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Abstract

The metabolome is the set of small molecular maganic compounds found in a
given biological media. It includes all organic stamnces naturally occurring from the
metabolism of the studied living organism, excepldgical polymers, but also xenobiotics
and their biotransformation products. The metabéhgerprints of biofluids obtained by
mass spectrometry (MS) or nuclear magnetic resenéMbIR)-based methods contain a few
hundreds to thousands of signals related to bottetgeand environmental contributions.
Metabolomics, which refers to the untargeted quatnte or semi-quantitative analysis of the
metabolome, is a promising tool for biomarker digry. Although proof-of-concept studies
by metabolomics-based approaches in the field wicoétogy and clinical chemistry have
initially been performed using NMR, the use of Idjwhromatography hyphenated to mass
spectrometry (LC/MS) has increased over the regeats, providing complementary results
to those obtained with other approaches. This pag@ews and comments the input of
LC/MS in this field. We describe here the overalhgess of analysis, review some seminal
papers in the field and discuss the perspectiveseatibolomics for the biomonitoring of

exposure and diagnosis of diseases.

Keywords: metabolomics, metabonomics, LC/MS, toxicology, beokers,



Abbreviations

MS: mass spectrometry; NMR: nuclear magnetic resoeialLC: liquid chromatography;
MHz: MegaHertz; UPLC: Ultra performance liquid chratography; HPLC: High
performance liquid chromatography; TOF:. time ofgtii; MS/MS: tandem mass
spectrometry; API. atmospheric pressure ionisat®8H: glutathione; NAPQI: N-acety-
quinone-imine; APAPN-actetylp-aminophenol; GC: gas chromatography; MMC: Methyl
mercury chloride; RC: respiratory chain; RCD: regfry chain disease; Cr: creatine; PCr :
phosphocreatine; CRC: Colorectal cancer; FT-ICRurfleo Transform lon Cyclotron
Resonance; Q-Trap: Quadrupole linear trap; Q-TOliadgupole Time-of-flight; CID :
collision induced dissociation; DNA: Deoxyribonucdecid; RNA: Ribonucleic acid; ESI:
Electrospray ionization; QC: Quality control; PCRrincipal Components Analysis; PLS:
Partial least squares or projection to latent smmes; PLS-DA:. Partial least squares
discriminant analysis; OPLS: Orthogonal partialstesaquares; ALT: Alanine transaminase;
AST: Aspartatdransaminase; BUN: Blood urea nitrogen; ATP: Adem®sriphosphate; PC:
Phosphatidylcholine; PSA: Prostate-Specific AntigE@A cycle: Tricarboxylic acid cycle;
D-AAO: D-amino-acid oxidase; CYP: Cytochrome P4BBPARy: Peroxisome proliferator-
activated receptor alpha; ANIT: R-naphthyl isotlyacate; CCl4: carbon tetrachloride; LDH:
lactate dehydrogenase; GABA:Aminobutyric acid ; H/D exchange : Hydrogen-deiuter

exchange
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Introduction

The metabolome is a set of small molecular masanmcgompounds found in a given
biological medium. Polymerized structures such @dems and nucleic acids are excluded
from the metabolome but small peptides such astripeptide glutathione are included.

Molecules that constitute the metabolome are catiethbolites.

What is a metabolite?

For some scientists, the concept of metaboliteuttet all the organic substances
naturally occurring from the metabolism of a livinogganism and that do not directly come
from gene expression. It should be stressed hatehis definition could be applied as well to
a microorganism, a human being or a plant. Twoedifit kinds of metabolites can be
distinguished based on their origin: endogenousexiogenous metabolites.

Endogenous metabolites could be classified as pyiraad secondary metabolites.
The firsts have a broad distribution in living sigscand are directly involved in essential life
processes such as growth, development and reprodudthis is for example the case for
amino-acids or glycolysis intermediates. At the agfe, secondary metabolites are species-
specific, have a restricted distribution and anmettsgsized for a particular biological function,
as alkaloids for plants or hormones for mammals [1]

Exogenous metabolites represent the biotransfoomatr metabolism products of
exogenous compounds, resulting from phase | (meadibn of the original molecule to
introduce a functional group) and/or phase Il (agaftion) enzymatic conversion [2]. In this
particular context, Holmes et al [3] proposed tlomaept of xenometabolome which is a
description of the xenobiotic metabolite profile ari individual exposed to environmental
pollutants, drugs, or exogenous molecules comiognffood/dietary components such as

phytochemicals [4]. This concept expands the ambraeveloped in the early nineties in the



field of molecular epidemiology [5;6], thanks toethechnical advances in analytical
chemistry.

In epidemiological studies, analyzing the xenomelaine could especially allow
characterising environmental or occupational expasuto chemicals and contributes
therefore to the determination of a metabolic plygre Crockford et al [7] demonstrated the
potential of this approach by identifying metabesitof drugs such as acetaminophen or
disopyramide by heterospectroscopy on data acquirtd 600-MHz *H NMR and UPLC-

TOF-MS" on urines obtained from more than 80 patients.

Metabolomics: a new approach for biomarker discgver

Biochemists have long been doing metabolomics, jlisé the Bourgeois
Gentilhomme was speaking prose without knowingvibliere — Bourgeois Gentilhomme II.
4). It means that they suspected that patternsiaghbmical substances could explain or
describe inter-individual variation. Gates and Sesee8] mention that the concept of
metabolic pattern was introduced by Williams [9;M#h0 used paper chromatography to
compare the urines of 200,000 subjects includieghallics, schizophrenics and residents of
mental hospitals. He demonstrated that some clesistats of metabolic pattern could be
associated with each of these groups.

Griffiths and Wang [11] reported that metabolonoegins are found in the 60’s and
70’'s in the work of the Horning. Horning and Homimpublished several papers about
metabolic profiles determination in urine by Gagd@hatography hyphenated among others
to mass spectrometry [12;13]. At the same time, ifkmm and Pauling performed a
quantitative analysis of urine vapour and breatlgdy chromatography [14].

Metabolomics belongs to the *“omics” techniques tbhge with genomics,
transcriptomics and proteomics that are relatedhto genome (DNA), the transcriptome

(RNA), and proteome (proteins), respectively (Fegut). The term metabolome (and



obviously metabolomics) was coined on the basigesfome and transcriptome. It appeared
for the first time in a publication by Oliver in 98 [15]. The metabolome reflects past events
that include whole metabolism and the interactiath whe environment, whereas the genome
reflects the real and potential functional inforioatof organism.

Metabolomics/Metabonomics is the analysis of mdtahe in a given condition. Both
terms can be interchanged. Initially, metabolomefgrs to the measurement of the pool of
cell metabolites [16] whereas metabonomics deseritiee quantitative measurement of the
dynamic multiparametric metabolic response of tiveystems to pathophysiological stimuli
or genetic modification” [17;18]. Nicholson’s defion underlines the role of two major
scientific disciplines used in metabonomics: anedyt chemistry and biostatistics. By
consistency, we use the term metabolomics in thaauscript. Metabolomics is therefore a
data-driven approach.e. a technology based on the interpretation of infdram-rich data
aimed at complementing the understanding of bickgirocesses [19].

Each individual (from every living species) owns lsteady-state equilibrium called
homeostasis. Interactions with the environment ¢expe to drugs or chemicals) or the onset
of a disease disrupts this homeostasis at diffelevels of the biological organization,
including the metabolome. The concentrations obgedous metabolites may be altered and
xenometabolites may appear. Whereas the latter ohrgously markers of exposure
(biomarker of exposure for instance), specific aignes of disease or exposure (often referred
to as metabolomic profile) could be found by thbtlkuanalysis of endogenous metabolites.

Biological markers or biomarkers are measurablermal indicators of molecular
and/or cellular alterations that may appear in egalism after or during exposure to a
toxicant and possible disease [20;21]. This dednitis used in environmental and
occupational toxicology and is larger than thatha National Institute of Health (NIH) that

focuses on drug development and defines a biomadkéa characteristic that is objectively



measured and evaluated as an indicator of norrolidic processes, pathogenic processes, or
pharmacological processes to a therapeutic intéorern22].

