

EVI1 mediated down regulation of miR-449a is essential for the survival of EVI1 positive leukemic cells

An de Weer, Joni van Der Meulen, Pieter Rondou, Tom Taghon, Torsten Konrad, Katleen de Preter, Pieter Mestdagh, Tom van Maerken, Nadine van Roy, Marta Jeison, et al.

► To cite this version:

An de Weer, Joni van Der Meulen, Pieter Rondou, Tom Taghon, Torsten Konrad, et al.. EVI1 mediated down regulation of miR-449a is essential for the survival of EVI1 positive leukemic cells. British Journal of Haematology, 2011, 154 (3), pp.337. 10.1111/j.1365-2141.2011.08737.x . hal-00640631

HAL Id: hal-00640631 https://hal.science/hal-00640631

Submitted on 14 Nov 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EVI1 mediated down regulation of miR-449a is essential for the survival of EVI1 positive leukemic cells

Journal:	British Journal of Haematology
Manuscript ID:	BJH-2011-00209.R1
Manuscript Type:	Ordinary Papers
Date Submitted by the Author:	12-Apr-2011
Complete List of Authors:	De Weer, An; Ghent University Hospital, Center for Medical Genetics Van der Meulen, Joni; Ghent University Hospital, Center for Medical Genetics Rondou, Pieter; Ghent University Hospital, Center for Medical Genetics Taghon, Tom; Ghent University Hospital, Department of Clinical Chemistry, Microbiology and Immunology Konrad, Torsten; Medical University of Vienna, Department of Medical Genetics De Preter, Katleen; Ghent University Hospital, Center for Medical Genetics Mestdagh, Pieter; Ghent University Hospital, Center for Medical Genetics Van Maerken, Tom; Ghent University Hospital, Center for Medical Genetics Van Roy, Nadine; Ghent University Hospital, Center for Medical Genetics Jeison, Marta; Schneider Children's Medical Center of Israel, Department of Pediatric Hematology Oncology Yaniv, Isaac; Schneider Children's Medical Center of Israel, Department of Pediatric Hematology Oncology Cauwelier, Barbara; Hospital St-Jan Bruges, Department of Hematology Noens, Lucien; Ghent University Hospital, Department of Hematology Poirel, Hélène; Cliniques universitaires saint-Luc / de Duve Institute / UCL, Human Molecular Genetics Vandenberghe, Peter; University Hospital, Haematology Lambert, Frédéric; University of Liège, Medical Genetics Vandenberghe, Peter; University of Navarra, Division of Oncology Odero, Maria; University of Navarra, Genetics Van Vlierberghe, Pieter; Ghent University Hospital, Center for

	Medical Genetics Speleman, Frank; Ghent University Hospital, Center for Medical Genetics
Key Words:	MYELOID LEUKAEMIA, APOPTOSIS, GENE EXPRESSION, BCL-2
	SCHOLARONE [™] Manuscripts

Research paper British Journal of Haematology

EVI1 mediated down regulation of *miR-449a* is essential for the survival of *EVI1* positive leukemic cells

De Weer An¹; Van der Meulen Joni¹; Rondou Pieter¹; Taghon Tom²; Konrad Torsten A³; De Preter Katleen¹; Mestdagh Pieter¹; Van Maerken Tom¹; Van Roy Nadine¹; Jeison Marta⁴; Yaniv Isaac⁴; Cauwelier Barbara⁵; Noens Lucien⁶; Poirel Hélène-Antoine⁷; Vandenberghe Peter⁸; Lambert Frédéric⁹; De Paepe Anne¹; García Sánchez Maria¹⁰; Odero Maria¹⁰; Verhasselt Bruno²; Philippé Jan²; Vandesompele Joke¹; Wieser Rotraud¹¹; Dastugue Nicole¹²; Van Vlierberghe Pieter¹; Poppe Bruce^{1*} and Speleman Frank^{1*}

¹Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; ² Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium; ³ Department of Medical Genetics, Medical University of Vienna, Vienna, Austria; ⁴ Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; ⁵ Department of Hematology, Hospital St-Jan, Bruges, Belgium; ⁶ Department of Hematology, Ghent University Hospital, Ghent, Belgium; ⁷ Hematologic Section of the Human Genetics Centre, Cliniques Universitaires UCL Saint-Luc, Brussels, Belgium; ⁸ Centre for Human Genetics, University of Leuven, Leuven, Belgium; ⁹ Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Liège, Liège, Belgium; ¹⁰ Department of Genetics, Medical University of Vienna, Vienna, Austria; ¹² Laboratoire d'Hématologie, Hôpital Purpan, Toulouse, France

