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Abstract

The Maximum Flow Problem with flow width constraints is a NP-hard problem. Two models

are proposed: the first model is a compact node-arc model using two flow conservation blocks

per path. For each path, one block defines the path while the other one send the right amount of

flow on it. The second model is an extended arc-path model. It is obtained from the first model

after a Dantzig-Wolfe reformulation. it is an extended model as it relies on the set of all the paths

between the source and the sink nodes. Some symmetry breaking constraints are used to improve

the model. A branch and price algorithm is proposed to solve the problem. The column generation

reduces to the computation of a shortest path whose cost depends on weights on the arcs and on the

path capacity. A polynomial time algorithm is proposed to solve this subproblem. Computational

results are shown on a set of medium-sized instances to show the effectiveness of our approach.

Keywords: max flow, flow width, column generation, branch and price

Résumé

Nous nous intéressons au problème de la recherche d’un flot maximal dans un graphe avec une

contrainte sur la largeur de flot. Cette contrainte rend le problème NP-difficile. Nous proposons un

modèle compact impliquant deux blocs de conservation de flot pour chaque chemin. Le premier

bloc permet de définir le chemin tandis que le second achemine la quantité de flot associée à ce che-

min. Nous proposons ensuite un modèle étendu issu d’une reformulation de type Dantzig-Wolfe.

Ce modèle est étendu dans la mesure où les variables sont indicées sur l’ensemble des chemins

de la source au puits. L’utilisation de constraintes d’élimination de symétrie permet de renfor-

cer le modèle. Nous mettons ensuite en place un mécanisme de branch and price pour résoudre

le problème. La phase de génération de colonnes se ramène au calcul d’un plus court chemin

dont le coût dépend de poids sur les arcs mais aussi de la capacité de ce chemin. Nous montrons

que ce sous-problème peut néanmoins être résolu par un algorithme polynômial. Des résultats

expérimentaux sont présentés sur un jeu d’instances de taille moyenne afin d’illustrer l’intérêt de

cette approche.

Mots clés : flot maximal, largeur de flot, génération de colonnes, branch and price
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1 Introduction

In this paper, we consider a single-commodity k-splittable Flow Problem, a generalization of the

Unsplittable Flow Problem (UFP) in which flow may use at most k paths from origin to destination

(k=1 for the UFP). More precisely, we consider the k-splittable Maximal Flow Problem (KMFP)

which consists in routing the maximum amount of flow, split between at most k paths. KMFP

is NP-hard, as a generalization of the 2-splittable maximum flow problem [4] (which the 3-SAT

problem can be reduced to).

This problem finds an application in telecommunication networks. New generation telecom-

munication networks (UMTS) allow the integration of Quality of Service (QoS) requirements on

the traffic through routing protocols such as MPLS. An important feature of MPLS is its ability

to set up traffic engineering mechanisms (MPLS-TE). For instance, MPLS-TE allows the traffic

manager to put constraints on the end-to-end QoS. It also provides means to control the structure

of the traffic for each customer by setting restrictions on the number of routes. The purpose of

such restrictions is twice: first, keep a traffic structure as simple as possible and second, keep a

low overall number of routes, while preserving a good end-to-end QoS.

This kind of restriction on the number of routes seems to be rather new in the literature even

if there are strong connections to the UFP (unsplittable flow [2, 3, 5]) and disjoint paths [12].

Some previous works consider the problem of path number in multi-path routing but without a

bounded number of paths ([7, 20]). To our knowledge, Baier et al. [4] were the first to introduce

the k-splittable flow problem. They propose an approximation algorithm for the k-splittable max-

imum flow problem. Recently, Kolliopoulos [14] proved the existence of a (2,1)-approximation

algorithm for a 2-splittable minimum cost flow problem. Martens and Skutella propose variants of

k-splittable problem in [17] and length-bounded and dynamic k-splittable flows in [18]. Koch et

al. [13] present approximation algorithms and complexity results for k-splittable flow problems.

In this work, we will focus on several formulations for the k-splittable maximum flow problem

(KMFP) and then we apply a dedicated branch and price algorithm to compute the optimal solu-

tion. This paper will be organized as follows: in section 2, several mathematical formulations for

KMFP will be presented. In section 3, the application of Branch and Price to solve the problem

will be discussed. Section 4 will be devoted to numerical experiments, before conclusion are made

in section 5.

2 Mathematical formulations

Let G = (N,A) be a digraph where N is the set of n nodes and A is the set of m arcs. Each arc

a ∈ A is given a capacity ua > 0. Let (s, t) be the origin-destination pair of the flow to route

on G. Let H be the maximal number of elementary paths to carry out the traffic. The k-splittable

Maximum Flow Problem (KMFP) is to find a maximum flow such that at most H paths are used.

Definition 1 (width). Let F be a feasible flow over G. The width w(F ) is the minimal number of

routes such that the aggregation of the flow on each route will give exactly F .

Given a flow F , the general question of computing its width is a NP-Hard problem (see [24]).

However, it is polynomial on trivial cases like, for instance on disjoints paths. The width is treated

a different way in the KMFP. The goal is not to compute its width, but rather to maintain its width

under a given threshold.

In the following sections, we will propose three models for the problem. The first one is a

basic arc-path formulation. As no efficient way to solve it were found, we describe each path as a
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flow subproblem and define an arc-node formulation for the problem. By performing a Dantzig-

Wolfe reformulation, we defined a new arc-path model on which we will apply our Branch and

Price algorithm.

2.1 Basic arc-path formulation

The first model is based on the arc-path formulation. Let P be the potentialy exponential set of

all the elementary (s − t) paths. Let up = mina∈p{ua} be the capacity of path p and δp
a be the

indicator vector that identifies which arc a ∈ A belongs to path p. Let xp > 0 be the flow variable

on the path p ∈ P and yp ∈ {0, 1} be the associated decision variable. Then the arc-path model is

as follows:
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



max
∑

p∈P

xp

s.t.
∑

p∈P

δp
axp 6 ua ∀a ∈ A (a)

xp − upyp 6 0 ∀p ∈ P (b)
∑

p∈P

yp 6 H (c)

xp > 0 ∀p ∈ P (e)
yp ∈ {0, 1} ∀p ∈ P (f)

(1)

Constraints 1(a) are the capacity constraints. The link between flow and decision variables

is made in 1(b) and 1(c) is the width constraint. Note that this model relies on a potentially

exponential number of variables and constraints.

