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Given a global nonlinear state feedback which stabilizes globally an equilibrium, the aim of this paper is to modify the local
behavior of the trajectories in order to get local optimality with respect to a given quadratic cost. A sufficient condition is given
in terms of Linear Matrix Inequalities (LMI) to design a locally optimal and globally stabilizing control law. This approach is
illustrated on an academic inverted pendulum model in orderto stabilize its upper equilibrium point. An extension of the main
result is then given to address the problematic cases.

Moreover, the cases in which the previous LMI condition failed to be satisfied is addressed and a new sufficient condition is
then given (which is not anymore linear).

Keywords: Nonlinear controllers, Lyapunov stabilization, Optimal control, LMI.

1 Introduction

The design of global asymptotic stabilizers for systems described by nonlinear differential equations
has received many attention from the control community overthe past three decades. Depending on
the structure of the model, some techniques are now available to design a control law which globally
stabilizes an equilibrium. For instance the backstepping (see Krstic et al. (1995) and references therein),
the forwarding (see Mazenc and Praly (1996), Jankovic et al.(1996)), and some other approaches (see
Kokotović and Arcak (2001)) have been widely studied.

Despite the fact that the stabilization of an equilibrium can be achieved, it is difficult to guarantee a
certain performance for the closed loop system. On another hand, when the first order approximations
of a nonlinear model is considered, performances issue can be handled by employing linear optimal
control designs (for instance LQ or robust controllers). Moreover, with this optimal linear controller,
stabilization of an equilibrium point can also be obtained but only locally. This leads to the idea of
designing a new controller which unites a local linear (optimal) controller and a global one.

This uniting controller problem has already been addressedin the literature in Prieur (2001), Teel et al.
(1997), Teel and Kapoor (1997), Efimov (2006) by employing some hybrid (and discontinuous) feed-
backs. In the present paper, a sufficient condition is given for designing a continuous controller which
unites a linear static local stabilizer and a nonlinear global one. The theory behind these developments is
inspired from recent results in Andrieu and Prieur (2010) inwhich a continuous uniting of two control
Lyapunov functions has allowed to continuously unite a local stabilizer and a non-local one (see also
recent results in Clarke (2010)).

In that paper, based on the results of Andrieu and Prieur (2010), the continuous uniting control problem
is investigated and some of these results are extended to theparticular case in which the local controller
is linear and the non-local one is global. More precisely, given a global nonlinear control which stabilizes
globally asymptotically an equilibrium, the first result ofthe paper gives a sufficient condition to blend
this controller with a local optimal controller. This sufficient condition is given in terms of Linear Matrix
Inequality (LMI). This approach is then exploited to modifythe local behavior of a controller which
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has been developed in Mazenc and Praly (1996) to asymptotically stabilize an inverted pendulum to its
upper position.

Motivated by the fact that in some cases, the sufficient condition doesn’t apply for some static linear
controllers, a more general sufficient condition is given (see section 5). However, this one is not anymore
in terms of linear matrix inequalities. With simple relaxation procedures, it is shown that this strategy
addresses successfully the uniting problem for a large number of local stabilizers. Indeed, it is shown that
statistically all local controllers can be merged with the global one on this specific inverted pendulum
example.

The paper is organized as follows. In section 2, the problem under consideration is formalized. More-
over in the same section a first result which gives a sufficientcondition in terms of LMI to solve the
problem mentioned above is formulated in Theorem 2.3. The proof of this Theorem is given in Section
3. Section 4 is devoted to illustrate the proposed approach on an inverted pendulum system. Some further
developments and a more general sufficient condition is given in section 5. Finally section 6 contains the
conclusion.

Notations:

• The transpose of a matrixP is denotedP′.
• For arbitrary square matrices(P,Q) we writeP≥ Q if P−Q≥ 0; i.e.,P−Q is a positive semi-definite

matrix. Similarly we defineP> Q if P−Q> 0; i.e.,P−Q is positive definite.
• Ck(E;F): We denoteCk(E;F) or simplyCk when this is no ambiguity on the sets, the set of functions

from E to F which is of classCk.
• Given a functionV in C2(Rn;R), H(V)(x) denotes the Hessian matrix evaluated atx in R

n, i.e.
(H(V)(x))i j =

∂2V
∂xi∂xj

(x) .

2 Problem statement and main result

2.1 Problem formulation

Throughout this paper, the following controlled nonlinearsystem, affine in the input is considered:

ẋ= f (x)+g(x)u , x(0) = x0 , (1)

wherex in R
n is the state vector,u in R

p is the control input, andf : Rn → R
n is aC2 function such that

f (0) = 0 andg : Rn →R
n×p is aC1 function.

The functionsf being smooth, we can introduce the two matrices(F,G) in R
n×n×R

n×p with F =
∂ f
∂x(0) andG= g(0) describing the first order approximation of system (1).