* These authors contributed equally to the paper

Running title: The role of miR-449a in EVI1 pathogenesis

Corresponding author: Prof. dr. F. Speleman

Center for Medical Genetics Gent (CMGG) Ghent University Hospital De Pintelaan 185 B-9000, Ghent Belgium Phone: + 32 (0)9 332 24 51 Fax: + 32 (0)9 332 65 49 E-mail: franki.speleman@ugent.be

Acknowledgements

A.D.W. performed the research; J.V.M. and P.R. performed electroporation, viability and apoptosis assays; M.G.S. and M.O. performed ChIP experiments; T.V.M., B.V. and J.P. helped with FACS and electroporation experiments; N.V.R. helped with FISH experiments; T.T., T.K., M.J., I.Y., B.C., L.N., H.-A.P., P.V., F.L., R.W. and N.D. provided patient samples and/or essential cell systems or reagents; A.D.W., K.D.P., P.M., J.V. and P.V.V. performed data-analysis; A.D.W. drafted the manuscript and P.V.V., J.V.M., P.R. and F.S. contributed to write the final version of the manuscript; B.P., F.S., N.V.R. and A.D.P. designed and supervised the study.

We want to thank Nurten Yigit, Justine Nuytens and Els De Smet for extensive technical assistance with cell culture. A. De Weer was the recipient of a predoctoral BOF grant (Bijzonder Onderzoeksfonds UGent, grant nr. 01D28905) and P. Rondou of a postdoctoral BOF grant (nr. 01P14010). B. Poppe, P. Vandenberghe and B. Verhasselt are senior clinical investigators of FWO-Vlaanderen. P. Van Vlierberghe and T. Taghon are postdoctoral fellows and J. Van der Meulen a predoctoral fellow of FWO-Vlaanderen. P. Van Vlierberghe is a fellow Scholar from the American Society of Haematology (ASH). This study was supported by the FWO-Vlaanderen, grant no. G.0106.05, by GOA-UGent, grant no. 12051203, and by the Austrian Science Foundation, grant no. P20920. This text presents research results of the Belgian Program of Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors.

SUMMARY

Chromosomal rearrangements involving the Ecotropic Viral Integration site 1 (EVI1) locus are recurrent genetic events in myeloid leukemia and are associated with poor prognosis. In this study, we assessed the role of EVI1 in the transcriptional regulation of microRNAs (miRNAs) involved in the leukemic phenotype. For this, we profiled expression of 366 miRNAs in 38 EVI1 rearranged patient samples, normal bone marrow controls and EVI1 knock down/re-expression models. Cross-comparison of these miRNA expression profiling data showed that EVI1 rearranged leukemias are characterized by down regulation of miR-449a. Reconstitution of miR-449a expression in EVI1 rearranged cell line models induced apoptosis resulting in a strong decrease in cell viability. These effects might be mediated in part by miR-449a regulation of NOTCH1 and BCL2 which are shown here to be bona fide miR-449a targets. Finally, we confirmed that miR-449a repression is mediated through direct promoter occupation of the EVI1 transcriptional repressor.

In conclusion, this study reveals miR-449a as a crucial direct target of EVI1 involved in the pathogenesis of EVI1 rearranged leukemias and unravels NOTCH1 and BCL2 as important novel targets of miR-449a. This EVI1-miR-449a-NOTCH1/BCL2 regulatory axis might open new possibilities for the development of therapeutic strategies in this poor prognostic leukemia subgroup.

KEYWORDS

L2 EVI1; miR-449a; myeloid malignancies; NOTCH; BCL2

Chromosomal rearrangements involving the Ecotropic Viral Integration site 1 (*EVI1*) gene on chromosome band 3q26.2 are a recurrent finding in malignant myeloid disorders (Nucifora 1997). *EVI1* gene rearrangements (translocations and inversions) account for approximately 5% of cytogenetic abnormalities in acute myeloid leukemias (AML), myelodysplastic syndromes (MDS) and chronic myeloid leukemias in blast crisis (CML-BC) (Buonamici, *et al* 2003). *EVI1* transcriptional activation has also been reported in approximately 8 – 15% of AML patients without chromosomal defects affecting the *EVI1* locus (Haas, *et al* 2008, Lugthart, *et al* 2008).