Biomarkers could be divided into several categotiest include biomarkers of
exposure, biomarkers of effect and biomarker o€spsbility. Biomarkers are compounds or
a set of compounds (metabolomic profile) that mbs&t quantitatively, sensitively,
specifically, and easily measurable on non-invdgiw®llected biological media [23]. A
biomarker of exposure is an indication of the omenice and extent of exposure. It depends
on the chemical fate of the exposed toxicant inkibey. The biomonitoring of exposure has
been used for a long time in occupational settigsfor the determination of lead [24] or
benzene metabolites [25] in blood or urine.

Biomarkers of (biochemical) effect(s) indicate theposure has resulted in an
interaction between the toxicant and a biologicalgét. Mutagenic and carcinogenic
substances that possess electrophilic function(s) to macromolecules such as proteins,
DNA or lipids. Hemoglobin is often used in biomaninhg because of its long life span and
ease of access. Oxidative stress perturbs the tstase®of cell and leads to the production of
specific substances such as 8-Hydroxy-2’-deoxygsiaoor to an imbalance of glutathione
pathway [26].

Biomarkers of susceptibility describe inter-indivad differences in response to
toxicants from genetic causes or from non genddic®rs (age, liver disease, kidney disease,
diet, dietary supplementation...). Polymorphisms ciivating/detoxificating enzymes have
been identified as key factors in the relationshgiween external (e.g. ambient air) and
internal exposure (e.g. urinary excretion). Hawfret al [27] demonstrated the relationship
between the urinary excretion of phenylhydroxyatigicapturic acids (a mercapturic acid
metabolite of styrene) and the genetic polymorph@nyglutathione S-transferase M1. A

similar approach, referred to as pharmacometaboknhias already been proposed to study



the response to drugs [28;29]. In this particulantext, metabolomics acts as a functional

genomics tool.

How to measure metabolites?

Because metabolites exhibit a high chemical ditygrsanging from sugars to lipids, it
is impossible to perform their analysis in biolajianedia with a single and universal
technique. The two main analytical platforms whprovide structural information relevant
for metabolite identification rely on nuclear magoaesonance (NMR) [30], or on mass
spectrometry with different ion sources and masalyaers [31-4Q] Each of these tools
provides complementary but sometimes redundantrivdtion, as emphasized by Lindon and
Nicholson [41]. Beside NMR and Gas chromatographictv were pioneering techniques for
metabolomics, liquid chromatography hyphenated tassnspectrometry (LC/MS) has
emerged as a popular and powerful tool, as shoigune 2.

Nuclear Magnetic Resonance (NMR) was one of thst fimethod used for
metabolomics [41-44]. It is a non destructive, dapand highly robust technique which
produces highly informative structural informatiadowever, NMR is less sensitive than
mass spectrometry and requires, therefore, langguats of samples. NMR is often used
without any prior separative method and does nguire development as is the case with
chromatography. However, as each metabolite ppaties to the NMR spectra, the
deconvolution of signals is often a tedious process

The development of LC/MS significantly impacted lbgical research, including
metabolomics. Initially, gas chromatography was tmy separative method able to be
hyphenated to mass spectrometry. However the ugathromatography is restricted to a
small set of biological moleculegg., those that are volatile or could be derivatiz&d.a
consequence, biological molecules of high molecwarght, such as proteins or nucleic

acids, were excluded. The situation was improvethbyintroduction of atmospheric pressure



ionization mass spectrometry (API-MS)-based tealmsq combined with liquid
chromatography which exhibit a good sensitivityghhdynamic range and versatility but also
provide soft ionization conditions giving accesstii@ molecular mass of intact biological
molecules.

One of the strengths of API-MS-derived tool is thigh diversity of analyzers
available: triple quadrupoles, ion traps, time lghit, Orbitrap and Fourier transform-ion
cyclotron resonance instruments, the three latt@viging high resolution and accurate mass
measurements. Among these technologies, high tesoluanalyzers are becoming
increasingly popular in the field of metabolomicschuse they provide (i) accurate mass
measurement, which are useful for the determinaifa@iemental composition of metabolites,
and (ii) structural information with MS/MS or seaqui@l MS' experiment, especially when
ion products are analyzed at high resolution.

The aim of this paper is to review the metaboloapproach for biomarker discovery
in the field of toxicology and clinical chemistrgy focusing on the use of LC/MS. We will
successively describe the overall process of aisafiys., data acquisition, statistical analyses
and metabolites identification), review some sempapers in the field and discuss the

perspectives of metabolomics for biomonitoring xfp@sure and diagnosis of diseases.

LC/MS based metabolomics: a practical approach

A metabolomics experiment starts with an appropratperimental design ensuring
that the data will be relevant for further biolagjianterpretation. The experimental step
begins with the treatment of the biological samplefore injection into LC/MS systems. The
resulting metabolic fingerprints are then pre-pssesl using automatic peak detection
softwares before being analyzed with appropriagssical tools. Finally, identification of the

discriminating signals is undertaken by combiningass spectrum analysis, database
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consultation and other mathematics and informatmsls. All these critical steps are

displayed in the Figure 3 and will be detailedhis tsection.

Design of the experiment

One of the issues in metabolomics is the occurrehoenfounding factors that mask
the biological phenomenon to be investigated. Thesdounding factors can be of either
analytical or biological origin and their impactshto be anticipated as far as possible by
properly designing the experiment.

Many putative confounding factors of biologicalgins have already been pointed out
in published papers: age [45], gender [46], chravlobical effects [47;48], animal species
and strains [49;50] and even environmental facsoish as diet and gut microflora [51-53].
Some of these factors such as diet vary from ofgesuto another and cannot be easily
controlled; the only possible option is to keepirtigesence in mind. Other factors such as
age and gender should be balanced throughout ttegedit groups to limit their impact on
further statistical analyses. In this contextsibf special interest to investigate the metabolic
profiles recorded from biofluids of “normal” heajtlsubjects in order to evaluate the impact
of these physiological factors on the metaboliteele [54;55]. This should underpin the use
of LC/MS based metabolomics in the clinical chemisind toxicology arenas.

Another important issue is the normalization ofuitess This is especially the case for
urine samples. Indeed, contrary to most biologiftaid or tissue samples, in which
metabolites concentration is clearly related tauwmé or quantity drawn, urinary metabolites
concentrations are very fluctuating because ofeuviolume and clearance variations. Thus,
normalization of data is necessary to compare wyimeetabolic profiles. It can be performed
by weighting the signal abundances in each sampglehb urinary volume, creatinine

concentration, osmolality or total useful MS signaicorded from mass spectra [56],
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according to the type of sample (spot urine or 2dhection) and information available
(urinary creatinine concentration or volume, foample).

Beside these biological confounding factors, amezdytissues also have to be
considered. This is for example the case with tbgging of the electrospray source which
progressively alters the detection of analytessThads to a clear discrimination between
samples analyzed at the beginning and at the emaah @xperiment which could hamper the
visualization of the biological effect of interegt.way to address this issue is to randomize

the samples throughout the sequence of injections.

Sample preparation

Metabolite extraction strongly depends on the tgpdiological mediumi(e., cell
extracts or biofluids), and also on the chemicalctires of the metabolites to be preferably
detected i(e., polar compounds or lipids). Urines samples aternojust diluted with water
before injection into the LC/MS system [57-59], wdes other protein-rich biofluids such as
plasma or cerebrospinal fluids are processed usiganic solvents such as methanol, ethanol
or acetonitrile [60;61]. The same kind of proceduneay be applied to cell samples: after
having been centrifuged to separate cells fromrmaapant, the cell pellet may be resuspended
in water/cold organic solvent mixtures and thenicated or mechanically agitated to disrupt
cell membranes [62]. Tissues have first to be duickllected and frozen by plunging them
in liquid nitrogen for example. This is followed typmogenization in cold organic solvents
such as methanol. A Folch derived extraction pat@an then be used either to clean the
polar fraction from insoluble lipids or to analybeth polar and apolar fractions [63;64].
Then, depending on the type of organic solvent dsednetabolite extraction, samples are
diluted in the mobile phase or centrifuged, evafgardo dryness and finally resuspended in a

solvent compatible with further injection into th€/MS system.
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Acquisition of metabolic fingerprints using LC/H88 systems

Initially, the acquisition of metabolic fingerpretvas performed using LC coupled to
electrospray mass spectrometers equipped with lesolution detectors such as triple
guadrupole [65;66] or ion trap [67] analyzers. Bgde means, it was possible to separate and
detect thousands of ions in biofluid samples. Hmvethe interpretation of data was limited
by both insufficient chromatographic separationd also identification issues. Indeed, it was
difficult to link an experimental mass measuredaat resolution and low accuracy to a
metabolite among many others having the same ndmiaas. These two issues have been
partly addressed by the implementation of (i) ulp@rformance liquid chromatography
(UPLC), which improved chromatographic resolutigeak capacity, and even sensitivity
[39] and (ii) high-resolution mass spectrometershsas time-of-flight (TOF) and Fourier
transform (FT) mass spectrometers.

