Nonnegative 3-way tensor factorization via conjugate gradient with globally optimal stepsize

Abstract : This paper deals with the minimal polyadic decomposition (also known as canonical decomposition or Parafac) of a 3-way array, assuming each entry is positive. In this case, the low-rank approximation problem becomes well-posed. The suggested approach consists of taking into account the nonnegative nature of the loading matrices directly in the problem parameterization. Then, the three gradient components are derived allowing to efficiently implement the decomposition using classical optimization algorithms. In our case, we focus on the conjugate gradient algorithm, well matched to large problems. The good behaviour of the proposed approach is illustrated through computer simulations in the context of data analysis and compared to other existing approaches.
Type de document :
Communication dans un congrès
IEEE. ICASSP, May 2011, Prague, Czech Republic. IEEE, pp.4040--4043, 2011
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00641052
Contributeur : Pierre Comon <>
Soumis le : lundi 14 novembre 2011 - 16:52:09
Dernière modification le : vendredi 7 mars 2014 - 08:40:48
Document(s) archivé(s) le : mercredi 15 février 2012 - 02:27:44

Fichier

halGradConj2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00641052, version 1

Collections

Citation

Jean-Philip Royer, Pierre Comon, Nadège Thirion. Nonnegative 3-way tensor factorization via conjugate gradient with globally optimal stepsize. IEEE. ICASSP, May 2011, Prague, Czech Republic. IEEE, pp.4040--4043, 2011. <hal-00641052>

Partager

Métriques

Consultations de
la notice

206

Téléchargements du document

83