The *EVI1* gene encodes a zinc finger transcription factor that mainly acts as a repressor of gene expression, but relatively few data are available on the downstream targets and pathways involved in *EVI1* pathogenesis (Qiu, *et al* 2008, Spensberger and Delwel 2008, Takahashi and Licht 2002, Yatsula, *et al* 2005, Yuasa, *et al* 2005). As survival of patients with *EVI1* overexpressing leukemias is poor (Barjesteh van Waalwijk van Doorn-Khosrovani, *et al* 2003, Haas, *et al* 2008, Lugthart, *et al* 2008), new insights into the molecular pathogenesis of these leukemias are needed for rational development of targeted therapies.

MicroRNAs (MiRNAs) are 19-24 nucleotide long RNA molecules that can interfere with gene expression through degradation of the mRNA or inhibition of the translational machinery (Medina and Slack 2008). Recently, miRNA deregulation has been identified as a major contributor to cancer initiation and progression (Deng, *et al* 2008). In particular, miRNA genes have been shown to be directly regulated by activated oncogenes such as the *miR-17-92* cluster which is up regulated by *MYC/MYCN* (Bray, *et al* 2009, Mendell 2008). In view of these observations, we hypothesized that the malignant phenotype of *EVI1* overexpressing leukemic cells might be, at least in part, explained through deregulation of miRNAs controlling the expression of genes critically involved in oncogenesis. To test this hypothesis, we analysed the expression of 366 miRNAs in a large set of bone marrow samples from patients with *EVI1* rearrangements and crossed this data with miRNA profiling of two functional *EVI1* knockdown models.

METHODS

Patients and cell lines

Bone marrow samples from 27 AML patients, 6 MDS patients and 5 CML patients were collected in a multi-centre setting. Patients were included in the study after confirmation

of *EVI1* rearrangement by karyotyping and Fluorescence *In Situ* Hybridization (FISH) (RP11-362K14, RP11-82C9 and RP11-694D5) and confirmation of *EVI1* ectopic expression with reverse transcription quantitative PCR (RT-qPCR) (De Weer, *et al* 2008). Six normal bone marrow samples from patients without a hematological malignancy were also included in the study. The study was approved by the ethical committee of the Ghent University Hospital (2003/273).

Two *EVI1* rearranged cell lines (Kasumi-3 and UCSD-AML1) were used to develop the knockdown models and cultured as previously described (Asou, *et al* 1996, Oval, *et al* 1990). The Kasumi-3 cell line was purchased from ATCC (Middlesex, UK; ATCC#CRL-2725) and the UCSD-AML1 was a generous gift from dr. Bernard O. (Paris, France). For modulation of miRNA expression, two additional AML cell lines, ME-1 (Yanagisawa, *et al* 1991) and NB-4 (Lanotte, *et al* 1991), without *EVI1* rearrangement or *EVI1* overexpression were included. Furthermore, the two AML cell lines TF-1 (*EVI1* overexpressing) and MOLM-13 (*EVI1* negative) were used for chromatin immunoprecipitation (ChIP) experiments and were maintained in RPMI-1640, supplemented with 1% penicillin-streptomycin, and 20% FBS (GIBCO-BRL, Grand Island, NY, USA) and additionally 5ng/ml GM-CSF (Promocell, UK) for TF-1. The HEK293T cell line was maintained in RPMI-1640 supplemented with 10% fetal bovine serum, Glutamine (2 mM) and penicillin (100 U/ml)-streptomycin (100 µg/ml). Patient and *EVI1* rearranged cell line characteristics and karyotypes are listed in Supplementary Table 1.

In order to validate the differentially expressed miRNAs, a tetracycline regulable U937 model system (U937T EVI1-HA) was used and propagated in RPMI-1640 medium supplemented with 10% fetal bovine serum, 0.5 µg/ml puromycin, 1 µg/ml tetracycline, and 500 µg/ml hygromycin (Konrad, *et al* 2009).