High- and ultra-high-resolution analyzers are beiogmncreasingly popular in the
field of metabolite profiling because they providecurate mass measurements which are
useful for the discrimination between isobaric ioasd even isomers if their fragmentation
patterns are different [68], leading to the detecttof a higher number of signals than that
obtained with low-resolution analyzers. Of courgecurate mass measurements also enable
the determination of elemental compositions of telites for further identification.

Finally, it is important to check for the consistgnof analytical results before
biological interpretation. Indeed ion abundances dacrease for long-term analysis (intra-
experiment variability), but also from an experirnananother (inter-experiments variability)
because of the degradation of MS or chromatograpbparation performances [69]. This
complicates the automatic detection and alignmémeatures, and also stitching together of
datasets. A normalization step is thus required. tis end, a mixture of reference

compounds can be injected at regular intervals ssess the performances of both the
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chromatographic column (i.e.,consistency of retentimes and peak widths of reference
compounds) and the mass spectrometer during theriemgnts (i.e., consistency of mass
accuracy and signal intensity of reference compsunthe same kind of approach can also
be performed by using quality control (QC) sampilest are representative of the biological
samples to analyze [70], but this is not sufficiemhormalize peak intensities. That is why
many normalization approaches have been develapedercome analytical variability, such
as NOMIS (Normalization using Optimal selectionMidltiple Internal Standards) or CCMN
(Cross-Contribution Compensating Multiple Standdidrmalization) [71], and also to

facilitate comparison of datasets [72;73].

Automatic detection of ions

The aim is to represent the initial raw data inatrm format which is compatible with
subsequent statistical and biochemical analyseslafesformats are proprietary, a conversion
step into universal data formats such as netCDFtwdi& Common Data Form -

www.unidata.ucar.edu/software/netdd74] or mzXML [75] are required before runningeth

data processing. A typical processing pipelineudes filtering, feature detection, alignment
and normalization. This can be achieved by usirdicd¢ed commercial, or free and/or open-
access software, as already reviewed by Katajamala [g6]. In the latter case, it is possible
to have access to the algorithm and to modify @rowe them. This is for example the case
for XCMS [77;78] and MZmine [79].

These software tools also differ by the implemerategdroaches. While the subtraction
of the background noise often relies on filterinigoathms classically used in signal
processing, large differences are observed atetved bf the detection and alignment of the
signals. As an example, the detection of peakshgesed in both the retention time and m/z
dimensions in an independent way with the softwarBlzmine (http:

//mzmine.sourceforge.net/) [79], whereas KhetchedFilteralgorithm of the XCMS software
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detects the ions from m/z windows [77]. As an alive of binning approaches, the
centWavealgorithm, which is also part of the XCMS softwaperforms a two-dimensional
feature detection by using a combination of a dgrnisased technique to detect regions of
interest in the m/z domain, and a Wavelet basedoapp to resolve chromatographic peaks
[78]. At the opposite, other tools such MathDamp(http:// mathdamp.iab.keio.ac.jp/) [80]
make a comparative analysis from the original elathout any signal detection step.

Limited information about the validation of sigrdgtection softwares is available in
the literature. The main reasons are that mosthef dignals present in the metabolic
fingerprints remain uncharacterized and the resafitan automatic detection procedure of
metabolites may be impacted by both the type dfunsent and the biological medium. As a
consequence, users have to evaluate the softwHrehgir own criteria in order to select that
or the most suited one(s) regarding their instrushand the biological matrix.

Tautenhahn et al. proposed an interesting appréacbvaluate signal extraction
software. It is based on the estimation of threeupeters: the recall, which measures the
fraction of relevant features that are extractedhwsy algorithm, the precision, which is the
percentage of relevant items compared with thes fatssitives, and the run time, which is the
time required for the algorithm to achieve featdegection from a given data set [78].
Actually, many artefactual signals are presenthm data matrices following automatic data
extraction and signal alignment. They have beeruated as around 400 for 100 relevant
features [78]. One way to address this issue etorm serial dilution of QC samples and

select the features whose levels are correlatétetdilution factor [62;78].

Statistical analyses

As for transcriptomics or proteomics, metabolomiglées on differential analyses of
metabolic fingerprints which lead to a semi-quatite expression of the resultge(,

decreased or increased area or intensity ratios)it Aappears difficult to handle and to
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compare data sets which contain several hundredhdosands of signals, multivariate
statistical analyses are required to addressdbigei[81] (Figure 4).

Data exported from automatic peak detection sofwapls have first of all to be
scaled. A typical procedure relies on unit variascaling: the variables are centered and
divided by their standard deviation. This gives exjual weight to signals exhibiting very
different abundances. However, in some case, tlaig l@ad to a dilution of the analytical
information of biological relevance and other meth@uch as pareto-scaling (the variables
are centered and divided by the square root of #t@ndard deviation) may be preferred.

Once the data have been scaled, a preliminary stem relies on the use of
unsupervised analyses such as principal compomatysas. This descriptive method does
not require any information about the nature of @as It enables to visualize the
organization of the original data in a two or thréienensional space by reducing the
dimensionality of complex data sets. Explicativealgges are then performed by using
supervised tools such as PLS (projection to latgniictures or partial least squares)
regression, PLS-discriminant analysis (PLS-DA), more recently OPLS (Orthogonal
Projection on Latent Structure) in order to faaii the isolation of the ions responsible for
the discrimination between groups [82].

Finally, a clear distinction has to be done betwexgnloratory studies that try to reveal
new biomarkers whose biological relevance has tedtablished, and predictive studies that
aim at classifying unknown subjects and for whilct issues of statistical powerfulness and

validation are critical [83].

Identification

The metabolite identification process using atmesighpressure ionization mass
spectrometry-based tools starts with the interpiceteof the mass spectra in order to ensure

that the signal of interest really corresponds tm@oisotopic ion and not to an isotope,
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adduct or ion product generated during the iorazatprocess. Several informatics and
mathematics tools are available for that purposeyTare grouping the signals related to
given metabolites according to (i) specific masfedences corresponding to isotopes,
adducts, and product ions, and (ii) the correlaibetween the intensities of pairs of ions,
either across several spectra within a sample mysacall samples where the signals are
observed [59;84;85] (Figure 5).

One or few relevant elemental composition(s) is/deeluced from accurate mass
measurements if high or very high resolution mgssctsometry is available, for further
database queries. Collision induced dissociatiotD)Cspectra are then acquired and
interpreted in order to get information about thernical structure. At this stage, chemical
database queries may be refined and the highligtdetpounds, if any, are kept for further
consideration or ruled out based on chromatograptention time and CID mass spectra
information. Complementary experimenise( other sequential MSexperiments or H/D
exchanges) may be required before obtaining orhegiting the reference compounds.
Finally, formal identification is achieved when timetabolite to be characterized exhibits the
same retention time and CID spectra than thoskeofdference molecule.

In the Metabolomics Standards Initiative [86], Semmand al. have reported four
different levels of identification according to thrdormation provided :

(i) Identified compounds: a minimum of two indedent and orthogonal types of data
relative to an authentic compound analyzed undemtidal experimental conditions. In MS-
based techniques this could include: retention Aimdex and mass spectrum, or accurate
mass and tandem MS.

(i) Putatively annotated compounds: without cheahireference standards, based
upon physicochemical properties and/or spectrallaiity with public/commercial spectral

libraries.
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(i) Putatively characterized compound classesased upon characteristic
physicochemical properties of a chemical classarhmounds, or by spectral similarity to
known compounds of a chemical class.