All along this paper, it is assumed that the system (1) satisfies the following two assumptions:

Assumption 2.1Global Stabilization: There exists a positive definite, proper andC2 functionV∞ : Rn →
R+ and a locally Lipschitz functionφ∞ : Rn →R

p such that:

∂V∞

∂x
(x)
[

f (x)+g(x)φ∞(x)
]

< 0 ,∀ x 6= 0 . (2)

Assumption 2.2First order Controllability: The pair of matrices(F,G) is controllable.

Under assumptions 2.1 and 2.2, the problem under consideration is astabilization with prescribed
local behavior problem. It can be formulated as follows:

Under Assumptions 2.1 and 2.2, given a linear (possibly optimal) local controller u= K0x such that the
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matrix F+GK0 is Hurwitz, find a continuous control lawφp :Rn →R
p such that the origin of the system

ẋ= f (x)+g(x)φp(x) ,

is globally asymptotically stable and such that :

∂φp

∂x
(0) = K0 . (3)

When the two functions( f ,g) are such that the system is in backstepping form (see Krstic et al.
(1995)), this problem has been solved in Pan et al. (2001). However, when no structure restriction are
imposed on the couple( f ,g) and based on the theory developed in Andrieu and Prieur (2010), a sufficient
condition can be given in terms of linear matrix inequalities (LMI) which allows to solve the previous
problem.

Theorem 2.3LMI sufficient condition:: Assume the system (1) is such that there exist two functions
V∞,φ∞ satisfying assumption 2.1 and such that the pair of matrices(F,G) satisfies assumption 2.2. Given
P0 a positive definite symmetric matrix inRn×n and K0 a matrix inRn×p such that:

P0(F +GK0)+(F +GK0)
TP0 < 0 , (4)

if there exists a matrix Km in R
n×p satisfying the following matrix inequalities

{

P0(F +GKm)+(F +GKm)
TP0 < 0

P∞(F +GKm)+(F +GKm)
TP∞ < 0

, (5)

where, P∞ = H(V∞)(0) then, there exists a proper, positive definite and C2 function Vp : Rn → R+ and a
locally Lipschitz functionφp : Rn →R

p such that:

∂Vp

∂x
(x)
[

f (x)+g(x)φp(x)
]

< 0 ,∀ x 6= 0 . (6)

and there exists a positive real number r∞ such thatφp(x) = K0x and Vp(x) = x′P0x for all x verifying
V∞(x)< r∞.

It can be checked that Theorem 2.3 gives a sufficient condition to solve thestabilization with pre-
scribed local behavior problem. Indeed, with Equation (4), the matrixK0 is such thatF+GK0 is Hurwitz
and moreover the functionφp satisfies (3) (since the functionV∞ is positive definite, it yieldsφp(x) =K0x
in a neighborhood of the origin). The proof of Theorem 2.3 is given in section 3.

Since Theorem 2.3 gives a sufficient condition in terms of linear matrix inequalities, it allows to
employ the efficient LMI solvers to check wether or not this LMI condition is satisfied. These tools are
used in section 4 to employ Theorem 2.3 and to modify the localbehavior of a global controller on a
inverted pendulum. However, as shown in Remark1 of Section 4.4, for some linear local controllers,
this sufficient condition doesn’t hold. In section 5, an extension of Theorem 2.3 is given which allows to
overcome this difficulty.

2.2 Discussion

It can be noticed that Assumption 2.1 is a strong assumption.However, depending on the structure of the
functions f andg some tools are now available allowing the design of the globally stabilizing controller
φ∞ and its associated Lyapunov function (backstepping, forwarding, feedback linearization, passivation,
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. . . ). Note that in Mazenc and Praly (1996), employing forwarding techniques a global controller for the
model of an inverted pendulum is given. This one is studied insection 4.

Considering Assumption 2.2, a local controller ensuring local asymptotic stabilization of the origin of
system (1) can be designed. Among the controls which provideasymptotic stabilization of the origin,
the problem of guaranteeing a certain performance can be addressed.

One interesting aspect of this uniting methodology is the one regarding theH∞ robust control design.
Indeed, assume that the nonlinear system given in equation (1) is affected by some external disturbances
as:

ẋ= f (x)+g(x)u+h(x)d , (7)

whereh : Rn → R
n×m is a locally Lipschitz function andd in C0(R;Rm) is an unknown external distur-

bance. In this case, following theH∞ design methodology (see Başar and Bernhard (1995)) the control
law must satisfy two distinct objectives:

i) The first is to guarantee the asymptotic stability of the origin when the disturbance vanishes.
ii) The second is to guarantee a given attenuation level of a quadratic functional of the state and

control in theL2 framework. More precisely, given a positive definite matrixQ in R
n×n, a posi-

tive semi-definite matrixR in R
p×p and a positive real numberγ (the attenuation level) we want

to find a stabilizing control feedback lawu= φ0(x) such that the following inequality is satisfied
for all t in R:

∫ t

0
xu,w(s)

′Qxu,w(s)+u(s)′Ru(s)ds≤ γ2
∫ t

0
|d(s)|2ds, (8)

wherexu,w(·) denotes the solution of system (7) initialized to the origin.