As will be shown in section 3.2, this model cannot be used an efficient way in a branch and

bound scheme. Thus reformulations are needed.

2.2 Arc-node formulation

Rather than choosing H paths in P, each one of this H paths can be described as a flow sub-

problem, using arc-node formulation. Then, we define a more compact model. This discretization

imposes a classification on the H paths. For each path number h = 1 . . . H , let xh
a > 0 be the

flow variable on the arc a ∈ A, let yh
a ∈ {0, 1} be the associated decision variable and let zh > 0

be the amount of flow. Let ω−
v be the cocyle of node v incoming arcs and let ω+

v be the cocyle of

node v outgoing arcs. Then the arc-node model can be stated as follows:
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(KMFP2)
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H

∑

h=1

zh

s.t.

∑

a∈ω
−

v

xh

a
−

∑

a∈ω
+
v

xh

a
=











zh if v = t,

−zh if v = s,

0 otherwise.

∀h = 1 . . .H, ∀v ∈ N (a)

∑

a∈ω
−

v

yh

a −
∑

a∈ω
+
v

yh

a =











1 if v = t,

−1 if v = s,

0 otherwise.

∀h = 1 . . .H, ∀v ∈ N (b)

H
∑

h=1

xh

a
6 ua ∀h = 1 . . .H, ∀a ∈ A (c)

xh
a 6 uay

h
a ∀h = 1 . . .H, ∀a ∈ A (d)

∑

a∈ω
−

v

yh

a
6 1 ∀h = 1 . . .H, ∀v ∈ N (e)

xh
a > 0 ∀h = 1 . . .H, ∀a ∈ A (f)

yh
a
∈ {0, 1} ∀h = 1 . . .H, ∀a ∈ A (g)

zh > 0 ∀h = 1 . . .H (h)

(2)

This model involves two flow conservation blocks (namely constraints 2(a) and 2(b)) for each

path. 2(c) are the capacity constraints and 2(d) are the coupling constraints. Restrictions 2(e) are

used to force each path h to be elementary that is, to prevent cycles to be connected to the path.

Otherwise, one could not prevent the flow bifurcation illustrated in figure 1. Arcs a correspond

to decision variables yh
a = 1 and, for each one, the flow value xh

a is reported. In such a situation,

a cycle on path definition variables yh may help define more than one flow path on variables xh.

Restrictions 2(d) do not prevent disconnected cycles, as shown in figure 2. However, since such

cycles cannot lead to flow bifurcation, this situation does not need to be forbidden.

1

1

1

1

s t
11

1

1

1

1

00 0

2

s t

Figure 1: impact of a cycle in flow definition yp over the flow variables xp.
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Figure 2: impact of a disconnected cycle over the flow variables xp.

2.3 Arc-path reformulation

By performing a Dantzig-Wolfe reformulation of model (KMFP2), a new arc-path model can be

defined. It differs from model (KMFP1) since it relies on a discretization on decision and flow

variables. Let xh
p > 0 be the flow of path p when p is used as path number h. Let yh

p ∈ {0, 1} be

the corresponding decision variable. This new model is as follows:

(KMFP3)


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
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H

∑

h=1

∑

p∈P

xh
p

s.t.
H

∑

h=1

∑

p∈P

δp
ax

h
p ≤ ua ∀a ∈ A (a)

xh
p − upy

h
p 6 0 ∀h = 1 . . . H, ∀p ∈ P (b)

∑

p∈P

yh
p 6 1 ∀h = 1 . . . H (c)

xh
p > 0 ∀h = 1 . . . H, ∀p ∈ P (d)

yh
p ∈ {0, 1} ∀h = 1 . . . H, ∀p ∈ P (e)

(3)

When compared to model (KMFP1), model (KMFP3) does not need any restriction on the

number of active paths anymore since it is implicitely assumed throught the variable discretization.

However, an additional assignment step is required for the path variables, through constraints

3(c). Note that the solution of model (KMFP3) can always be translated into a solution of model

(KMFP1) using the following formulas:

xp =

H
∑

h=1

xh
p ∀p ∈ P (4)

yp = max
h=1...H

yh
p ∀p ∈ P (5)

In fact, the relashionship between those two models is even stronger, as shown below:

Property 1. Models (KMFP1) and (KMFP3) are equivalent.
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Proof. Let (xh
p , yh

p) be a fractional solution of model (KMFP3). Let xp =
∑

h xh
p and yp =

∑

h yh
p be the aggregated variables. The solution (xp, yp) satisfies all the constraints of the model

(KMFP1).

Let (xp, yp) be a fractional solution of model (KMFP1). Let xh
p = xp/H and yh

p = yp/H

be the disaggregated variables. The solution (xh
p , xh

p) satisfies all the constraints of the model

(KMFP3).

Thus Conv(KMFP3) = Conv(KMFP1).

Now, when comparing to the model (KMFP2), the situation is different:

Property 2. Model (KMFP3) is stronger than model (KMFP2).

Proof. Let (xh
p , yh

p) be a fractional solution of model (KMFP3). Let xh
a =

∑

p δp
axh

p and yh
a =

∑

p δp
ayh

p be the projection on the arc variables. The solution (xh
a, yh

a) satisfies all the constraints

of the model (KMFP2).

The reverse does not hold, as any flow on the arc variables may be decomposed into a set of

elementary paths and elementary cycles (see Ahuja et al [1]). Thus, as the model (KMFP2) does

not forbid cycles, many solutions from the model (KMFP2) cannot be translated into solutions

from the model (KMFP3), see for instance the figure 2.

Therefore, the model (KMFP3) is stronger than the model (KMFP2).

2.4 Improvements

One obvious drawback of model (KMFP3) is its size. However, there is another one, closely related

to the symmetry structure induced by the assignment of the decision variables [22]. Namely,

assuming set P = (p1, p2, . . . , pH) is an optimal set of paths for model (KMFP3), any permutation

of P gives an optimal solution. As any path can be set at any position in the routing solution, it can

potentially lead to a big number of “identical” solutions. One way to break this variable symmetry

is to introduce the so-called variable-ordering constraints. In our situation, stating that the path

in position h + 1 is required to have less flow than the path in position h is sufficient for most

of the cases. However, this cannot break ties when, in the optimal solution, at least two paths

carry the same amount of flow. The variable ordering is achieved through the following additional

constraint:

∑

p∈P

xh+1
p −

∑

p∈P

xh
p 6 0 ∀h = 1 . . . H − 1 (6)

3 Branch and Price

One popular and efficient way to solve a MILP in extended formulation is to apply the branch and

price scheme. It consists in embedding a column generation into a branch and bound framework.

