M; and S has been made through the
attribute of agent Sq.

5 Application
5.1 Case presentation

In this section, the proposed stigmergic architecture is
applied to an industrial case study. In this case-study, the
key performance indicators pertain to production con-
trol : inventory levels, productivity, etc. Therefore, the
main issue here is scheduling, and this section present
an application of the proposed stigmergic pattern to
this particular issue. More precisely, stigmergic prod-
ucts are used to solve the issue of a centralized vs. dis-
tributed control approach, which use algorithms already
presented in [21].

However, the proposed pattern could have been used
in other situations, where scheduling is not the key prob-
lem to solve.

The case study is an automotive-industry subcon-
tractor shop floor. The assembly site can produce up to
10,000 products a day, with hundreds of different part
numbers. The factory is actually divided into several pro-
duction cells, each including every production step to
make a finished product from raw material, and is dedi-
cated to a particular client. One of these cells has been
modeled, using emulation software.

As shown on figure 15 the production process is di-
vided into two stages. A first set of operations on the
first line results in semi-finished products, which are fur-
ther assembled on three independent assembly cells. It
is assumed that all assembly cells cannot work simulta-
neously on the same reference. The production module
therefore includes, in addition to the four cells, an in-
ventory storing semi-finished products.

Stock of semi- .
finished goods Final A
Assembly of
semi-finished P Final B
products
Final C

H_/

Upstream line

H_/

Downstream lines

Fig. 15 Material flow in a production cell

As downstream lines can consume three kinds of prod-
ucts simultaneously, the major decision problem is to
choose whether and when to change the setup on the up-
stream line. This decision aims at minimizing the num-
ber of setups (each setup takes 30 minutes), while also



Another interpretation of stigmergy for product-driven systems architecture 11

minimizing work-in-process levels and avoiding starva-
tion on downstream lines. Moreover, business goals such
as due dates must also be taken into account.

To solve this control problem, several strategies can
be used. In the centralized approach, the problem is
modeled and solved off-line. The optimal solution is then
implemented. In the distributed approach, local control
entities can decide to make a setup when needed. Their
behavior is modeled as a set of heuristic rules. The pro-
posed product-driven-system tries to integrate these two
relatively antagonistic approaches.

5.2 Decision-making procedures

In the developed system (fig. 6) the centralized control
is represented by an agent, as well as the control entities
for both upstream and downstream lines. Products and
resources are controlled by their respective agents and
are interfaced with the physical system thanks to event
brokers agents. Figure 16 summarize this architecture.

Create product, !
Monitor state = B
Set / change priority Rm—
Centralized Machines
control ﬂ Monitor state
K E Query reference
—
‘ \
f Attributes:
Dlstrlbuted 2; * priority
control * reference
- state

entities | Query priority
Change state

Fig. 16 An overview of the control architecture. There is
no direct interactions between the actors, every interaction
is done through products attributes.

One of the main product attributes is priority. At
system initialization, the centralized control system sched-
ules jobs according to their critical ratio, defined as the
ratio between the processing time required to complete
it and the available time before its due date. Products
priorities are then assigned according to the schedule.

The distributed control centers are notified by the
products of the value of their priority attribute. Accord-
ing to these notifications, they maintain the ordered se-
quence of products to process. Two modes of product-
driven control have been programmed, according to the
way this ordering is done.

In the simpler one, local control decisions are based
on products priority only: When a cell is ready to oper-
ate, it scans through the products waiting and selects the
one with the highest priority. This control algorithm is

called “product-driven constrained” because it depends
on the centrally made schedule.

In the other one, a more complicated decision algo-
rithm is used, allowing autonomy with respect to prod-
uct data. This algorithm tries to mimic the behavior of
an operator, taking into account not only product pri-
orities, but also other local parameters, such as levels
of semi-finished inventory in order to avoid starvation
downstream, or the amount of products of the same ref-
erence that have been done, to minimize setups. This
control algorithm is called “product-driven relaxed”.