Solving this problem relies on the construction of a solution to a nonlinear Hamilton Jacobi Bellman
equality1 which can be difficult (or impossible) to solve. However, if we focuss on the linear approxima-
tion of system (7), then this problem can be solved locally. The first order approximation of system (7)
is a linear system defined as,

ẋ= Fx+Gu+Hd (9)

with H = h(0). In this case, the Hamilton Jacobi Bellman equality is an algebraic equation defined as:

P0F +F ′P0+
1
γ2

P0HH ′P0−P0GR−1G′P0+Q= 0 , (10)

where the solutionP0 is a definite positive matrix inRn×n, and a robust linear control for system (9)
solving the disturbance attenuation as defined by inequality (8) is given as

u= φ0(x) =−R−1G′P0x . (11)

1Following the nonlinear robust control design methodology, a way to solve this problem is to find a positive definite and proper smooth function
V0 : Rn → R+ satisfying the Hamilton Jacobi Bellman equation

∂V0

∂x
(x) f (x)+

1
4γ2

∂V0

∂x
(x)h(x)h(x)′

(

∂V0

∂x
(x)

)′
− 1

4
∂V0

∂x
(x)g(x)R−1g(x)′

(

∂V0

∂x
(x)

)′
+x′Qx= 0

In this case, the solution to the control problem is simply

φ0(x) =−1
2

R−1g(x)′
(

∂V0

∂x
(x)

)′

However, the computation of the solution to the Hamilton Jacobi Bellman equality is difficult in practice when dealing with nonlinear systems.
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In section 4, this type of local controller is united with a global controller obtained by forwarding for
the model of an inverted pendulum.

As seen from the LMI sufficient condition (i.e. inequalities(5)), we are interested in finding a common
controller for two different lyapunov functions. This is insome aspect a dual problem from a usual prob-
lem in robust control design in which a unique lyapunov function is associated to different controllers
(see Boyd et al. (1994) for further details).

Note also that givenK0 a locally stabilizing (possibly optimal) controller, manymatricesP0 are solu-
tion to the Lyapunov inequality (4). Among the solutions to this Lyapunov inequality, we need to find
one such that inequalities (5) are satisfied.

Finally, it has to be noticed that inequalities (5) implies that locallyV∞ is a strict control Lyapunov
function. This implies that this approach may fail when considering globally stabilizing controller which
associated Lyapunov functions are not strict. This is for instance the case with most of the global con-
troller obtained using some passivation arguments.

3 Proof of Theorem 2.3

The proof of Theorem 2.3 is based on the tools developed in Andrieu and Prieur (2010). Consequently,
in a first step we review the result obtained in that paper.

3.1 Continuously uniting local and non-local controller

In Andrieu and Prieur (2010), a sufficient condition is givento allow the construction of a continuous
control law which unites a local and a non-local one and preserves the global stability of the closed loop
systems. This approach is based on the uniting of two ControlLyapunov Functions. One of the result
obtained in that paper can be summarized as follows:

Theorem 3.1Given in Andrieu and Prieur (2010):: Letφ0 :Rn →R
p andφ∞ : Rn →R

p be two locally
Lipschitz functions, V0 : Rn → R+ and V∞ : Rn → R+ be two C1 positive definite and proper functions,
R0 and r∞ be two positive real numbers such that the following holds.

i) Local stabilizability: For all x in{x : 0 < V0(x) ≤ R0},

∂V0

∂x
(x) f (x) +

∂V0

∂x
(x)g(x)φ0(x) < 0 ; (12)

ii) Non-local stabilizability: For all x in{x : V∞(x) ≥ r∞}

∂V∞

∂x
(x) f (x) +

∂V∞

∂x
(x)g(x)φ∞(x) < 0 ; (13)

iii) Covering assumption:

{x : V∞(x)> r∞}∪{x : V0(x)< R0}= R
n ; (14)

iv) Uniting CLF assumption: For all x in{x : V∞(x) > r∞ , V0(x) < R0} there exists ux in R
p such

that:

∂V0

∂x
(x) f (x) +

∂V0

∂x
(x)g(x)ux < 0 ;

∂V∞

∂x
(x) f (x) +

∂V∞

∂x
(x)g(x)ux < 0 . (15)

Then, there exists a locally Lipschitz functionφp :Rn →R
p and a positive definite and properC1 function

Vp : Rn → R+ which solves the uniting controller problem, i.e. such that
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i) Local property:φp(x) = φ0(x) and Vp(x) =V0(x) for all x such that V∞(x)≤ r∞ ;
ii) Non-local property:φp(x) = φ∞(x) and Vp(x) =V∞(x) for all x such that V0(x)≥ R0 ;
iii) Global stabilizability:

∂Vp

∂x
(x)
[

f (x)+g(x)φp(x)
]

< 0 ,∀ x 6= 0 . (16)

This result is not presented in this way in Andrieu and Prieur(2010) but can be easily obtained from
(Andrieu and Prieur 2010, Theorem 3.1) and (Andrieu and Prieur 2010, Proposition 2.2).

