Exceptionally small balls in stable trees

Abstract : The $\gamma$-stable trees are random measured compact metric spaces that appear as the scaling limit of Galton-Watson trees whose offspring distribution lies in a $\gamma$-stable domain, $\gamma \in (1, 2]$. They form a specific class of Lévy trees (introduced by Le Gall and Le Jan in1998) and the Brownian case $\gamma= 2$ corresponds to Aldous Continuum Random Tree (CRT). In this paper, we study fine properties of the mass measure, that is the natural measure on $\gamma$-stable trees. We first discuss the minimum of the mass measure of balls with radius $r$ and we show that this quantity is of order $r^{\frac{\gamma}{\gamma-1}} (\log1/r)^{-\frac{1}{\gamma-1}}$. We think that no similar result holds true for the maximum of the mass measure of balls with radius $r$, except in the Brownian case: when $\gamma = 2$, we prove that this quantity is of order $r^2 \log 1/r$. In addition, we compute the exact constant for the lower local density of the mass measure (and the upper one for the CRT), which continues previous results.
Type de document :
Pré-publication, Document de travail
25 pages. 2011
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00640841
Contributeur : Thomas Duquesne <>
Soumis le : lundi 14 novembre 2011 - 12:40:58
Dernière modification le : mercredi 12 octobre 2016 - 01:03:02
Document(s) archivé(s) le : mercredi 15 février 2012 - 02:23:00

Fichiers

Small_Ball_envoi.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00640841, version 1
  • ARXIV : 1111.3465

Collections

UPMC | INSMI | PMA | USPC

Citation

Thomas Duquesne, Guanying Wang. Exceptionally small balls in stable trees. 25 pages. 2011. <hal-00640841>

Partager

Métriques

Consultations de
la notice

144

Téléchargements du document

61