Branch and bound principle was presented by Land and Doig in [15]. Shortly before, Ford and

Fulkerson ([10]) suggested column generation for multicommodity flow problem and Danzig and

Wolfe ([9]) developed this idea in their well-known decomposition scheme. Finally, Barnhart et

al. [6] and Vanderbeck and Wolsey [23] described generic algorithms for solving problems by

integer programming column generation. Many applications are presented in the literature, as can

be seen in the survey of Lübbecke and Desrosiers ([16]).
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3.1 Column generation

The column generation is used to solve linear programs with a large number of variables (columns).

It is based on the implicit knowledge of the whole set X of variables. At each iteration, it first

solves a restricted master problem (RMP) and then solves a subproblem (SP) before updating the

(RMP). The (RMP) consists in a restriction of X to a feasible subset of variables S ⊂ X . Once the

(RMP) has been solved to optimality on S, one has to check wether there exist improving variables

in X \ S or not. This is done through the pricing procedure in (SP): using the dual information of

the (RMP), the most violated reduced cost of a variable in X \ S is computed. If this reduced cost

is improving, the associated variable is inserted into the (RMP) for subsequent iterations. Other-

wise no improving variables exist, the column generation is stopped and the optimal solution of

the (RMP) is the proven optimal solution of the problem.

In order to apply the branch and price technique on model (KMFP3), it is first continuous

relaxed. Then, it is simplified using the following property:

Property 3. There is at least one optimal solution of the linear relaxation of (KMFP3) where the

coupling contraints are saturated.

Proof. Let (x∗, y∗) be an optimal solution. Let yh
p = xh∗

p /up if up > 0 and 0 otherwise, for each

p in P and for each h = 1 . . . H . Then constraints 3(b) imply that yh
p 6 yh∗

p , for each p in P and

for each h = 1 . . . H . So
∑

p∈P yh
p 6

∑

p∈P yh∗
p 6 1 for each h = 1 . . . H (constraints 3(c)).

Then (x∗, y) is a feasible solution and provides the same value than (x∗, y∗). Therefore, (x∗, y) is

an optimal solution too.

Thus, coupling constraints can be dropped and the decision variables y can be replaced with

the flow variables x. This leads to a simplified version of the linear relaxation, including the

variable-ordering constraints:

(LR3)
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



max

H
∑

h=1

∑

p∈P

xh
p

s.t.
H

∑

h=1

∑

p∈P

δp
ax

h
p 6 ua ∀a ∈ A (a)

∑

p∈P

xh
p

up

6 1 ∀h = 1 . . . H (b)

∑

p∈P

xh+1
p −

∑

p∈P

xh
p 6 0 ∀h = 1 . . . H − 1 (c)

xh
p > 0 ∀h = 1 . . . H ∀p ∈ P (c)

(7)

Let respectively λa > 0, µh > 0 and νh > 0 be the dual variables associated to the primal

constraints 7(a), 7(b) and 7(c) of the linear relaxation (LR3). Then, the subproblem (SP) consists

in finding a variable maximizing the reduced cost. (SP) can be decomposed into H subproblems

(SPh). Each of them reduces to an optimal cost elementary path problem for position h. The

reduced cost is given by

ch
p = 1−

∑

a∈A

δp
aλa −

µh

up

− (νh−1 − νh) (8)
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The computation of the maximal cost elementary path does not reduce to a simple shortest

path problem, since the reduced cost involves a combination of two dual variables, λ and µ (the

cost associated to the variable-ordering constraints only depend on the path position and not on

the arcs of the path). Given a path position h, the subproblem is as follows:

(SPh)


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

















min w =
∑

a∈A

λaδ
p
a + µh/up − 1 + (νh−1 − νh)

s.t.

up = min{ua, δ
p
a = 1; a ∈ A}

δp
a ∈ P

(9)

More precisely, for any optimal path problem, Martin [19] defined the weak optimality prin-

ciple as the fact that there is an optimal path made of optimal subpaths. He then showed that this

principle is a necessary condition to the application of any labelling algorithm (for instance, the

classical label setting / label correcting algorithms for the shortest path problem).

Unfortunately, our subproblem (SP) does not meet Martin’s weak optimality principle, as il-

lustrated in figure 3. For each arc a, the first number refers to its dual variables λa while the second

one refers to its capacity ua. The variable µ is supposed to be set to 4. The shortest path from

node s to node v uses the arc a2 since λ1 + µ/c1 = 5 > λ2 + µ/c2 = 4. The shortest path from

node s to node t uses the path a2 − a3 since λ1 + λ3 + µ/c1 = 5 < λ2 + λ3 + µ/c3 = 7.

a2[2; 2]

a1[1; 1]

a3[1; 1]
s tv

Figure 3: failure of the weak optimality principle

Thus, no labelling algorithm can be used to compute the optimal solution [19] and a specific

algorithm has to be designed.

In (SPh), the variables δp
a define the path p as they are the projection of variables yp over the

arcs while up defines its capacity. The optimal path p∗ is a combination between the shortest path

and the highest capacity path. Its computation can be done in the following way:

Property 4. Algorithm 1 runs in polynomial time

Proof. There is no negative cost arc since λa > 0, ∀a ∈ A. Thus, no negative cost cycle exists

and any polynomial-time shortest path algorithm may be used. Next, at each iteration of the

algorithm, at least one arc is removed from the set A
′

. Thus, there is at most m iterations, that is

m computations of a shortest path.

Since the columns might be used anywhere in the branching tree, they are inserted into a global

pool. The column generation will stop as soon as w∗ 6 0.

3.2 Classical branchings

Since the column generation works on the linear relaxation of the initial problem, one has to

perform branchings. The classical branching scheme of Dakin [8] cannot be applied as it works
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Algorithm 1 optimal path computation for SPh

let A
′

= A
let p∗ = ∅, u∗ = 0, w∗ =∞
repeat

compute a shortest path p from s to t on A
′

if p = ∅ then

break

else

let u be its capacity, w its cost

if w < w∗ then

p∗ ← p
u∗ ← u
w∗ ← w

end if

A
′

← A
′

\ {a ∈ A
′

| ua 6 u}
end if

until A
′

= ∅
return (p∗, u∗, w∗)

on the original variables and as it is quite difficult to prevent the generation of a column that has

already been forbidden in the current branch. Ryan and Foster [21] were among the first to propose

a safe branching scheme ((x = y)∨ (x 6= y)). Instead of forcing or forbidding a decision variable,

their idea relies on the fact that either two variables are set the same way or not.