Knock down models

An *EVI1* knockdown model was developed in two *EVI1* rearranged cell lines, Kasumi-3 and UCSD-AML1, by electroporation of two *EVI1* targeting small interfering RNAs (siRNA) (Invitrogen, Belgium). To evaluate the role of *NOTCH1* and *BCL2* in *EVI1* pathogenesis, knockdown models of each gene were created in Kasumi-3 and UCSD-AML1 using a combination of four *NOTCH1* specific siRNAs (Dharmacon, USA) or four *BCL2* specific siRNAs (Dharmacon, USA), respectively. The siRNA sequences are listed in Supplementary Table 2.

The Kasumi-3 cells were electroporated at 250 V, 1000 μ F and the UCSD-AML1 cells at 300 V, 1000 μ F (exponential decay pulse) (Genepulser II, Bio-Rad, USA), respectively, using 100 nM of the *EVI1*, NOTCH1 or BCL2 siRNAs.

The cell lines were also electroporated with a scrambled control siRNA duplex (Invitrogen, Belgium or Dharmacon, USA) in order to account for any effect of the electroporation itself and for possible off-target effects. The cells were subsequently evaluated for knockdown at the mRNA level by RT-qPCR as previously described (Poppe, *et al* 2006, Vandesompele, *et al* 2002). The reference genes *RPL13A* and *YWHAZ* were used for normalization after selection using the geNorm software (Vandesompele, *et al* 2002). The qbasePLUS software version 1.2 (Biogazelle, Belgium) was used for the calculations of the RT-qPCR results (Hellemans, *et al* 2007). The primer sequences are listed in Supplementary Table 3.

Knock down of EVI1, NOTCH1 and BCL2 on the protein level was evaluated by Western blotting. Protein isolation was performed with the Nuclear protein Extraction Kit (Pierce, Belgium). Protein concentrations were determined using the Bradford reagent (Bio-Rad, Belgium). For Western blotting, 20 μ g of protein was loaded onto a 7.5% (EVI1) or a 10% (NOTCH1 and BCL2) pre-cast gel (Bio-Rad, Belgium) and the Western blot procedure was performed according to the manufacturer's descriptions using a monoclonal EVI1 antibody (1/2000, #2265, Cell Signalling Technologies, The Netherlands), polyclonal NOTCH1 or BCL2 antibodies (1/1000, 2421S and 2876; Cell Signalling Technologies, The Netherlands) and an α -tubulin antibody (1/5000, Sigma-Aldrich, Belgium) (Girish and Vijayalakshmi 2004).

MicroRNA expression profiling

The Trizol reagent (Invitrogen, Belgium) was used to extract total RNA from total bone marrow samples or bone marrow leukocytes for all patients and normal bone marrow samples. All RNA fractions from cell lines were isolated with the miRNeasy mini kit (Qiagen, Belgium). MiRNA expression profiling was performed using high-throughput stem-loop RT-qPCR as previously described (Mestdagh, *et al* 2008, Mestdagh, *et al* 2009).

To identify differentially expressed miRNAs between the *EVI1* siRNA treated fraction and controls fraction, we used fold change analysis (cut-off level of 1.5, p<0.05) (Chang, *et al* 2008, Hu, *et al* 2008, Ohlsson Teague, *et al* 2009, Pradervand, *et al* 2009, Tzur, *et al* 2008, Wang, *et al* 2009). Significant differences (p<0.05) in miRNA expression between

normal bone marrow and *EVI1* deregulated leukemia were identified with the Rank Product algorithm (Breitling, *et al* 2004).

Modulation of microRNA expression

To evaluate the phenotypic role of specific differentially expressed miRNAs, Kasumi-3, UCSD-AML1, NB-4 and ME-1 cells (2×10^6) were electroporated with 100 nM of the precursor *miR-449a* (PM11127; Applied Biosystems, Belgium) or 100 nM of the anti-miRNAs *miR-213* and *miR-107* (AM10381 and AM10056; Applied Biosystems, Belgium), according to the above described electroporation conditions for Kasumi-3 and UCSD-AML1. The NB-4 and ME-1 cells were electroporated at 300 V, 1000 µF (exponential decay pulse). As a control, cells were electroporated with 100 nM of a scrambled precursor or a scrambled anti-miRNA (Applied Biosystems, Belgium), respectively.

Cell viability and apoptosis assays

Upon electroporation of cells, cell viability and apoptosis were determined using the CellTiter-Glo assay (Promega, Belgium) and Caspase-Glo 3/7 assay (Promega, Belgium), respectively, according to the manufacturer's descriptions. Effects on apoptosis were confirmed using flow cytometry with AnnexinV staining (Bender Medsystems, Belgium).