(iv) Unknown compounds: although unidentified oclassified these metabolites can
still be differentiated based upon spectral ddwas enabling relative quantification.

Mass spectrometry experiments alone may be suificrehen the metabolites to
characterize are well described in databases, coomtig available and discriminated from
isomers thanks to an adequate chromatographicat@paand/or characteristic MSpectra.

In this case, identification is achieved by matghihe retention time and CID spectra of the
compound of interest to those of the putativelyated synthetic reference molecule.
However, in many cases, the metabolites of inteaestnot reported in any biochemical or
metabolomic databases and additional analyticads teach as NMR cannot be used due to a
lack of sensitivity and/or insufficient chromatoghac separation. The only solution is then to
perform a careful and precise interpretation of C3pectra combined with additional
experiments such as H/D exchange in order to peon@lv structural hypotheses that have to

be assessed by further chemical synthesis [85].

Selected applications in the field of toxicology
Toxicology aims at studying adverse effects of cicata (xenobiotics) on living

organisms. The toxicity of a given compound refersts ability to disrupt some biological
functions at a certain level of biological organiaa (i.e., cell, tissue, or organ). It is related
to the amplitude and the duration of the exposuarkaso to the degree of absorption of the
substance by the organism, its distribution, brmfarmation and elimination or
accumulation. Understanding the mechanism of actexent is a challenging task, especially
in the field of drug research and development. édgéarget organ toxicity remains an issue

and idiosyncratic toxicity, which refers to indival susceptibility in drug induced toxicity, is

18



often not detected before the drug has been om#rnket (Rofecoxib [87], Rimonabant [88]).
Many in vitro, cell and animal models are designed to addresetlissues, but they may not
be easily extrapolated to human. Biomarkers aréubise predict a toxic event before the
occurrence of clinical events (biomarkers of eafiect), to evaluate the severity of the
poisoning (biomarkers of effect), and also to mamiexposed patients (biomarkers of
exposure). This is another challenge because therrence of adverse effects has multiple
origins including host environment interactions tthare difficult to be caught using
conventional approaches for biomarker discoveryctvlare focused on limited biochemical
and metabolic aspects.

By achieving a global detection of molecular eveatsthe different levels of
biological organization, omics approaches may m®vianswers to these issues, as
emphasized by early proof-of-concept studies inctmyenomics [27], transcriptomics [89]
and proteomics [90]. Metabolomics, which enablesdok homeostatic disruptions and host-
environment interactions, is of particular inter@stthis context. Pioneering studies using
NMR have already been published and also review@&l9;44;91-96], and the consortium
on metabonomic toxicology (COMET), coordinated hg tmperial College and including
pharmaceutical companies, has started to develperexnodels for the classification of
toxicity based on 1H-NMR analysis [19]. Howeverneoof them have ever been published
until now. The development of LC/MS in this field tielatively recent. Several publications
illustrating metabolomics applications in the figtitoxicology are displayed in the table 1.
They address biomarker discovery, predictive modets mechanistic considerations mainly
in the field of hepato- and nephrotoxicity by usimgpdel toxicants. The input of LC/MS

based approaches will be reviewed and discussiisisection.
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LC/MS based metabolomics for toxicity biomarkessaovery.

Many studies are performed using different anadytgatforms, such as 1H-NMR,
GC/MS and LC/MS in order to maximize the metabotietection coverage. Most studies
attempt to address the issue of organ toxicity aimd at finding metabolite concentration
changes related to the toxicant, occurring befdirecal or histopathological detections and
being more specific than conventional biomarkershsas alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) enzyme aeswvir bilirubin for hepatotoxicity, or
blood urea nitrogen (BUN) for nephrotoxicity.

Among these studies, acetaminophen (also knoviasetylp-aminophenol, APAP)
is frequently used as a model drug for hepatottxkidt is cleared from the body through
hepatic glucuronide and sulphate conjugation. Hamewm case of overdose, these metabolic
pathways are saturated and reactive metabolites agacN-acetyl-p-benzoquinone imine
(NAPQI) are produced. NAPQI reacts with glutathig®SH) to form a conjugate, which is
subsequently degraded to a mercapturic acid demvahat can be detected in urine.
However, NAPQI can also oxidize glutathione andum be reduced back to paracetamol
[97]. When the GSH pool is depleted, NAPQI reactshwcell macromolecules. This
mechanism is supposed to be one of the explandbormepatic necrosis recorded in cases of
APAP poisoning.

Sun et al. (2008) investigated the acute and cbromicity of acetaminophen on male
Sprague-Dawley rats by metabolomics using NMR aRdL@ coupled to an electrospray Q-
TOF mass spectrometer [98]. Metabolic changes waaiched up with histopathological
observations and others markers of liver injuryse ALT, AST and bilirubin) to highlight
metabolites related to APAP induced toxicity. Netsovas not observed in the course of the
chronic study and was only detected at the highese (.e., 1600 mg/kg) of the acute study

at the 48 h time point. Urinary metabolite concatdn changes were observed in both acute
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and chronic studies from the 400 mg/kg dose. BotiRNand UPLC/MS pointed out
depletions of antioxidants and energy metaboliié® decrease of 1-methylnicotinate levels
observed by NMR was of particular interest becdhisemolecule is linked to the glutathione
biosynthesis pathway (this metabolite is producedring the conversion of S-
adenosylmethionine to S-adenosylhomocysteine). ddwease of urine 1-methylnicotinate
concentration could be related to the depletionSeddenosylmethionine observed by the
authors using a targeted LC/MS/MS assay.

These results have been confirmed by another shatyfocused on the regulation of
the trans-sulfuration pathway in liver toxicity abtions using NMR, LC/MS, and also gene
expression data: the expression of genes involwedhé trans-sulfuration pathway was
decreased in the liver, whereas taurine, creatiobsefved by NMR) and S-
adenosylmethionine (observed with LC/MS) levelsevieicreased in urine following APAP
administration to rats [99].

One of the strength of LC/MS-based metabolomicthéspossibility to detect many
xenobiotic related metabolites thanks to its higims#tivity. Sun et al. detected 6 APAP
metabolites in rat urine and concluded that appnaxely 95 and 65 ions were related to
APAP metabolites in negative and positive modespeetively. They decided to remove
these signals in order to facilitate the observatid endogenous metabolites whose levels
were altered following APAP administration [98]. Wever, some of these so-called
xenometabolites can also provide the toxicologigh wnechanistic information about drug
toxicity and thus being used as biomarkers. Inllaiang study, Sun et al. [100] investigated
the excretion kinetics of APAP metabolites in rehe and observed that the concentrations
of the APAP-N-acetylcysteine conjugate exhibitesigmificant correlation with AST activity,

bilirubin, creatine and histopathological obsermas, and a significant anticorrelation with S-
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adenosylmethionine levels, suggesting that it igoad indicator of APAP-induced liver
injury.

Although urine is the biofluid of choice for metdbmics (easily sampled, simple to
analyze and providing investigators with informati@about polar metabolites including
energy metabolites and xenometabolites) complementdéormation about lipids can be
obtained from other biological media such as plaskma example, using a LC/MS-based
metabolomic approach, Chen et al. detected an adation of long chain acylcarnitines in
plasma from APAP treated mice [101]. This was @icéd by the concomitant observation of
increased free fatty acids and triglycerides plakwals using colorimetric assays. Thanks to
additional experiments performed on CYP 2E1 and RPAull mice, the authors concluded
that inhibition of fatty acid3-oxidation through the suppression of PRARctivation is a
contributing mechanism of APAP-induced hepatotayieind that long chain acylcarnitines
could be early biomarkers of APAP hepatotoxicitgttnay complement the measurements of

GSH levels and serum AST or ALT activities.

LC/MS-based metabolomics for the building of prisadicmodels of toxicity.