More recently, Barnhart et al. [5] proposed a more efficient branching for the routing problems.

It is based on the concept of node of divergence over the aggregated flow xh
a =

∑

p δp
axh

p , ∀a ∈ A.

A node of divergence is a node d ∈ N such that the aggregated flow is coming from a single arc

and going out on several arcs, see figure 4. Given a position h 6 H , a divergence occurs when the

flow decision variables yh
p are fractional. On figure 4, those fractions are respectively 7/10, 1/10

and 2/10. Thus, a fractional part of each path p is used.

7

10 1

7

2 2

s td

Figure 4: divergence on aggregated flow xh on node d.

Let ω+

d be the cocycle of arcs going out of node d. Let ω1 and ω2 be a partition of ω+
v such

that each set contains at least one arc carrying a positive amount of flow. Let P1 ⊂ P and P2 ⊂ P
be the set of paths going through node d and using one arc of respectively ω1 and ω2. Since the

flow on xh has to be integer (that is, unsplittable), either it uses one arc in the set ω1 or in the set

ω2. Then the following branching is valid:
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(
∑

p∈P1

yh
p = 0) vs. (

∑

p∈P2

yh
p = 0)

For a better efficiency, the branching should be applied on the first node of divergence and the

sets P1 and P2 should be built such that each sum is the most fractional.

It can be noted that this kind of branching cannot be easily applied to the first model (KMFP1)

as more than one path may be needed at the node of divergence. This situation is illustrated

on figure 5. Figure 5(a) shows a graph whose capacities are reported. We wish to send the

maximal amount of flow from s to t using at most H = 2 paths. Figure 5(b) illustrates the

optimal relaxed solution. All the capacities are satisfied by the aggregated flow and the sum
∑

p∈P yp =
∑

p∈P xp/up = 3/4 + 1/4 + 1 = 2 satisfies the path limit H . Clearly, this solution

uses three paths and no branching as defined previously can be done. The optimal integer solution

is reported in figure 5(c).

3 4

45
(a) initial graph

4

1

9/4

(b) LP optimal solution

3

4
(c) IP optimal solution

Figure 5: divergence on aggregated flow x on node d.

Three paths are currently using node d and the limit is set to 2. However, the optimal solution

uses two paths at d and no arc partition may help converging towards this solution.

3.3 Alternate branching

One of the shortcoming of the previous branching scheme is that it might require a careful parti-

tioning procedure in order to be efficient. And even then, its efficiency will come from a combina-

tion of several successive branchings. We propose another branching scheme based on the number

of path positions using an arc.

Let a ∈ A be an arc and S ⊂ Ha be a subset of the path positions that use a. Then either all

the path positions use a or at least one of them is not using a. More formaly, the branching is as

follows:

(
∑

h∈S

yh
a = |S|) vs. (

∑

h∈S

yh
a 6 |S| − 1)

The first branch implies that all the flow for the positions in S goes through a. Then

10



(
∑

h∈S

yh
a = |S|) ⇒ (

∑

h∈S

∑

p∈P

xh
p 6 ua)

There is no equivalence as a linear combination of several paths may be used to route the flow

at any path position in the relaxed solution – not only one path. Thus, this restriction is stronger

than the capacity contraint 3(a):

∑

h∈S

∑

p∈P

δp
ax

h
p 6

∑

h∈S

∑

p∈P

xh
p 6 ua

When switching back to the variables on the arcs, this branch becomes:

(
∑

h∈S

∑

p∈P

xh
p 6 ua) ⇔ (

∑

h∈S

∑

a′∈Ω
+
s

xh
a′ 6 ua)

The other branch is equivalent to state that at least one of those path position should not route

anything on a. It can be reformulated as follows

(
∑

h∈S

yh
a 6 |S| − 1) ⇔ (∃h ∈ S | yh

a = 0)

If the subset S is reduced to a single path position, then the branching looks somewhat simpler:

(
∑

a′∈Ω
+
s

xh
a′ 6 ua) vs. (yh

a = 0)

The branching can only be done if there is a path position h such that the fractional flow is

routing more than the capacity of an arc a used by h. Otherwise, a classical branching must be

done. Even if the branching can be expressed in the arc-path formulation, it is better to use the

node-arc formulation: as a branch leads to a new constraint in the RMP, a new dual variable will

be added. This will alter the pricing subproblem and make it harder to solve. Thus, one solution is

to use the node-arc formulation for the branching and link the node-arc variables with the arc-path

variables. This is close to the Explicit Master formulation in the Robust Branch and Cut and Price

(RBCP) proposed by Fukasawa et al. [11]. The RMP now looks like:

(LR4)































































































max

H
∑

h=1

∑

p∈P

xh
p

s.t.
∑

p∈P

δh
axh

p − xh
a 6 0 ∀h = 1 . . . H, ∀a ∈ A (a)

H
∑

h=1

∑

p∈P

δp
ax

h
p 6 ua ∀a ∈ A (b)

∑

p∈P

xh
p

up

6 1 ∀h = 1 . . . H (c)

xh
p > 0 ∀h = 1 . . . H ∀p ∈ P (d)

xh
a > 0 ∀h = 1 . . . H ∀a ∈ A (e)

(10)

Then the branching will be done on the xh
a variables while the column generation will work

on the xh
p variables. Those two kinds of variables are linked through the contraints 10(a).
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3.4 Initialization

One crucial question that arises when implementing a column generation is the construction of the

initial set of columns. For minimum cost flow problems, this may requires a carefull initialisation.

The situation is different for the KMFP since even no path for each path position might lead to an

initial feasible solution.

However, a better way to start is to compute an initial feasible solution, with respect to the

width constraint. This can be done by using Baier et al. [4] approximation algorithm. It is based

on an iterative insertion of a new path into the solution:

Algorithm 2 approximation algorithm for the KMFP

let qa be the number of paths using arc a, initialy qa ← 0
let P be the set of paths, initialy P ← ∅
let f be the flow carried by each path, initialy f ← 0
repeat

let G′ = (N,A′) be the residual graph with capacities ca = ua/(1 + qa)
backward arcs have capacities ca = f

compute a max capacity path p from s to t on G′

let c be its capacity

update P : P ← P ∪ {p}
for all backward arc a ∈ p do

update p and a path p′ ∈ P using arc a (deviation)

end for

update f : f ← c for each path

until p = ∅ or |P | = H
return (P, f)

This algorithm runs in polynomial time. The set P of paths can then be used as the initial set

of columns.