The idea of the proof in Andrieu and Prieur (2010) is to designa controller which is a continuous
path going fromφ0(x) for x small towardφ∞(x) for larger values of the state. The global asymptotic
stability of the origin is ensured by adding a sufficiently large term which depends on theuniting control
Lyapunov functionconstructed fromV0 andV∞. More precisely, the functionφp :Rn →R

p obtained from
Theorem 3.1 and which is a solution to the uniting controllerproblem is defined as

φp(x) = H (x) − kc(x)

(

∂Vp

∂x
(x)g(x)

)′
,∀x ∈ R

n
, (17)

whereVp : Rn → R+ is the united control Lyapunov function constructed employing the result in (An-
drieu and Prieur 2010, Theorem 2.1). To be precise, this function unites the local and nonlocal control
Lyapunov functionsV0 andV∞ and is given for allx in R

n by

Vp(x) = R0

[

ϕ0(V0(x))+ϕ∞(V∞(x))
]

V∞(x)+ r∞

[

1 − ϕ0(V0(x)) − ϕ∞(V∞(x))
]

V0(x) , (18)

whereϕ0 :R+ → [0,1] andϕ∞ :R+ → [0,1] are two continuously differentiable non-decreasing functions
satisfying1:

ϕ0(s)







= 0 ∀s≤ r0

> 0 ∀ r0 < s< R0

= 1
2 ∀s≥ R0

, ϕ∞(s)







= 0 ∀s≤ r∞
> 0 ∀ r∞ < s< R∞
= 1

2 ∀s≥ R∞

, (21)

and wherer0=max{x:V∞(x)≤ r∞}V0(x), andR∞ =min{x:V0(x)≥R0}V∞(x). In (17) the functionH continuously
interpolates the two controllersφ0 andφ∞ and is given as

H (x) = υ(x)φ0(x) + [1−υ(x)]φ∞(x)

whereυ is any continuous function2 such that

υ(x) =

{

1 if V∞(x) ≤ r∞ ,

0 if V0(x) ≥ R0 .

1For instance,ϕ0 andϕ∞ can be defined as:

ϕ0(s) =
3
2

(

s− r0

R0− r0

)2

−
(

s− r0

R0− r0

)3

, s ∈ [r0,R0] , (19)

ϕ∞(s) =
3
2

(

s− r∞
R∞ − r∞

)2

−
(

s− r∞
R∞ − r∞

)3

, s∈ [r∞,R∞] . (20)

2For instance, givingϕ0 andϕ∞ defined in (21), a possible choice is:υ(x) = 1−ϕ0(V0(x))−ϕ∞(V∞(x)) . (22)
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Also, in (17) the functionc is any continuous function such that3

c(x)

{

= 0 if V0(x) ≥ R0 orV∞(x) ≤ r∞ ,

> 0 if V0(x) < R0 andV∞(x) > r∞ ,
(24)

andk is a positive real number sufficiently large to ensure thatVm is a Lyapunov function of the closed-
loop system. The existence ofk is obtained employing compactness arguments (see analogous arguments
in (Andrieu et al. 2008, Lemma 2.13)).

3.2 Proof of Theorem 2.3

The idea of the proof is to show that with matrix inequalities(5) the four points of Theorem 3.1 are
satisfied and consequently the controller (17) is a solutionto the stabilization with prescribed local
behavior problem.

Proof of Theorem 2.3:ConsiderV0(x) = xTP0x. Along the trajectories of System (1) withu= K0x, the
functionV0 satisfies:

˙︷ ︷

V0(x) = xTS0x+△0(x) ,

whereS0 is matrix inRn×n defined as

S0 = P0(F +GK0)+(F +GK0)
TP0 ,

and where△0 : Rn → R is aC2 function defined as,

△0(x) = 2xTP0[( f (x)−Fx)+(g(x)−G)K0x] .

It can be checked that inequality (4) implies thatS0 is a symmetric negative definite matrix. Moreover,
the function△0 satisfies,

△0(0) = 0 ,
∂△0

∂x
(0) = 0 ,H(△0)(0) = 0 .

Hence, it yields:

△0(x) = ◦(|x|2) .

Consequently,
˙︷ ︷

V0(x) < 0 along the trajectories of the System (1) withu= K0x for all sufficiently small
x. Hence Item 1 of Theorem 3.1 is satisfied withR0 small enough.