Chromatin immunoprecipitation (ChIP)

ChIP was carried out on two AML cell lines, the TF-1 (*EVI1* over-expressing) and MOLM-13 (*EVI1* negative). ChIP samples were prepared using 10^7 cells of each cell line per condition. Chromatin was fragmented with a Bioruptor (Diagenode, Belgium) for 30 minutes (30 seconds pulses, 30 seconds pauses). ChIP was carried out according to the manufacturer's protocol (High Cell ChIP kit, Diagenode, Belgium, Catalog # kch-mahigh-G16) using anti-EVI1 (Cell Signalling Technology, Catalog #2593) or an equal amount of IgG isotype as negative control (Cell Signaling Technology, Catalog #2729) or anti-RNA Polymerase II (Millipore, Catalog #20-296) as positive control. Real-time PCR was used to amplify immunoprecipitated DNA using Power Sybr Green (Applied Biosystems) and a 7500 real-time PCR instrument (Applied biosystems). PCR results were calculated using the $\Delta\Delta$ Ct method. The amount of immunoprecipitated DNA in each experiment is represented as signal relative to the amount of input and was calculated with the quantitative real-time PCR. Primers used for the ChIP experiment covered the potential

EVI1 binding site in the *miR-449a* promoter region (-4875bp upstream of transcription initiation site; forward 5' TCTGCAGATATGGATCAATTCAA 3', reverse 5'GAAACAAGACATGCCAACCA-3') and regions covering previously described direct EVI1 target genes *PBX1* (Shimabe, *et al* 2009), *FAM83B* and *CRHBP* (Lugthart, *et al* 2011) as positive controls.

Luciferase reporter experiments

Sixty-three basepair fragments containing the predicted target sites of *miR-449a* in the *NOTCH1* and *BCL2* 3' untranslated regions (UTR), as well as mutant target sites with 3 point mutations, were cloned into the *Notl* and *Xhol* cloning sites of the PsiCheck-2 vector (Promega, Belgium). For this purpose, synthetic oligonucleotides (Supplementary Table 4) were annealed for 3 min at 90 °C and 1h at 37 °C. Ligation into the PsiCheck-2 vector was performed using a T4 ligase (Promega, Belgium). Subsequently, competent *E. coli* cells were transformed with the *NOTCH1* and *BCL2* predicted binding site constructs and DNA was isolated using the High Pure Plasmid isolation kit (Roche, Belgium).

HEK293 cells (80 000 cells) were transfected with 200 ng of the *NOTCH1* or *BCL2* 3'UTR PsiCheck-2 constructs in combination with 100 ng of the precursor *miR-449a* (Applied Biosystems, Belgium) using the DharmaFECT Duo transfection reagent (Dharmacon, USA). After 24h incubation, luciferase activity was assayed using the Dual-Glo luciferase assay system (Promega, Belgium) on a FLUOstar OPTIMA (BMG labtechnologies GmbH, Germany).

Target gene expression analysis

To investigate the expression of candidate *miR-449a* target genes *NOTCH1* and *BCL2*, RT-qPCR on Kasumi-3 and UCSD-AML1 cells treated with a precursor *miR-449a* or with a scrambled precursor miRNA was performed as previously described (Poppe, *et al* 2006, Vandesompele, *et al* 2002). The reference genes *RPL13A*, *GAPDH* and *YWHAZ* were used for normalization as described above, and the qBasePlus software version 1.2 (Biogazelle, Belgium) was used for the calculations (Hellemans, *et al* 2007). Primer sequences for all tested genes are listed in Supplementary Table 3. Effects of precursor *miR-449a* electroporation on NOTCH1 and BCL2 protein levels was measured using Western blotting as described above.

Statistical analysis

For the identification of differentially expressed miRNAs, we used fold change analysis (cut-off level of 1.5, p<0.05) (Chang, *et al* 2008, Hu, *et al* 2008, Ohlsson Teague, *et al* 2009, Pradervand, *et al* 2009, Tzur, *et al* 2008, Wang, *et al* 2009) and the Rank Product algorithm (Breitling, *et al* 2004). Statistical analysis of differences in cell survival/apoptosis was calculated by the Student's t-test. Values were considered statistically significant at p < 0.05.