4 Numerical results

4.1 Instances

Two kinds of instances have been used to run our experiments. The first set of instances has

been generated by the Transit Grid generator developped by G. Waissi 1. The topology of those

instances (see figure 6) looks close to the transportation networks and may be well-suited for

studying the maxflow problem in the telecommunication networks as well. The second kind of

topology in completely randomly generated: the edges are randomly chosen so as to have a con-

nected network and the capacity of those edges is randomly chosen.

1
http://www.informatik.uni-trier.de/∼naeher/Professur/research/generators/

maxflow/tg/index.html
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Figure 6: transit grid with 52 nodes and 198 arcs.

4.2 Results

The experiments were done on a Pentium 4 computer with 4Gb memory. The time limit has been

set to 1 hour for each run.

For each table (table 1 to table 5) the column “Graph” gives the name of the instance, along

with the number of nodes and the number of arcs. The width upper limit H is reported in the

second column. The column z∗ gives the optimal value, whenever available by at least one of our

algorithms in the time limit. Otherwise, the sign “>” shows only a lower bound is known (the

best integer found so far). The value of the solution obtained by the algorithm from Baier, Kölher

et Skutella [4] is reported in column “BKS”. As the CPU time is marginal compared to the other

strategies, it is not reported.

Table 1 to table 3 report the CPU time of several strategies. Those strategies are:

C : the arc-node model (KMFP2) is solved using CPLEX 8.0

BB : the arc-node model (KMFP2) is solved using Barnhart’s branching in a home-made branch

and bound

BP : the extended model (KMFP3) is solved using Barnhart’s branching in a home-made branch

and price

BP-V : similar to BP, except that the global pool strategy is used

BP-VP : similar to BP-V, except that the variable ordering is used

BP-VP2 : similar to BP-VP, except that the alternate branching is used

In the last two columns, we give the root gap from both the arc-node (KMFP2) model and from

the extended (KMFP3) model. Thus the root gap stands for the relative gap between the fractional

solution and the integer solution of the problem.
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We can note that the gap is a lot better for the extended model. This is closely related to

the problem with the subcycles illustrated in the figure 1: by relaxing the binary variables, the

fractional solution may have some cycles on the flow definition variables yh
a , for fixed values

of h. Those cycles will help artificialy improve the amount of flow that can be routed. The

extended model relies on elementary paths. Its fractional solution could create cycles on the path

definition variables yh
p , for fixed values of h. However, as the flow variables xh

p are on the path

too, no artificial improvement can be done. As the extended model has a smaller root gap than the

arc-node model, this will explain why the “BP*” strategies always dominate the “C” and “BB”

approaches in term of CPU time.

instance values CPU time (s) gap (%)

graph H z∗ BKS C BB BP BP-P BP-VP BP-VP2 KMFP2 KMFP3

tg10-2 1 389.00 389.00 0.01 0.01 0.00 0.00 0.00 0.00 25.13 0.00

12-38 2 557.00 557.00 0.18 0.93 0.21 0.11 0.06 0.02 26.59 11.98

3 716.00 557.00 1.44 104.74 9.65 4.27 0.21 0.02 12.15 6.18

4 815.00 716.00 0.03 7.48 0.02 0.21 0.06 0.07 0.00 0.00

∞ 815.00

tg10-3 1 189.00 189.00 0.02 0.00 0.00 0.00 0.00 0.00 52.13 0.00

12-38 2 350.00 350.00 0.51 0.25 0.01 0.01 0.01 0.02 39.66 3.41

3 466.00 442.00 3.04 21.82 0.40 0.09 0.05 0.04 19.66 6.92

4 558.00 558.00 70.97 586.99 2.98 0.69 0.12 0.07 3.79 1.95

5 580.00 558.00 0.11 0.04 0.00 0.00 0.01 0.04 0.00 0.00

∞ 580.00

tg10-9 1 501.00 501.00 0.03 0.01 0.00 0.00 0.00 0.00 32.58 0.00

12-38 2 935.00 935.00 0.23 0.11 0.00 0.00 0.00 0.00 32.77 0.00

3 1173.00 1051.00 1.95 9.08 0.51 0.15 0.06 0.05 22.68 1.84

4 1356.00 1289.00 13.09 930.27 21.99 11.51 0.23 3.46 10.61 4.09

5 1460.00 1364.00 288.64 - - 1419.06 11.29 0.54 - 2.78

6 1517.00 1364.00 5.52 82.11 3.57 0.09 5.88 0.68 0.00 0.00

∞ 1517.00

tg20-2 1 385.00 385.00 0.02 0.13 0.00 0.00 0.00 0.00 18.43 0.00

22-72 2 643.00 643.00 0.38 112.14 0.01 0.01 0.01 0.01 24.62 0.00

3 832.00 643.00 1.94 - 0.05 0.01 0.01 0.05 - 0.00

4 853.00 832.00 0.38 2.43 1.26 0.01 104.60 0.22 0.00 0.00

∞ 853.00

tg40-1 1 517.00 517.00 1.16 0.05 0.01 0.01 0.01 0.01 21.31 0.00

42-152 2 750.00 520.00 788.84 - 0.04 0.02 0.01 0.04 - 0.06

3 908.00 750.00 - - 2066.70 - 303.87 20.18 - 2.59

4 994.00 918.00 - - - - - 90.29 - -

5 1004.00 918.00 28.09 - 0.17 0.01 183.20 - - 0.00

∞ 1004.00

tg40-5 1 487.00 487.00 0.23 0.07 0.00 0.01 0.01 0.01 22.70 0.00

42-152 2 828.00 828.00 2.87 - 23.29 17.87 4.19 0.14 - 4.94

3 1062.00 828.00 - - - - 137.41 0.36 - 0.28

4 1078.00 1062.00 11.88 271.55 0.02 0.02 100.26 0.98 0.00 0.00

∞ 1078.00

tg40-8 1 454.00 454.00 0.31 0.52 0.01 0.01 0.00 0.01 27.93 0.00

42-152 2 775.00 705.00 16.42 - 0.05 0.01 0.02 0.03 - 0.00

3 991.00 858.00 - - 1138.19 2148.15 332.33 0.85 - 2.56

4 1085.00 1067.00 32.26 - - 1739.14 17.72 - - 0.00

∞ 1085.00

tg40-10 1 142.00 142.00 1.71 26.32 0.00 0.00 0.00 0.01 72.28 0.00

42-152 2 278.00 278.00 - - 0.01 0.01 0.01 0.02 - 0.00

3 410.00 410.00 - - 0.01 0.01 0.01 0.02 - 0.00

4 509.00 509.00 - - 0.01 0.01 0.01 0.03 - 0.00

5 602.00 553.00 - - 0.14 0.01 0.88 0.44 - 0.00

6 691.00 642.00 - - 0.06 0.01 1.43 0.91 - 0.00

7 769.00 720.00 - - 0.17 0.01 0.63 2.07 - 0.00

8 804.00 769.00 22.75 - 0.29 0.09 - 9.21 - 0.00

∞ 804.00

Table 1: CPU times for small transid grids.
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instance values CPU time (s) gap (%)