Beside biomarker discovery, other studies repagt development of metabolomic-
based approaches for predicting and classifyinferdiit modes of toxicity. This is for
example the case with La et al. in the field ofmlwal-induced hepatotoxicity [102]. They
applied LC/MS to analyse urine samples of ratstecavith four different hepatotoxins: R-
naphthyl isothiocyanate (ANIT), carbon tetrachleri@CClL), APAP, and diclofenac. They
found specific patterns of metabolites concentratibanges that were characteristic of each
hepatotoxin and managed to build a mathematicaletnachibiting predictability higher than
95% by using linear discriminant analysis and sodiependent modelling of class analogy
with residual distance. However, it is challengitogdetermine whether these patterns of

metabolite concentrations are specific of a modeodjan toxicity (.e., necrosis or
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cholestasis), or rather of compounds or chemicalilf@s. To address this issue, several
toxicants exhibiting different chemical structurbaf the same mode of organ toxicity should
have been included in the experimental protocothSan approach has been performed by
Boudonk et al. in the field of nephrotoxicity.

Boudonck et al. [103] reported on a metabolomicestigation on 3 drugs
(gentamicin, cisplatin and tobramycin) inducingox@mal tubule nephrotoxicity. Urine and
kidney were collected after one, five and twentyheéidosing days and the samples were
analyzed using GC and LC/MS. About 30% and 70%hefrhetabolites observed in kidney
extracts were detected by GC/MS and LC/MS, respagti whereas half of them were
measured by both techniques in urine. Increasesmimo-acids and polyamines were
observed in urine and decreases in purine and minennucleosides were detected in kidney
tissues before observable kidney injury by conwera histology and clinical chemistry
tools. Urinary metabolites exhibiting significarttamges with all 3 drugs, such as branched
chain amino-acids, hippurate and glucose at daw@& then selected to build a predictive
model based on classification trees in order tdiptéhe onset of the nephrotoxicity at days 1
and 5.

Van Vliet et al. developed am vitro model to evaluate neurotoxicity based on rat
primary re-aggregating brain cell cultures followeyg LC/MS-based metabolomics [104].
Cell cultures were exposed to the neurotoxic methgrcury chloride (MMC) at
concentrations ranging from 0.1 to 100uM or tolthein stimulant caffeine at concentrations
ranging from 1 to100uM. The occurrence of cytotayievas assessed by the detection of an
increased activity of the lactate dehydrogenaseH)LID the culture media. No neurotoxicity
was observed with caffeine, whereas it occurreanfrb uM with MMC. Interestingly,
differences in metabolite concentrations were olexkeibetween control and MMC exposed

sample, as emphasized by concentration dependestérd observed on principal component
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analysis score plots. The concentration of five aielites was either increased (creatine,
spermine) or decreased (glutamine, GABA and chplime MMC samples, and these
metabolites were found responsible for this clusterTo evaluate their model, van Vliet et
al. tested 8 compounds exhibiting different modiesrgan toxicity. On the PCA score plots,
controls and hepato- and nephrotoxic compounds \paré of the same cluster whereas

neurotoxic compounds were clearly individualized.

Toward mechanistic considerations

Williams et al (2005) showed the value of using bEsed metabonomics for
elucidating the mechanism of toxicity of D-serinerat. D-serine is a nephrotoxic amino acid
that causes selective necrosis of renal proximallaucells in rats [105] by an unknown
mechanism. Using 1H-NMR, Williams et al. [106] slemivthat D-serine-induced kidney
tubular damage was associated with proteinuriagagiuria and aminoaciduria, which have
already been described as unspecific markers aildulmephrotoxicity. Further LC/MS
analyses led to the identification of several melitds (hydroxypyruvate, glycerate, sebacic,
xanthurenic and methyl succinic acids, acyl cammitithat had not previously been detected
by 1H NMR [107]. Interestingly, glycerate and hyxlypyruvate are produced from serine by
the peroxisomal enzyme D-amino-acid oxidase (D-AADhe authors hypothesized that
hydroxypyruvate generates hydrogen peroxide, wimdhces a peroxisomal oxidative stress.
The resulting peroxisomal dysfunction leads to eased fatty acid metabolism and
oxidation, as emphasized by the observation ofedesad levels of the dicarboxylic acids such
as sebacic and methylsuccinic acid, and acylcamitOf note, a relationship between
tryptophan catabolism and peroxisomal metaboliss dleeady been reported [108] and is
consistent with the perturbations observed inghisly: increased excretion of tryptophan and
decrease of xanthurenic acid and other TCA cydkrimediates. Finally, it has been shown in

another study that the co-administration of D-seriand sodium benzoate, a potent
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competitive inhibitor of renal D-amino-acid oxidageevents kidney injury, thus confirming
the implication of this enzyme in the mechanisntoaicity [109].

Finally, new insights into mechanisms of toxicityllyprobably be obtained through
the coupling of classical histological and biocheshtools with other more recent omics and
imaging approaches. In this context, a collaboeatigsearch effort in molecular system
toxicology has been launched by the FDA's NatidPeter for Toxicological Research and
BG Medicine Inc. It is supported by 7 pharmaceliticempanies and 3 technology providers
and aims at investigating drug induced liver tayicT hree days and twenty-eight days dosing
studies are performed on related compound paicijding a "clean” compound and a toxic
one in order to highlight off-target molecular respes. Proteomics, LC/MS-based
metabolomics and gene expression data are obtdioed liver extracts, proteomics and
LC/MS based metabolomics are obtained from plasramptes, and NMR based
metabolomics experiments are performed on uringpknThese data are then confronted
with histology and classical clinical chemistry oPreliminary findings are reported in a
publication in which the performances of the anefjtplatforms on a first compound pair

(entacapone and tolcapone) are presented and skst[isl 0].

Selected applications in the field of clinical cherstry

Clinical chemistry deals with any analysis perfetmon body fluids for medical
purpose, including disease diagnosis and follow-amg also therapeutic drug monitoring.
MS-based approaches are used in clinical laboesteince the 1970s [111]. Most of them are
targeted methods focusing on particular metabobteshemical families. Currently existing
tandem MS methods are used to carry out neonatakrsag analysis using the same
principles as metabolomics{American College of Medli Genetics/American Society of
Human Genetics Test and Technology Transfer Coreeniorking Group, 2000 459 /id}.

This is ultimately the tangible use of MS-derivescdvery of novel biomarkers. Now,
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technological and bioinformatical improvements ¢iist last decade have enabled the
implementation of MS-based global approaches, nametabolomics, in the field of clinical
chemistry. Table 2 displays some key applicatiohdM&-based metabolomics to clinical
chemistry. They address different medical area® sisccardiology, transplantation, human
reproduction, diabetes, central nervous systenadéese or oncology.

Thanks to the versatility of API-MS-based tools, #d&ed metabolomics offers the
possibility to provide chemists and physicians witltious snapshots of different biological
media such as plasma, urine, cerebrospinal fluddB, extracts or tissue extracts obtained
from biopsies, as shown in table 2. These snapshaisfocus on concentration changes of
selected metabolites sometime occurring at tracddeTriple quadrupole mass spectrometers
operated in the selected reaction monitoring madetlae instruments of choice for such
targeted approaches thanks to their sensitivityapSihhots may also focus on particular
metabolite families such as carnitine speciesmddi In the first case, the selectivity of the
detection may be brought by MS/MS detection, thaokthe constant neutral loss or parent
ion scanning modes that are available on tripledgyaole instruments, whereas, in the
second situation, it is rather obtained by speaéimple treatment procedures, such as Folch
extraction [112]. At last, the pictures may provitie user with an overview containing many
features related to both genetic and environmecdalributions ie., diet, lifestyle, gut
microbial activity, drug intake, and exposure to stprdes, plasticizers or food
preservatives...). The terminology of global approhak been coined for this kind of picture
and high and ultra-high resolution mass spectrometge the most frequently used
instruments in this context. These aspects willdiszussed in this section with selected
applications.

In targeted approaches, metabolites are select#ldl negards to their biological

relevance to the field of investigation, or becalls are representative for known metabolic
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pathways. Metabolites exhibit very different sturets and several analytical methods may be
used in parallel for their detection. Sabatinelef1l43] and also Lewis et al. [114] used 3 LC
columns for sugars and nucleotide, organic acidsaanino-acid analyses, whereas Turer et
al., used colorimetric methods to detect glucosetate, free fatty acids and pyruvate, and a
MS-based method to profile amino-acids and camitlerivatives [115]. Several tens to
hundreds of metabolites may be detected using MSAWSlysis performed on triple
quadrupole instruments in most cases. These mé&hare mainly amino-acids, sugars,
organic acids involved in central and energetic ainelism, and also lipids (carnitine
derivatives and phospholipids).