On another hand, with Assumption 2.1, Item 2 of Theorem 3.1 istrivially satisfied for allr∞ > 0.
The functionsV0 andV∞ being proper and definite positive, Item 3 is satisfied provided r∞ is selected
sufficiently small.

Now, along the trajectories of System (1) withu= Kmx, it yields,

˙︷ ︷

V∞(x) = 2xTP∞( f (x)+g(x)Kmx)+

(

∂V∞

∂x
(x)−2xTP∞

)

( f (x)+g(x)Kmx) .

3For instance, a possible choice isc(x) = max{0,(R0−V0(x))(V∞(x)− r∞)} (23)
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Which can be rewritten,

˙︷ ︷

V∞(x) = xTS∞x+△∞(x) ,

whereS∞ is matrix inRn×n defined as

S∞ = P∞(F +GKm)+(F +GKm)
TP∞ ,

and where△∞ : Rn → R is aC2 function defined as,

△∞(x) = 2xTP∞[ f (x)−Fx+(g(x)−G)Kmx]+

(

∂V∞

∂x
(x)−2xTP∞

)

( f (x)+g(x)Kmx) .

Note that with (5),S∞ is a symmetric negative definite matrix. Moreover since△∞ satisfies

△∞(0) = 0 ,
∂△∞

∂x
(0) = 0,H(△∞)(0) = 0 ,

it yields

△∞(x) = ◦(|x|2) .

Consequently, along the trajectories of System (1) withu= Kmx for all x small

˙︷ ︷

V∞(x)< 0 . (25)

It can be checked that the same conclusion holds with the functionV0. In other word, along the trajec-
tories of System (1) withu= Kmx for all x small

˙︷ ︷

V0(x)< 0 . (26)

Inequalities (25) and (26) implies that the control lawu= Kmx makes strictly negative the time deriva-
tive of the two functionsV0 andV∞ for x small enough. Hence, Item 4 of Theorem 3.1 is satisfied provided
R0 andr∞ are small enough.

With Theorem 3.1, it yields that there exists a continuous function φp (for instance the one defined
in (17)) which makes the origin of the system ˙x= f (x)+g(x)φp(x) globally asymptotically stable with
associated Lyapunov functionVp defined in (18) and for allx such thatV∞(x)< r∞ thenφ(x) = K0x and
Vp(x) = x′P0x. This ends the proof of Theorem 2.3.

4 Application to the inverted pendulum

The inverted pendulum is a classical example in control theory. The goal is to apply control torque to
stabilize the inverted pendulum and raise it to its upper equilibrium position while the displacement of
the carriage is brought to zero.

In our context, the control law has to ensure the overall stability of the system and a local disturbance
attenuation level for a given quadratic cost with respect tosome external disturbances on the model.
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4.1 Dynamical model

Consider the inverted pendulum constituted of a movable carriage in translation on a horizontal axis.
The pendulum, while being fixed on the carriage is free to rotate. We consider the rigid rod of negligible
mass, and we defineM the mass of the carriage (in gramme),m the mass of the pendulum (in gramme),l
the length of the rod (in meter),χ the position of the carriage from origin (in meter),θ the angle between
the pendulum and the vertical (in rad).

Using the equation of Euler-Lagrange, we get the following model given in terms of differential equa-
tions:

{

χ̈cos(θ)+ l θ̈−gsin(θ) = 0 ,

(M+m) χ̈+mlcos(θ)θ̈−mlsin(θ)θ̇2 = F +d ,
(27)

whereF is the horizontal acceleration acting on the cart and is an unknown disturbance (which can be
related to friction). This model can be rewritten in state space form as















χ̈ =
u+d+mlθ̇2sin(θ)−mgsin(θ)cos(θ)

M+msin(θ)2 ,

θ̈ =
g
l

sin(θ)− 1
l

cos(θ)

[

u+d+mlθ̇2sin(θ)−mgsin(θ)cos(θ)
M+msin(θ)2

]

,

(28)

where the statex= (χ, χ̇,θ, θ̇) is in R×R×
(

−Π
2 ,

Π
2

)

×R and the control inputu= F is in R.

The physical data taken for our experiments are the following.

l = 0.26m , M = 600g , m= 100g , g= 9.81 .

4.2 Globally stabilizing control law using forwarding

We are interested in this paragraph in the control law given by Mazenc and Praly using the technique
of forwarding or adding integrators (see Mazenc and Praly (1996)). In this subsection we don’t consider
the external disturbances.

Following Mazenc and Praly (1996), the differential equations of inverted pendulum (27) are rewritten
in new coordinates withd = 0:

ρ =
χ
l
, v=

χ̇√
gl

, θ = θ , ω = θ̇

√

l
g
, (29)

and with a new control variable given by:

u2 =
1
g

u+mlθ̇2sin(θ)−mgsin(θ)cos(θ)
M+msin(θ)2 , (30)

and, finally with a new time variable

t := t

√

g
l
.