graph H z∗ BKS C BB BP BP-P BP-VP BP-VP2 KMFP2 KMFP3

tg50-2 1 336.00 336.00 12.39 0.56 0.01 0.00 0.01 0.01 63.77 0.00

52-198 2 652.00 652.00 - - 1.78 0.26 0.36 0.20 - 1.69

3 900.00 900.00 - - - - 641.34 4.52 - 6.44

4 1147.00 1134.00 - - - - 818.97 28.70 - 4.09

5 1342.00 1329.00 - - - - - 138.51 - -

6 >1394.00 1329.00 - - - - - - - -

∞ 1719.00

tg50-5 1 562.00 562.00 91.08 0.20 0.00 0.01 0.01 0.01 33.84 0.00

52-198 2 965.00 902.00 - - 0.09 0.02 0.04 0.26 - 2.08

3 1343.00 1087.00 - - 1.23 0.21 0.10 0.80 - 1.85

4 1596.00 1165.00 - - - - 83.80 - - 6.53

5 >1781.00 1480.00 - - - - - - - -

∞ 2507.00

tg50-10 1 399.00 399.00 0.07 0.01 0.00 0.00 0.00 0.01 28.88 0.00

52-198 2 734.00 734.00 1.50 - 0.01 0.01 0.01 0.02 - 0.00

3 899.00 734.00 219.69 - 0.01 0.01 0.01 0.09 - 0.00

4 1031.00 734.00 - - 0.04 0.04 0.13 0.18 - 0.00

5 1153.00 899.00 - - 0.45 0.08 0.18 1.51 - 0.00

6 1270.00 899.00 - - 1.34 0.09 0.62 3.62 - 0.00

7 1376.00 1031.00 - - 0.85 0.06 19.86 9.57 - 0.00

8 1403.00 1153.00 - - 4.57 0.61 452.23 35.66 - 0.00

9 1430.00 1267.50 63.00 - 18.55 0.54 1922.68 23.48 - 0.00

∞ 1430.00

tg60-3 1 776.00 776.00 0.24 0.03 0.00 0.01 0.01 0.01 4.53 0.00

62-242 2 1168.00 986.00 - - 0.24 0.13 0.06 0.43 - 2.86

3 1480.00 1216.00 - - 584.87 106.12 1.49 3.68 - 3.06

4 >1681.00 1528.00 - - - - - - - -

∞ 2739.00

tg60-6 1 347.00 347.00 - 1.81 0.01 0.01 0.00 0.01 52.55 0.00

62-242 2 676.00 676.00 - - 0.01 0.01 0.01 0.02 - 0.00

3 983.00 983.00 - - 0.01 0.01 0.01 0.04 - 0.00

4 1251.00 1208.00 - - 40.00 1.66 2.34 1.59 - 0.00

5 1510.00 1476.00 - - - - 15.10 103.28 - 0.00

6 >1512.00 1476.00 - - - - - - - -

∞ 2070.00

tg70-8 1 515.00 515.00 4.64 3.55 0.01 0.01 0.01 0.01 6.68 0.00

72-268 2 928.00 928.00 4.87 - 0.01 0.01 0.02 0.02 - 0.00

3 1144.00 928.00 - - 96.04 85.65 1.46 0.51 - 0.13

4 1147.00 1144.00 51.03 - 1.94 0.07 - - - 0.00

∞ 1147.00

tg80-1 1 549.00 549.00 - 3.47 0.01 0.01 0.01 0.01 27.31 0.00

82-322 2 984.00 984.00 - - 56.39 12.00 7.79 0.87 - 5.02

3 1411.00 1321.00 - - - - 451.69 1.54 - 3.85

4 >1589.00 1589.00 - - - - - - - -

∞ 2797.00

tg80-6 1 474.00 474.00 - 9.49 0.01 0.01 0.01 0.01 50.76 0.00

82-322 2 833.00 833.00 - - 1.00 0.23 0.13 0.10 - 0.45

3 1160.00 1139.00 - - 167.95 332.63 41.21 18.35 - 1.77

4 1429.00 1235.00 - - - - 2474.14 173.52 - 2.98

5 >1656.00 1480.00 - - - - - - - -

∞ 2445.00

tg100-2 1 530.00 530.00 - 7.27 0.01 0.01 0.01 0.01 42.76 0.00

102-400 2 1007.00 1007.00 - - 0.02 0.01 0.02 0.02 - 0.00

3 1407.00 1336.00 - - 76.85 20.41 5.98 0.46 - 0.14

4 1768.00 1664.00 - - - - 56.22 1951.96 - 0.32

5 >1711.00 1711.00 - - - - - - - -

∞ 3519.00

tg100-9 1 424.00 424.00 - 680.71 0.01 0.01 0.01 0.01 49.73 0.00

102-400 2 845.00 845.00 - - 0.02 0.02 0.02 0.02 - 0.00

3 1234.00 1199.00 - - - 2060.47 600.63 0.55 - 0.10

4 1600.00 1570.00 - - - - - 26.41 - -

5 >1905.00 1905.00 - - - - - - - -

∞ 3271.00

Table 2: CPU times for medium transid grids.
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instance values CPU time (s) gap (%)