Shaham et al. conducted a 3 steps study to hightigdtabolic disorders linked to
respiratory chain dysfunction [116]. They startedwork on a cell model of chemical
inhibition of the respiratory chain by applying IMS/MS using a triple quadrupole device
and also 1H NMR. Among the 191 detected metaboliteE C-MS/MS, the levels of 32 of
them were found to be altered by the RC inhibitidhis was for example the case for
alanine, lactate (both current biomarkers of RCgdicose, creatine and others TCA-cycle
intermediates. In the second step, they screenedhmyplasma from two cohorts of patients
with pathogenic mutation or abnormally low resporgit chain enzyme activity in muscle
using the LC-MS/MS method. Concentration trendsilaimmo those observed in culture
media were found in the first cohort (16 patientd 25 controls) for 26 of the 32 metabolites
previously pointed out. The levels of lactate (+%d)/alanine (+46%), creatine (+233%) and
uridine (-24%) were significantly different betweeatients and controls. To confirm the
huge increase in creatine in plasma samples fromerpa suffering of a respiratory chain
dysfunction, a second independent cohort (14 patiand 4 controls) was analyzed using
another LC-MS/MS method. Increased concentratidnsreatine (201%) were observed in

patients whereas alanine and lactate levels didigatficantly differ. This study suggests that
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plasma creatine levels are more powerful biomarkérsespiratory chain dysfunction than
alanine or lactate. Actually, creatine (Cr) is certed to phosphocreatine (PCr) by creatine
kinase in the presence of ATP and the PCr/Cr balagitects the cell energy state. In case of
respiratory chain dysfunction, the low energy statkes that low intracellular ATP and PCr
concentrations are observed, together with an agtaiion of intracellular Cr which leads to
an increased excretion of Cr in the extracelluladimam.

Oresic et al. reported on an ongoing cohort ofdceih who progressed to type 1
diabetes [117]. They analyzed serum metabolitesregéround the time and after conversion
using an UPLC/Q-TOF for lipid profiling and two déamsional gas chromatography coupled
to a TOF mass spectrometer for polar metabolitd$hodgh the mass detection was
performed on a large mass range, these authordedketo keep only identified metabolites,
i.e,, 53 lipids and 75 metabolites, for further statetanalyses and biological interpretation.
Results show that children who developed diabeéek rhetabolic perturbations before and
during conversion such as increased levels of lysgphatidylcholine, GABA, glutamic acid
and leucine and decreased levels of succinic aPid, ketoleucine and glutamine.
Normalization of profiles after the conversion icaties that those metabolic dysregulations
precede B cell autoimmunity and disease onset. iftexdependence of metabolic and
immune system factors raises many questions, imguthe possible role of choline and
intestinal microbiota in lipid dysregulation, oragimalogen and oxidative damages toward B
cells. However, tissue-specific mechanisms behiethbolic disturbances remain unclear: is
the autoimmunity a physiological response aimerkstioring the metabolic homeostasis, or
do metabolic dysregulations reflect an early staigéhis immune response toward the B cell
autoantigens that are not yet detectable?

Few papers using untargeted LC/MS based approarchdbe field of clinical

chemistry have been published. Two of them addresgssue of cancer biomarker discovery.
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Sreekumar et al. applied MS-based metabolomicsnimateempt to identify biomarkers for
non-invasive diagnosis and prognostic cancer imvaand disease aggressiveness [118]. To
this end, they analyzed with two complementary @@ BC/MS methods the concentrations
of several hundreds of metabolites across 262 gimstlated samples (42 tissues extracts,
110 plasma and urine samples from biopsy-positiereegative prostate cancer patients). As
amino acid metabolism and methylation of biomolesulvere known to be involved in
prostate cancer progression, they focused on méesof these pathways the levels of
which were found increased in tissue samples framcer patients. This was the case for
sarcosine, a N-methyl derivative of glycine, whislas significantly increased in tissues
during disease progression from benign diseaseefanthble) to metastatic stage (higher
levels than in organ-confined disease). Howeverpitoong sarcosine levels in prostate
tissues appears of limited interest because hgppol® already available and more powerful
for the diagnosis and the prognosis of cancer. authors then decided to turn to urine and
found out that sarcosine was detectable but oatuatetrace levels, with a modest but
significant predictive value (more sensitive thaBAp for prostate-cancer diagnosis and
disease progression. Beside the discussion abothylagon and sarcosine, many other
discriminating metabolites, identified or not weret taken into account. One reason for that
is the lack of appropriate tools to visualize aydtlsesize omics data sets.

Richie et al. [119] applied both targeted and nargéted metabolomics-based
approaches in order to identify non invasive bidmes of colorectal cancer (CRC). They
started with a large-scale study on serum sampta® fseveral populations of different
origins. Discriminating metabolites common to CRG@tignts whatever their ethnic or
geographic origin were highlighted using a none¢ged FT-ICR MS-based method combined
with statistical analyses. A group of metabolitbe tevels of which were dramatically

decreased in the 3 populations was pointed outtleariks to the high resolution and accurate
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mass measurement, the authors attributed a mamssléoto each signal and noticed that these
molecules belong to the same family. Then, theyop@ed MS/MS experiments using a Q-
TOF instrument and identified the molecules of ies¢ to be hydroxylated polyunsaturated
ultra long-chain fatty acids. This was further donked by NMR experiments and MS/MS
analysis of reference compounds. Finally a semntjadive method was developed on a
triple quadrupole instrument operated in the setkceaction monitoring mode for biomarker
validation purposes.

Finally, although results from exploratory studieghe field of clinical medicine are
promising, many of them should be cautiously intetgd. Indeed, many published studies
involve reduced cohorts. This limits the power tEitistical analyses andrther isolation of
discriminating ions. Furthermore, even thought suchs are underlined, their formal
identification and the demonstration of their bgital relevance will be required for further

medical applications.

Conclusion and perspectives

The metabolome is characterized by a large diyedadichemical structures requiring
diverse analytical platforms to reach its extensiveerage. NMR has been extensively used
since the beginning of metabolomics, whereas tleeofid C-MS has progressed and is now
very popular because it is versatile, sensitive lankdgs complementary information about
biomolecules such as peptides and lipids. The dithis review was to introduce LC/MS-
based metabolomics and to present and discusspgdigations focusing on toxicology and
disease biomarkers. Whereas the published appinsain the field of toxicology still remain
proof-of-concept studies, due to the complexity andltifactorial origin of toxicity, the
situation seems different in the field of clinicgthemistry for which multiplexed targeted
approaches provide the clinician with informatiamfew tens to hundreds of metabolites by

using MS/MS analysis performed on triple quadrupamlass spectrometers. Furthermore,
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recent improvements in mass spectrometry have wegrthe efficacy of global approaches
by facilitating the identification of metabolited mterest thanks to high resolution and
accurate mass measurements.

From a technical point of view, metabolomics is tb@mbination of analytical
chemistry, statistics and bioinformatics tools thia used separately or together to perform (i)
sample preparation, (ii) acquisition of metaboirgérprints, (iii) automatic detection of ions,
(iv) statistical analyses and (v) identificationowkver, despite recent technological and
conceptual improvements, metabolomics appears #tilban its infancy and each step that is
mentioned above is a bottleneck in itself. Howdoederate metabolomics studies is therefore
a titillating issue.

Three major pitfalls must be highlighted: (i) ariadgl issues such as the difficulty to
compare experiments one to another (developedeiriAbquisition of metabolic fingerprints
using LC/ESI-MS systems{ii) the amount of information generated by metamics and
(i) the lack of chemical repositories designed oetabolomics studies.€., a central open
source of mass and CID spectra acquired with varinstruments in different laboratories)
that will be helpful in the identification of digorinating signal.