Consequently, the following equations are obtained (Mazenc and Praly (1996)):

ρ̇ = v , v̇= u2 , θ̇ = ω , ω̇ = sin(θ)−u2cos(θ) , (31)
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with (ρ,v,ω) in R
3 and we restrictθ to be in

(

−π
2,

π
2

)

. From a practical point of view, this means that the
position of the mass is set above the fixation point of the bar.The forwarding approach of Mazenc and
Praly consists in 3 steps :

i) stabilize the subsystem(θ,ω);
ii) stabilize the subsystem(v,θ,ω) by adding a first integration;
iii) stabilize the complete system by adding a final integration.

To obtain a non bounded domain (i.e onR4), the following change of coordinate is considered in
Mazenc and Praly (1996):

ρ1 = ρ , v1 = v , t1 = tan(θ) , r1 = (1+ t1
2)ω .

In this case, (31) is rewritten as following:

ρ̇1 = v1 , v̇1 = u2 , ṫ1 = r1 , ṙ1 =
2t1r1

2

1+ t12
+ t1
√

1+ t12−u2

√

1+ t12 . (32)

The forwarding approach consists on using a change of coordinates to each new addition of integra-
tion obtained by computing a solution to a partial differential equation and to perform a Lyapunov
design at each step. With this approach the authors in Mazencand Praly (1996) gave a control law
u2 = φ(ρ1,v1, t1, r1) which stabilizes the system globally asymptotically as following:

φ(ρ1,v1, t1, r1) = φ1(t1, r1)+φ2(v2, t1, r1)+φ3(ρ3,v2, t1, r1) , (33)

with: φ1(t1, r1) = 2t1

(

1+
r1

2

(1+ t12)
3
2

)

+ r1 ,

φ2(v2, t1, r1) =
1
10

v2, v2 = v1+2 r1√
1+t2

1

+ t1 , (34)

φ3(ρ3,v2, t2, r2) = 2[2r1+ t1]
√

1+ t12+2v2

[

10+
1
2
|v2|
]

+
10ρ3

√

1+ρ3
2

,

andρ3 = ρ1+2log

(

t1+
√

1+ t2
1

)

+10v2+v1+
r1

√

1+ t2
1

. (35)

The associated control Lyapunov functionV : R4 →R+ is given as:

V(ρ1,v1, t1, r1) = 2r1
2+2

(

(1+ t1
2)

3
2 −1

)

+2r1t1+10v2
2+

1
3
|v2|3+

√

1+ρ3
2−1 , (36)

where the functionsv2 andρ3 are given in (34) and (35).

With these data, it is shown in Mazenc and Praly (1996) thatV∞ defined in (36) satisfies along the tra-
jectories of system (32) withu2 = φ(ρ1,v1, t1, r1), the controller defined in (33), the following inequality

˙︷ ︷

V(ρ1,v1, t1, r1)< 0 , ∀(ρ1,v1, t1, r1) 6= 0 .

Consequently, Assumption 2.1 is satisfied for System (32).

Going back to the coordinates of system (28), it yields a Lyapunov functionV∞ defined as,

V∞(x) =V

(

χ
l
,

χ̇
gl
, tan(θ),(1+ tan(θ)2)θ̇

√

l
g

)

,
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and a control lawu= φ∞(x) with

φ∞(x) = g(M+msin(θ)2)φ

(

χ
l
,

χ̇
gl
, tan(θ),(1+ tan(θ)2)θ̇

√

l
g

)

−mlθ̇2sin(θ)+mgsin(θ)cos(θ), (37)

which satisfies Assumption 2.1 for the model (27) with the small modification that the state space is not
R

4 butR×R×
(

−Π
2 ,

Π
2

)

×R.

4.3 Locally robust stabilizing control law

No we consider the disturbanced involved in the model (28) and we design a robust control law on the
first order approximation of the model. The matrices of the first order approximation of system (28) are
given as

F =









0 1 0 0
0 0 −mg

M 0
0 0 0 1
0 0 g

l +
mg
M 0









, G=









0
1
M
0

− 1
lM









, H = G . (38)

Assumption 2.2 is satisfied for system (32). Consequently, alinear local stabilizing controller can be
obtained. Among the possible linear local controllers which ensure local stabilization one may select
one which ensures a particular attenuation level as defined in (8).

As an example, in (8) the matrixQ and the real numberRare chosen as:

Q= Diag {0.1,0.2,0.3,0.4} , R= 5.10−6
. (39)

Solving the associated Riccati equation (see equation (10)) by employing the routine (care) of Matlab
with the attenuation levelγ = 0.045, the matrix

P0 ≈









0.20 0.11 0.26 0.03
0.11 0.19 0.50 0.05
0.26 0.50 1.98 0.13
0.03 0.05 0.13 0.01









(40)

is obtained. It yields that the control law (11) is given as:

φ0(x) = [141.6 289.8 1338.8 364]x (41)

This controller guarantees an attenuation level for the linearization of the model in the sense of in-
equality (8). However when considering the nonlinear model(32), only local asymptotic stability can be
achieved with this control law.