graph H z∗ BKS C BB BP BP-P BP-VP BP-VP2 KMFP2 KMFP3

random5-35 1 66.00 66.00 0.00 0.00 0.00 0.00 0.00 0.00 10.09 0.00

5-35 2 128.00 128.00 0.02 0.02 0.01 0.00 0.00 0.00 11.87 0.00

3 182.00 182.00 0.02 0.54 0.00 0.00 0.00 0.00 9.08 0.00

4 223.00 204.00 0.07 19.04 0.07 0.02 0.03 0.04 7.19 0.00

5 262.00 243.00 0.05 221.62 0.09 0.01 0.05 0.08 5.59 0.00

6 297.00 278.00 0.19 1186.40 0.22 0.05 0.09 0.12 4.15 0.00

7 326.00 297.00 0.41 0.06 0.19 0.03 0.12 0.26 0.00 0.00

∞ 326.00

random10-45 1 73.00 73.00 0.01 0.00 0.00 0.00 0.00 0.00 2.25 0.00

10-45 2 142.00 142.00 0.08 0.05 0.00 0.00 0.00 0.00 4.05 0.58

3 209.00 209.00 0.53 0.52 0.03 0.01 0.01 0.04 5.43 0.57

4 260.00 260.00 1.39 12.53 0.51 0.09 0.12 1.63 6.87 1.58

5 306.00 306.00 7.26 147.83 6.87 1.04 0.28 2.85 7.42 1.83

6 345.00 321.00 118.78 - 202.89 29.01 0.93 13.79 - 2.36

7 381.00 360.00 1285.61 - - - 4.81 59.60 - 2.54

8 413.00 368.00 - - - - 17.59 379.34 - 2.93

9 429.00 381.00 - - - - 2554.28 - - 6.21

10 >417.00 417.00 - - - - - - - -

∞ 498.00

random15-60 1 86.00 86.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15-60 2 163.00 163.00 0.08 0.02 0.00 0.00 0.00 0.01 0.61 0.00

3 221.00 221.00 0.24 0.47 0.00 0.00 0.00 0.01 3.37 0.44

4 248.00 229.00 1.97 28.51 5.43 1.26 0.12 0.76 7.62 2.53

5 268.00 229.00 12.91 - 87.58 20.94 0.92 3.18 - 2.86

6 287.00 229.00 72.99 - - 2616.90 2.07 5.90 - 2.74

7 295.00 229.00 1960.18 - - - 46.63 2080.02 - 3.97

8 >301.00 256.00 - - - - - - - -

∞ 310.00

random20-140 1 81.00 81.00 0.01 0.00 0.00 0.00 0.00 0.00 0.46 0.00

20-140 2 158.00 158.00 0.02 0.02 0.00 0.00 0.00 0.00 0.30 0.00

3 228.00 228.00 0.30 0.03 0.00 0.00 0.01 0.01 0.38 0.00

4 253.00 235.00 14.90 - 91.92 323.10 7.48 1.52 - 1.81

5 274.00 235.00 230.60 - - - - 4.80 - -

6 294.00 236.00 - - - - - 5.81 - -

7 311.00 236.00 - - - - - 19.25 - -

8 319.00 236.00 - - - - - 2042.98 - -

9 >325.00 261.00 - - - - - - - -

10 327.00 261.00 725.65 - 49.66 6.16 - - - 0.00

∞ 327.00

Table 3: CPU times for random digraphs.

As a general point of view, the CPU time is decreasing when the strategy is improving (branch

and price, adding the global pool, adding the variable ordering and using the alternate branching).

However, on some instances, the strategies using the variable ordering seem to take a lot of time.

This is especialy true when the width limit H is set to the maximal flow width (e.g. the width

constraint becomes redundant). This may be explained by the dual variables νh associated to the

variable ordering constraints. By the complementary slackness theorem, using the νh variables in

the dual solution implies the associated variable ordering constraints are saturated. This means two

successive paths positions will route the same amount of flow. In order to have the same amount

of flow, the fractional primal solution might have to use several paths for those path positions.

Then, the fractional solution when using variable ordering constraints is more likely to be more

“splitted” than without those contraints. This phenomenon is illustrated in figure 7. The fractional

solution 7(b) without VO constraints is using 3 path positions, routing respectively 4, 2 and 1

unit of flow on a single path. When using VO contraints, the fractional solution 7(c) still uses 3

positions, routing respectively 4.5, 1.75 and 1.75 units of flow. However, each position is now

using 2 paths

16



3

1

4

22
s tu v

(a) capacitated digraph

1

4

2
s tu v

(b) without VO constraints, H = 3

1.5

1

0.5

3

0.75

0.25

s tu v

(c) with VO constraints, H = 3

Figure 7: impact of the VO constraints on the fractional solution.

Tables 4 to 6 will help us further analyse the problem. For each instance, we report the rate of

nodes in the branch and bound tree whose fractional solution saturates at least one VO contraint.

This rate is a lot higher when using the VO contraints.
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instances values VO saturation (%)

graph H z∗ BP-P BP-VP BP-VP2

tg10-2 1 389.00 0.00 0.00 0.00

12-40 2 557.00 0.29 23.15 41.18

3 716.00 0.04 65.53 71.43

4 815.00 1.68 84.85 75.00

∞ 815.00

tg10-3 1 189.00 0.00 0.00 0.00

12-40 2 350.00 0.00 58.82 40.00

3 466.00 0.00 67.23 61.76

4 558.00 0.00 77.25 84.44

5 580.00 0.00 92.31 95.83

∞ 580.00

tg10-9 1 501.00 0.00 0.00 0.00

12-40 2 935.00 0.00 0.00 100.00

3 1173.00 0.76 71.79 74.19

4 1356.00 0.30 74.60 81.08

5 1460.00 1.09 89.79 94.63

6 1517.00 1.00 99.98 96.23

∞ 1517.00

tg20-2 1 385.00 0.00 0.00 0.00

22-80 2 643.00 0.00 0.00 100.00

3 832.00 0.00 0.00 54.55

4 853.00 0.00 79.04 86.49

∞ 853.00

tg40-1 1 517.00 0.00 0.00 0.00

42-160 2 750.00 0.00 50.00 22.22

3 908.00 0.12 10.91 28.37

4 994.00 0.61 78.07 39.55

5 1004.00 0.00 99.23 65.01

∞ 1004.00

tg40-5 1 487.00 0.00 0.00 0.00

42-160 2 828.00 0.30 20.54 45.16

3 1062.00 0.06 88.34 59.62

4 1078.00 0.00 99.68 70.75

∞ 1078.00

tg40-8 1 454.00 0.00 0.00 0.00

42-160 2 775.00 0.00 0.00 25.00

3 991.00 0.28 27.36 34.67

4 1085.00 0.43 96.09 75.41

∞ 1085.00

tg40-10 1 142.00 0.00 0.00 0.00

42-160 2 278.00 0.00 0.00 100.00

3 410.00 0.00 100.00 0.00

4 509.00 0.00 100.00 100.00

5 602.00 0.00 98.82 94.87

6 691.00 0.00 99.63 94.29

7 769.00 0.00 99.44 99.07

8 804.00 3.03 100.00 83.60

∞ 804.00

Table 4: saturation on VO constraints for small transid grids.
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instances values VO saturation (%)