Metabolomic analysis processes generate, espeatltiie output of automatic ion
detection, large matrix of data containing tensholusands of variables (m/z-retention time).
The reduction of data could be performed by takanlyantage of signal redundancy, as
previously explained. However, the main part of tindormation remains, until now,
unexploited. The only alternative should be theeysitic (and automatic) identification of
all signals. This is actually one of the major rdétermining steps of metabolomics. The data
sets obtained from high and ultra-high resolutioassnspectrometry can be processed by
informatics tool for automatic query in metabolimdametabolomic public databases with the

measured accurate masses. Although such annotatiensseful to start with biological data
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interpretation, they have to be confirmed by a fthneterpretation of the mass spectra, as
shown in figure 6.

The bottom of the figure 6 displays a peak listra&ott generated by an automatic
detection software from a LC/MS based metabolommalysis of human cell extracts.
Putative annotations of signals are provided infélieth column. They have been obtained by
matching the experimentally measured masses witbetlof metabolites contained in public
databases such as HMDB [120], KEGG [121] and Mdli22]. They indicate the putative
presence of spermidine, diaminopropane, 3-butemibe 1-Methylpyrrolinium and
cyclopropylamine in cell extracts. Another annatatusing a home-made spectral database
confirmed the presence of spermidine, but shows 3haf the other annotations are erratic
because the related ions actually correspond tgioducts of spermidine generated in the
electrospray source during the desolvation procass.example highlights the complexity of
API-MS-based data sets and a thorough inspectionast spectra requiring spectral libraries
is necessary before biological interpretation.

Two different kinds of libraries are available #8PI-MS-based metabolomics: mass
spectral and CID mass spectral libraries. The mgldbf the first ones relies on careful
interpretations of mass and CID spectra of refexecmmpounds. They aim at annotating
biological datasets, as shown in figure 6, whetbaslatter are useful to confirm peak list
annotations and to characterize unknown compoumtiese libraries should be shared
between users in order to make metabolite ideatiba in various biofluids effective.
Unfortunately, API-MS exhibits poor reproducibilisnd high inter-instrument variability in
the generation of fragmentation patterns, thus leaim@ the constitution of universal
databases as done with electron ionization massrepeetry [123] or with NMR [124].

Despite these limitations, databases containiRgmass spectra combined with CID

spectra such as HMDB, Metlin, mass bank from métabe.jp, and lipid maps are beginning
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to be released. However, the use of such speatreofoparison and identification must be
performed carefully and may lead to erroneous te$85]. This issue of spectral comparison
begins to be addressed. For instance, Palit pt@bosed a fragmentation energy index for the
normalization of collision energy [125] which is vegtheless restricted to ion trap
instruments. Oberacher et al. designed a multicestbely in which 22 test compounds (drug
standards) were sent to three different laborapnehere 418 tandem mass spectra were
acquired using four different instruments from twanufacturers including Q-TOF, triple
quadrupole, Q-Trap and FTICR mass spectromete®].[TAD mass spectra were recorded
without any standardization of experimental comdié and they were matched against a
reference library using a sophisticated matchirgprathm [127]. The high percentage of
correct assignments suggests that it is possibleotopare CID spectra obtained from
different instruments and laboratories. The pobsibdf sharing CID spectral libraries and
also MS data set repositories should improve tlagadterization of unknown metabolites of

toxicological and clinical relevance.
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Tablel: MS-based metabolomics applications in toxatogy

Experimental conditions

Topic

Application

Biologicaedium

comment Reference

HPLC(C18)/QTOF-MS
HPLC(C18)/QTOF-MS
HPLC(HILIC) / IT-MS
HPLC(C18)/IT-MS

HPLC(C18)/QTOF-MS

UPLC(C18)/QTOF

UPLC(C18)/IT-MS

HPLC(C18)/QTOF-MS

UPLC(C18)/TOF-MS

UPLC(C18)/TOF-MS

UPLC(C18)/QTOF-MS

Mechanistic
considerations

Mechanistic
considerations

Mechanistic
considerations

Mechanistic
considerations

Mechanistic
considerations

Mechanistic
considerations

Avristolochic induced
nephrotoxicity

Avristolochic induced
nephrotoxicity

CCl, induced hepatotoxicity Rat urine

Fenofibrate-induced
hepatotoxicity

Rat urine and plasma

Rat urine and plasma

Chan et Al. 2008
[128]

Chan et Al. 2008
[129]

Lin et al. 2009
[130]

Additionnal GC/MS experiments Ohta et al. 2009
[131]

D-serine induced Rat urine

nephrotoxicity

Previous study by 1H and 31P NMRWilliams et al.
(Williams et al. 2003) 2005 [48]

Acetaminophen-induced  Mouse serum Chen et al. 2009
hepatotoxicity : role of [101]
PPARa

Mechanistic Ochratoxin A induced Rat urine Additionnal GC/MS and 1H NMR  Sieber et al. 2008
considerations anchephrotoxicity experiments [132]
biomarker
discovery

Mechanistic mercuric chloride induced Rat urine Additional 1H NMR experiments Lenz et2d104
considerations anchephrotoxicity [133]
biomarker
discovery

Biomarker Acetaminophen Rat urine Additional 1H NMR experiments Sun et28109
discovery hepatotoxicity [100]
(xenometabolome)

Biomarker Acetaminophen Rat urine and serum  Additional 1H NMR experiments  un 8t al. 2008
discovery hepatotoxicity [98]

Biomarker Doxorubicine toxicity Rat urine Wang et al. 2009
discovery [58]
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UPLC(C18)/QTOF-MS

HPLC/LTQ-Orbitrap-MS
UPLC(C18)/TQ-MS

HPLC(C18)/QTOF-MS
and QTRAP-MS

HPLC(C18)/QTRAP-MS
HPLC(C18)/QTOF-MS
UPLC(C18)/QTOF-MS

UPLC/TQ-MS

HPLC(C18)/IT-MS

direct introduction/TQ-MS Predictive model

HPLC(C18)/TQ-MS

Biomarker
discovery

Biomarker
discovery

Biomarker
discovery

Biomarker
discovery

Biomarker
discovery

Biomarker
discovery

Biomarker
discovery

Predictive model
and biomarker

discovery

Predictive model

Predictive model

Tolcapone toxicity

Liver Toxicity Biomarker

Drugs-Induced
Hepatotoxicity

Detection of mercapturic
acid metabolites of
acetaminophen

Detection of mercapturic
acid

Cyclosporine A induced
nephrotoxicity

lonizing radiation

CCl, and ANIT induced
hepatotoxicity

Drug-induced
nephrotoxicity

Methyl mercury chloride

induced neurotoxicity

Rat urine

Sun et al. 2009
[134]

Rat urine, plasma andrargeted: lipid, AA and polar LC-MS McBurney et al.

liver
Rat urine

Human urine

Human urine

Rat urine

Human cells

Rat serum

Rat urine and kidney

Rat brain cell cultures

Drug-induced hepaticity Rat urine

metabolomics
Additional 1H NMR experiments

Additional 1H NMR experiments

Targeted on bile acids

Additionnal GC/MS experiments

2009 [110]

Schnackeghst
al. 2009 [99]

Wagner et al.
2006 [135]

Wagner et al.
2007 [73]

Lenz et2l04
[136]

Patterson et al.
2008 [137]

Yang et al. 2008
[138]

Boudonck et al.
2009 [103]

Van Vliet et
al.2008 [104]

La et al. 2005
[102]
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Table 2: MS-based metabolomics applications in clinal chemistry

Experimental conditions Topic Application Biologicaedium comment Reference
UPLC(HILIC, C18)/IT-MS Cancer Kidney cancer Human urine Additional GC/M§Beziments Kind at al. 2007
[139]
HPLC(HILIC)/IT-MS Cancer Kidney cancer Human urine Kim et al. 2009
[140]
Cancer Woman's cancer (breast, Human urine Targeted on hormones and Woo et al. 2009
ovarian, cervical) nucleosides. Additional GC/MS [141]
HPLC(C18)/IT-MS experiments
Cancer Breast cancer before and Human urine Targeted on nucleosides Cho et al. 2009
HPLC(C18)/IT-MS after tumor resection [142]
Cancer Breast cancer Human urine Targeted on raideED Cho et al. 2006
HPLC(C18)/IT-MS [143]
HPLC/IT-MS Cancer Breast cancer Human urine Tayetenucleosides Frickenschmidt at
al. 2008 [144]
HPLC(C18)/TOF-MS Cancer Ovarian cancer Human serum Guan et al. 2009
[145]
HPLC/IT-FT-MS Cancer Prostate cancer Human plasmae Additional GC/MS experiments Sreekumar et al.
and tissue 2009 [118]