Other attributes of products are their reference, used
to setup the transformation resources, and their state,
that tracks the execution level of the routing.

5.8 Results and discussion

The first experiments have been run without introducing
perturbations. The performance of the system under the
control of the various control system is shown figure 17.
The main result here is that the stigmergic approach
can reproduce exactly the behavior of the centralized
system. Indeed, under the constrained product-driven
control system, the centralized schedule carried by the
products have been precisely followed. One of the slight
differences that can be observed are the setup times: the
product driven control system was not able to anticipate
the setups, because it was triggered by the arrival of a
product with a new reference.

The relaxed product-driven system, where products
priorities were not the only decision factor, display a dif-
ferent behaviors, but yield to comparable performances
in terms of make-span.

Both product-driven control modes have been tested
in various perturbation situations. Moreover, the cen-
tralized control mode (where the centralized schedule is
applied unmodified) has been added, as a reference for
comparison. Figure 18 give some results of the experi-
mental study.

These results show that the stigmergic approach en-
ables combining the good performances of centralized
control in nominal situations with the adaptability and
robustness of distributed control.

It is noteworthy that these experiments have demon-
strated that local decision-making and its accuracy are
crucial in a product-driven environment. Indeed, with-
out autonomous decisions, performance is similar to that
of centralized control, when there is no perturbation,
but performance tends to plunge in a highly perturbed
environment. In contrast, with autonomous decisions,
product-driven control was slightly less successful in non-
perturbed situations, but showed more robustness.

However, the questions related to design the stimu-
lus/reaction behavior of the decision systems require still
a lot of investigation.
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Fig. 17 Gantt charts showing occupation of semi-finished,
final A, B and C lines (labeled SF, FA, FB and FC) for each
decision modes, in an unperturbed situation: the centralized
reference control (a), the constrained product-driven control
(b) and the relaxed product-driven control (c) [21]

undisturbed

50

rush order high failure

modified order low failure

B centralized & PP-al v PP-

Fig. 18 Comparison of the various control scenarios: ef-
fect on WIP level of the centralized reference control (blue
square), the constrained product-driven control (yellow tri-
angle) and the relaxed product-driven control (red diamond)
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6 Conclusion

In this article, an architectural pattern based on stig-
mergy have been proposed to be applied to the design of
product-driven systems. According to our interpretation
of stigmergy, products able to carry information (in the
forms of a set of attributes) and able to take actors of
their environment informed about these attributes val-
ues, play a central role. The set of stigmergic products
constitute the basis of an ambient control architecture,
where information carried by the products can be shared
by all the actors of production, thus creating an implicit
integration, while at the same time, preserving a kind
of autonomy. For instance, this approach enable to mix
different decision-making approaches, which enable to
take advantage of both centralized and distributed de-
cision. In the future, this approach might also be used
in a larger scope, to implement cooperation amongst all
the product life-cycle actors, such as design, sales and
maintenance.

The originality of the stigmergic architecture pro-
posed in this paper, is the role given to the active prod-
uct: It is a trade-of between a completely passive role,
where every information is stored elsewhere than on the
product, and a “super-decisional” product, which is re-
sponsible of the control of the whole operational system.
If the first approach is often very complex and rigid, the
second one can be technically infeasible, for instance be-
cause of the need of negotiation between products. The
stigmergic product can take decision only about its own
life-cycle, and must notify its subscribers of change in its
attribute base.

This approach have been implemented in an experi-
mental platform, and applied on an industrial test case.
It is planed to apply it to larger industrial-scale emu-
lated test-cases (with ten of thousand of agents) to see
how the system perform in very large scale systems.

In another perspective, it is planed to develop and
study new features, such as interactions between prod-
ucts or an evaporation /reinforcement system for product
attributes. Another important perspective is the integra-
tion of our approach in software-engineering tools, in or-
der to apply a model-driven design of products attributes
and behaviors.
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