4.4 Synthesis of optimal control law locally and globally stable

The aim of this subsection is to employ Theorem 2.3 to unite the local optimal controller (41) and the
globally stabilizing controller (33). The matrixP∞ = H(V∞)(0) is given as:

P∞ ≈









7.40 13.25 23.08 6.57
13.25 27.64 47.59 13.81
23.08 47.59 85 23.93
6.57 13.81 23.93 6.96









(42)
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Using (42) and Theorem 2.3, the existence of a vectorKm solution of LMI (5) with F , G given in (38)
has to be verified. Employing theYalmippackage (Löfberg (2004)) inMatlab in combination with the
solver1 Sedumi(Sturm (1999)), it is shown that a vectorKm doesn’t exist with these data.

However, the following matrix̄P0

P̄0 =









0.64 0.28 0.62 0.07
0.28 0.62 0.89 0.16
0.62 0.81 2.94 0.21
0.07 0.16 0.21 0.04









(43)

is also solution to the Lyapunov inequality (26) with the same control gainK0. In this case we get the
existence ofKm which satisfies (5) and is given byKm= [5249 11152 19487 5671]. From Theorem
2.3, it yields that the control law given in (17) is a global stabilizer with the prescribed local behavior.

Performances of the proposed controller are evaluated in simulation whend is modeled as a centered
gaussian noise with a standard deviation equal to 4. Functionsϕ0, ϕ∞, υ andc are respectively defined in
(19), (20), (22) and (24) with parametersR0 = 46.2, r∞ = 0.2702,r0 = 24.914,R∞ = 0.5017 andk= 10.
The initial condition considered is:

χ(0) = 10 , χ̇(0) = 0.1 , θ(0) = 1.3 , θ̇(0) = 0.8 .
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Figure 1. Evolution of the state variables when consideringthe forwarding controller and the locally robust one.

1All Matlab files can be downloaded from the website :https://sites.google.com/site/vincentandrieu/
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Figure 2. Comparison of the functionsK0x, φ∞(x) andφp(x) along the solution of the closed loop system.

The evolution of the state variables are depicted in Figure 1. As it can be seen the use of the locally
robust controller ensures a faster convergence rate. Moreover, as seen in Figure 3 its robustness with
respect to the measurement noise seems to be improved.

As can be seen in Figure 2 at the momentt = 3.95(sec), the control law of the modified Forwarding
leaves the usual forwarding control law up to timet = 10.68(sec) where it reaches the locally optimal
control law.

As seen on Figure 4, in the interpolation domain the control law increase due to the high gain parameter
k.

Remark 1 : There are locally optimal or robust control laws for which the matrix inequality (5) does
not have a solution. To evaluate the frequency of these problematic cases, a statistical study on the
frequency of solvability of theLMI condition given in Theorem 5.1 is done using the data obtained from
the inverted pendulum studied previously in the next Section.

4.5 Statistical study

In this paragraph, we make a statistical study of the solvability frequency of the sufficient condition
given in terms ofLMI in the Theorem 5.1 with the data obtained from the inverted pendulum studied
previously.

To numerically estimate the frequency of the problematic cases in which there is no solution to the LMI
sufficient condition (5), we develop a statistical approach. To do this, we restrict ourselves to consider
the set of local optimal LQ controllersu = −G′P0x where eachP0 is solution to the algebraic Riccati
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Figure 3. Comparison of the steady-state response of the carriage speed when using the forwarding or the locally robust control law.

equation parameterized by a matrixΓ in R
4×4 and given as1,

F ′P0+P0F −P0GG′P0+Γ′Γ = 0 .

To perform a statistical study, on this set of controllers, elements ofΓ are given by uncorrelated uni-
formly distributed random variables in[0,1], and we have simulated a number of draws. For each of
these draws, we solve the corresponding Riccati equation and we obtain a local LQ controllerK0 and
its associated Lyapunov functionx′P0x. With P0 we check the correspondingLMI condition in (5) em-
ploying theYalmippackage (Löfberg (2004)) inMatlab in combination with the solver1 Sedumi(Sturm
(1999)).

We set the number of draws to 10000. For each of these draws, the matrixΓ is obtained using the
routine (rand) of Matlab. We repeated this manipulation to test the pertinence of our approach. The
values given in the following tabular are the percentage of cases for which we have obtained a solution
to the LMI test (5):

1Note that compare to usualLQ approaches, we are not losing any generality by settingR= 1 since we can normalize the cost
1All Matlab files can be downloaded from the website :https://sites.google.com/site/vincentandrieu/
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Figure 4. Comparison of the controlled input in the undisturbed case.