HPLC(C18)/QTOF-MS or Cancer
TQ-MS, and Direct
introduction/FTICR-MS

HPLC(C18)/QTOF-MS Cancer
UPLC(C18)/ITOF-MS Cancer
HPLC(C18)/TOF-MS Cancer
Direct introduction or Cancer

HPLC/QTRAP-MS

Colorectal cancer

Bladder Cancer
Colorectal cancer

Oral squamous cell
carcinoma, oral lichen

planus and oral leukoplakia

Prostate cancer

Human serum

Human urine

Humaneuri

Human saliva

Human serum

Both targ€etOF TQ-MRM) and
non targeted (FTICR)

Ritchie et al. 2010
[119]

Issaq et al. 2008
[146]

Ma et al. 2009
[147]

Yan et al. 2008
[148]

Osl et al. 2008
[149]
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HPLC/TQ-MS

HPLC/TQ-MS

Direct introduction/TQ-MS Cardiology

HPLC(phenyl)/TQ-MS
UPLC(C18)/QTOF-MS

UPLC(HILIC)/TQ-MS

UPLC(C18)/QTOF-MS

HPLC(nucleosil)/QTRAP- Endrocrinology

MS
HPLC(C8)/QTRAP-MS

HPLC(RP)/QTRAP-MS
HPLC(C18)/IT-MS
UPLC(C18)/QTOF-MS

Direct introduction/FT-
ICR-MS

Cardiology Myocardial ischemia

Cardiology Myocardial injury

Left Ventricular
Dysfunction
Cardiology Coronary artery disea

Cardiology Silent myocardial isafia

Endrocrinology  Type 1 diabetes

Endrocrinology  Type 1 diabetes

Type 2 diabetes mellitus

Hepato-
Gastroenterology

Chronic hepatitis B

Hepato-
Gastroenterology (RYGB) surgery

Hepato-
Gastroenterology

Hepatic steatosis

Hepato- Intestinal fistulas

Gastroenterology

Hepato- Crohn disease

Gastroenterology

Coronary Artery Disease oHuma plasma

Human urine

Human plasma

Roux-en-Y gastric bypass Human serum

Humangnia

Targeted: Sugars and ribonucleotideSabatine et al.
(luna normal phase column), Organic2010 [113]
acids (polar-RP column) and amino

acids (Luna phenyl-hexyl column)

Human plaam Targeted: Sugars and ribonucleotidetewis et al. 2008
(luna normal phase column), Organic114]
acids (polar-RP column) and amino

acids (Luna phenyl-hexyl column)

Turer et al. 2009
[115]

Targeted

Targeted on amino acids Wang 20ap
[150]
Lin et al. 2009
[151]
Jankevicsilet

2009 [57]

Oresic et al. 2008
[117]

Wang et al. 2005
[152]

Yang et al. 2006
[153]

MutchleP@09
[154]

Van Ginneken et
al. 2007 [155]

tRaine Additionnal 1H NMR experiments

ntdin plasma Targeted: lipidomics. Additionnal

GC/MS experiments

Human plasm Targeted on phospholipids

Human serum
Additional GC/MS experiments

Mouse liver and bloddhrgeted: lipidomics

Human blood Yin et al. 2006
[156]

Human fecal samples Jansson et al.
2009 [157]
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HPLC(C18)/IT-MS or
UPLC(C18)/TOF-MS
UPLC(C18)/QTOF-MS
UPLC(C18)/QTOF-MS

HPLC(C18)/QTOF-MS or
IT-MS
HPLC(Luna SCX)/IT-MS

HPLC(C18)/IT-MS

UPLC(C18)/QTOF-MS

UPLC(C18)/QTOF-MS

UPLC(C18)/QTOF-MS

UPLC(C18)/QTOF-MS

HPLC(C18)/TOF-MS

HPLC/QTRAP-MS

Hepato-
Gastroenterology

Liver transplantation

Hepato-
Gastroenterology

Intestinal transplantation

Neurology Alzheimer’s disease
Neurology Motor neuron disease
Reproduction Human embryo sttm
Reproduction Preterm birth biomarke

Uigur chinese abnormal savda
traditionnal

medicine

Endrocrinology Dietary carbohydrate and
and metabolism metabolic syndrome

Rheumatology Ankylosing spondylit

Nephrology Kidney injury in chith
after cardiac surgery
Inborn errors of Methylmalonic acidemia

metabolism (MMA) and propionic
acidemia (PA)

Inborn errors of Respiratory chain diseases

metabolism

Human whole bile anéidditionnal 1H NMR and HPLC-
extract NMR/MS experiments

Huma plasma

Humnplasma

Human plasma AdiitiGC/MS experiments

Human embryo
culture medium

Human cervicovaginal
fluid
Huma serum

Human plasma and Targeted: lipidomics. Additionnal
tissue GC/MS experiments

Human plasma Additional GC/MS experiments

Human urine

Human plasma

Human plasma AdditiohHaMR experiments.

Duarte et al. 2009
[158]

Li et2008
[159]

Greenberg et al.
2009 [160]

Rozen et al. 2005
[161]
Marhuenda-Egea
at al. 2009 [162]

Shah et al. 2008
[163]

Yin et al. 2008
[164]

Lankinen et al.
2009 [165]

Gzl .€2008
[166]
Beger et al. 2007
[167]

Wikoff et al. 2007
[168]

Shaham et al.

Targeted: Sugars and ribonucleotide2010 [116]
(luna normal phase column), Organic
acids (polar-RP or ion paring column)

and amino acids (Luna phenyl-hexyl

or HILIC column)
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Figure Legends

Figure 1: Schematic representation of omics technologies. fldve of information starts
from genes to metabolites running through transe@apd proteins.

Figure 2. Number of publications dealing with metabolonmiesed on LC/MS in the fields of
toxicology, clinical chemistry and others in thespalO years (left axis) versus all
metabolomics related publications (right axis).rSeariteria in Pubmed were (metabolomics
OR metabonomics) AND (liquid chromatography) ANDage spectrometry) AND subject
AND year[DP]” (subject are toxicology or diseaseayranges from 1999 to 2009).

Figure 3: The MS-based metabolomics flow chart.

Figure 4: Multivariate statistical analyses

Multivariate statistical analyses results are sunmed into score and loading plots. The score
plot represents the projection in two dimensionsashples onto principal components (PCs).
The PCs constitute a new space which best cahegdriation in the original data. The score
plot shows how samples are dispersed in a 2- oam&+tsion space. Samples belonging to the
same group are close from each other. The loadotggpresents the projection of variables
(m/z and retention time) onto PCs. Variables resfid& for the discrimination between
groupsare far from the center of the loading plot, as leasized with the two bar plots.

Figure 5: How to address signal redundancy?

This figure represents a Liquid Chromatography (L@)ass Spectrometry (MS) process and
shows the origin of redundancy in MS signals. Footecules represented by orange, green,
yellow and blue dots are separated by LC. At retantime t=1, the “yellow molecule” is
introduced into the ESI source. Into the sourceudse molecular, adducts (e.g. with formic
acid) and fragments (e.g. loss of functional groigms are formed during the ionisation
process (A). The resulting mass spectrum (B) repbe presence of those ions. The isotopic

pattern of each ion (e.g. those of pseudo-molecudar (C)) could be visualized when
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enlarging the scale around the ion. Signals appgast M+1, M+2 correspond to the
isotopologues’tC, N...) of the ion. When fragments and adducts as aelisotopologue
ions are taken account, it appears that many sigaral actually related to the single yellow
molecules. This phenomenon is called signal reduryda

Figure 6:

Top of the figure: spermidine is analyzed by flowyection analysis—high resolution mass
spectrometry (FIA-HRMS). The mass spectrum is ebgabras a list of signals (with
composition and attribution) that constitutes a bemade spectral database after data
interpretation.

Bottom of the figure: Samples are analyzed by URME-and ions are extracted using
automatic signal detection software. The m/z—ra&arntime list is firstly annotated by search
in Kegg, HMDB and Metlin databases and secondlyskgarch in home-made spectral

database.
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