graph H z∗ BP-P BP-VP BP-VP2

tg50-2 1 336.00 0.00 0.00 0.00

52-200 2 652.00 3.97 42.18 66.67

3 900.00 1.81 81.08 69.54

4 1147.00 0.47 90.73 86.72

5 1342.00 1.71 97.17 87.22

6 >1394.00 1.20 97.75 91.94

∞ 1719.00

tg50-5 1 562.00 0.00 0.00 0.00

52-200 2 965.00 0.00 34.48 40.00

3 1343.00 4.20 60.00 64.00

4 1596.00 4.15 74.54 67.20

5 >1781.00 1.14 94.92 74.61

∞ 2507.00

tg50-10 1 399.00 0.00 0.00 0.00

52-200 2 734.00 0.00 0.00 100.00

3 899.00 0.00 0.00 87.50

4 1031.00 12.50 89.86 81.25

5 1153.00 0.00 75.00 48.75

6 1270.00 7.89 84.79 26.06

7 1376.00 21.05 80.54 33.90

8 1403.00 0.94 99.81 51.40

9 1430.00 21.73 98.53 98.22

∞ 1430.00

tg60-3 1 776.00 0.00 0.00 0.00

62-240 2 1168.00 0.00 26.09 40.48

3 1480.00 0.06 31.54 48.05

4 >1681.00 0.21 65.70 3.89

∞ 2739.00

tg60-6 1 347.00 0.00 0.00 0.00

62-240 2 676.00 0.00 0.00 100.00

3 983.00 0.00 0.00 100.00

4 1251.00 3.48 84.70 36.90

5 1510.00 3.92 57.07 17.75

6 >1512.00 5.08 96.67 15.81

∞ 2070.00

tg70-8 1 515.00 0.00 0.00 0.00

72-280 2 928.00 0.00 0.00 100.00

3 1144.00 0.00 6.53 16.00

4 1147.00 0.00 91.70 53.60

∞ 1147.00

tg80-1 1 549.00 0.00 0.00 0.00

82-320 2 984.00 0.00 18.94 46.24

3 1411.00 0.24 75.57 46.43

4 >1589.00 1.99 93.54 91.87

∞ 2797.00

tg80-6 1 474.00 0.00 0.00 0.00

82-320 2 833.00 0.00 19.30 40.00

3 1160.00 0.52 33.12 18.95

4 1429.00 1.46 81.85 46.63

5 >1656.00 4.40 84.30 84.65

∞ 2445.00

tg100-2 1 530.00 0.00 0.00 0.00

102-400 2 1007.00 0.00 0.00 100.00

3 1407.00 0.03 27.02 52.38

4 1768.00 0.58 38.91 20.22

5 >1711.00 2.95 90.15 74.36

∞ 3519.00

tg100-9 1 424.00 0.00 0.00 0.00

102-400 2 845.00 0.00 0.00 100.00

3 1234.00 2.95 44.71 62.86

4 1600.00 2.11 80.51 75.45

5 >1905.00 7.60 95.20 56.36

∞ 3271.00

Table 5: saturation on VO constraints for medium transid grids.

19



instances values VO saturation (%)

graph H z∗ BP-P BP-VP BP-VP2

random5-35 1 66.00 0.00 0.00 0.00

5-35 2 128.00 0.00 0.00 100.00

3 182.00 0.00 100.00 0.00

4 223.00 18.52 82.98 87.50

5 262.00 0.00 94.03 90.38

6 297.00 14.10 93.14 90.48

7 326.00 17.14 98.36 94.21

∞ 326.00

random10-45 1 73.00 0.00 0.00 0.00

10-45 2 142.00 0.00 100.00 0.00

3 209.00 34.48 88.24 92.31

4 260.00 12.56 94.58 94.59

5 306.00 12.62 98.11 98.22

6 345.00 10.05 98.37 98.23

7 381.00 9.45 99.57 98.63

8 413.00 9.91 99.48 99.29

9 429.00 13.79 99.78 98.98

10 >417.00 99.85

∞ 498.00

random15-60 1 86.00 0.00 0.00 0.00

15-60 2 163.00 0.00 0.00 100.00

3 221.00 0.00 100.00 0.00

4 248.00 0.95 67.27 89.11

5 268.00 2.33 91.93 95.74

6 287.00 4.14 99.38 98.87

7 295.00 6.25 97.75 90.46

8 >301.00 7.66 99.26 97.39

9 >306.00 11.43 99.98 98.43

10 310.00 13.04 100.00 99.99

∞ 310.00

random20-140 1 81.00 0.00 0.00 0.00

20-140 2 158.00 0.00 0.00 100.00

3 228.00 0.00 100.00 100.00

4 253.00 2.10 69.25 83.81

5 274.00 2.47 73.09 94.70

6 294.00 25.74 99.96 95.67

7 311.00 12.14 99.99 98.34

8 319.00 13.57 97.92 96.49

9 >319.00 13.54 99.58 99.79

10 327.00 19.70 100.00 99.98

∞ 327.00

Table 6: saturation on VO constraints for random digraphs.

5 Conclusion

The extended model (KMFP3) has a clear advantage over the arc-node model (KMFP2) as the root

gap is much lower. Thus the branch and price may seem to be the best way to solve the problem.

From our experiment, we were able to solve medium-sized instances for a limited width H . As

H increases, the problem becomes harder to solve, until the width of the unrestricted maximum

flow is reached. From a practical point of view, this is not really an issue as Internet Providers

wish to work with small values – through the use of MPLS-TE for instance. Nevertheless, from a

theoretical point of view, we believe our branch and price is limited by two factors: first, a lot of

perturbations are introduced into the fractional solutions by the addition of VO constraints. As it

was shown, the fractional solutions are using more paths for each path position. Therefore, more

branchings need to be done to reach the integer solution. An alternate VO strategy that does not

lead to such situation would really help the branch and price. Second, the two branching strategies

shown in this work are lacking some efficiency. It would be interesting to find a stronger branching

scheme, and maybe add some cuts in the LR4 model as in the RBCP strategy. We are currently
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working on both issues.
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prise en compte de la qualité de service. PhD thesis, University Paris VI, 2004.

22