Test Percentage of success
1 36,32%
2 36,14%
3 36,87%
4 35,64%
5 35,97%
6 36,20%
7 36,72%
8 36,55%
9 35,92%
10 36,10%

The mean of these percentage is 36.24% and the standard deviation is 1.13 (which is relatively low).
Thus, we conclude that the frequency of 36.24% appears to be representative of the mathematical ex-
pectation of the solvability of our sufficient condition in the case of the inverted pendulum for LQ
controllers.

5 Extension of theorem 2.3

To apply our approach and design a globally stabilizing control law and locally optimal, we have to solve
the LMI test (5). However, as we have seen in the statistical analysis, in most cases, this is not possible.
A solution to the problem where the local optimal control does not solve the LMI test is to use a transient
Lyapunov function. Indeed, we have the following result.
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Theorem 5.1Extension: Under Assumptions 2.1 and 2.2, given P0 a symmetric definite positive matrix
in R

n×n and K0 a matrix inRn×p such that:

P0(F +GK0)+(F +GK0)
TP0 < 0 . (44)

If there are two matrices Km,1 and Km,2 in R
n×p, Pm a definite positive matrix inRn×n such that the

following matrix inequalities are satisfied:













P0(F +GKm,1)+(F +GKm,1)
TP0 < 0

Pm(F +GKm,1)+(F +GKm,1)
TPm < 0

Pm(F +GKm,2)+(F +GKm,2)
TPm < 0

P∞(F +GKm,2)+(F +GKm,2)
TP∞ < 0

, (45)

where the matrix P∞ = H(V∞)(0) then, there exists a continuous functionφp : Rn → R
p such that the

origin of the systeṁx = f (x)+g(x)φp(x) is globally asymptotically stable, and there exists a positive
sufficiently small real number r∞ such thatφp(x) = K0x for all x verifying Vm(x)< r∞.

Proof : The proof of Theorem 5.1 is a direct consequence of Theorem 2.3. Indeed, if the two last matrix
inequalities in (45) are satisfied, we can apply Theorem 2.3 to obtain a locally Lipschitz control lawφm,
a proper and definite positiveC1 functionVm,1, and a positive real numberr∞,m sufficiently small such
that

∂Vm,1

∂x
(x)
[

f (x)+g(x)φm(x)
]

< 0 ,∀ x 6= 0 , (46)

and such that for allx such thatV∞(x)< r∞,m then

φm(x) = Km,1x , Vm,1(x) = x′Pmx .

With the two first inequalities in (45), we can use another time Theorem 2.3 to obtain a functionφp, a
realr∞ small enough such that the origin of the system: ˙x= f (x)+g(x)φp(x) is globally asymptotically
stable, and for allx such thatVm(x)< r∞ thenφp(x) = K0x. 2

It has to be noticed that this result does not come in the form of a linear matrix inequality. Therefore,
it is not possible to employ the usual LMI resolution tool to directly solve this sufficient condition.
However, by randomly selecting the matrixPm, inequalities (45) become linear in the unknownsKm,1,
Km,2.

Consequently, givenK0, the local controller and its associated Lyapunov functionP0, we can employ
the following algorithm:

While the matrix inequalities (45) is not satisfied

i) Select randomly a positive definite matrix Qm in R
n×n.

ii) Solve the associated Riccati equation F ′P0 + P0F − P0GG′P0 + Qm = 0 to get a
Pm matrix in R

n×n which defines a CLF.
iii) Check if the matrix inequalities (45) is satisfied.

Employing this simple algorithm, we have shown numericallythat with 10000 differentP0 andK0, in
all cases it was possible to find aPm such that the matrix inequalities (45) was satisfied. Note that, with
this algorithm the maximal number of transient CLFPm that has to be tested was 22.

Consequently, it seems that with Theorem 5.1, it is possibleto design a globally stabilizing controller
such that its first order approximation can be solution of allpossible optimal (LQ) or robust (H∞) problem
on this specific example.
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6 Conclusion

A method to obtain a globally stabilizing control law with a pre-selected local behavior (robustness or
optimality) is presented in that paper. This approach is based on the use of a technique recently developed
in Andrieu and Prieur (2010). A sufficient condition in termsof LMI is first given. This approach is
illustrated in an academic problem of stabilizing an inverted pendulum to its upper equilibrium position.
We modify the local behavior of the globally stabilizing control law obtained by forwarding in Mazenc
and Praly (1996) in order to get a locally robust control law.Moreover, it is shown numerically that nearly
36.24% of LQ controllers can be reproduced locally with this approach. By extending this approach and
using a transitional Lyapunov function, it is shown numerically that 100% of LQ controller can be
combined with the global control law. The results show the advantage of this technique to change the
local behavior of a controlled nonlinear system which in practice is difficult to tune.
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