Results

Identification of EVI1 regulated microRNAs

In order to discover possible miRNAs that participate in *EVI1* mediated transformation, we performed miRNA expression analysis in *EVI1* knock down models and crossed these data with miRNA profiles of 38 *EVI1* rearranged patient samples and 6 normal bone barrow samples.

RNAi mediated knock down of *EVI1* was performed in the *EVI1* overexpressing cell lines Kasumi-3 and UCSD-AML1 and *EVI1* knock down was confirmed on mRNA and protein level (Supp Fig 1A, B). Differentially expressed miRNAs were identified according to a fold change analysis with a cut-off of 1.5 (p<0.05) (Supp Table 5).

Next, rank product analysis (p<0.05) was used to compare miRNA profiles of *EVI1* rearranged samples and 6 normal bone marrow samples, which lead to the identification of 25 down regulated and 24 up regulated miRNAs in *EVI1* samples compared to normal bone marrow (Supp Table 6).

Three down regulated (*miR-190*, *miR-215* and *miR-449a*) and 3 up regulated miRNAs (*miR-213*, *miR-187* and *miR-107*) were identified as differentially expressed in both the *in vitro* knock down models and the primary patient samples. Of these overlapping miRNAs, three (*miR-449a*, *miR-213* and *miR-107*) were selected for further functional analysis, based on a known role in tumorigenesis (Noonan, *et al* 2009, Roldo, *et al* 2006, Wong, *et al* 2008). Figure 1 represents the overall strategy for miRNA selection used in this study. Figure 2 shows the expression of *miR-449a*, *miR-213* and *miR-107* in primary leukemia samples, normal bone marrow and the *EVI1* knock down models.

Modulation of miR-449a, miR-213 and miR-107 expression decreases cell viability and increases apoptosis of EVI1 overexpressing leukemic cells

British Journal of Haematology

In order to evaluate a potential functional role of these miRNAs in *EVI1* overexpressing leukemic cells, we modulated the expression levels of *miR-449a* with a precursor miRNA or *miR-213* and *miR-107* with anti-miRNAs and measured the effects on cell viability and apoptosis.

Electroporation of anti-miRNAs directed against *miR-213* and *miR-107* as single agents resulted in a significant decrease in cell viability in the Kasumi-3 cell line (Fig 3A). Interestingly, the largest impact on cell viability was noticed after administration of the precursor *miR-449a*, with a decrease of 95% for Kasumi-3 at the 96h time point (Fig 3A). Electroporation of Kasumi-3 with the precursor *miR-449a* and anti-miRNAs *miR-213* and *miR-107* resulted in an increase in caspase-3 and/or caspase-7 activity, 48h after electroporation, indicative of induction of apoptosis. Again, the largest effects were seen after modulation of *miR-449a* expression (Fig 3B). Similar results both for cell viability as

well as induction of apoptosis were obtained for the UCSD-AML1 cell line, (Fig 3C, D). To confirm the specificity of the observed effects on cell viability and apoptosis in *EVI1* deregulated cells, modulation of the expression levels of *miR-449a*, *miR-213* and *miR-107* were also performed in two cell lines without *EVI1* rearrangement, namely NB-4 and ME-1. *MiR-449a*, *miR-213* or *miR-107* were expressed at similar levels in these two cell lines as compared to normal bone marrow samples (data not shown). For these cell lines, no significant effects were observed on cell viability or apoptosis upon re-expression of *miR-449a* or inhibition of *miR-213* and *miR-107* (Supp Fig 2A-D).

Taken together, the above findings suggest that low *miR-449a* expression and high *miR-213/miR-107* expression are critical for the survival of *EVI1* deregulated cell lines. Given the fact that the most prominent functional effects were achieved upon modulation of *miR-449*, we decided to select this particular miRNA for further analysis.

MiR-449a is down regulated in a regulable EVI1 overexpression model

To further confirm *EVI1* mediated transcriptional regulation of *miR-449a*, we used a tetracycline inducible U937 *EVI1* overexpression model (Konrad, *et al* 2009). Using this model, *miR-449a* was shown to be rapidly down regulated following overexpression of the *EVI1* oncogene (Fig 4A). The results from this validated *EVI1* regulable model system are in accordance with our previous observations in the *EVI1* knock down cell line models and EVI1 rearranged patient samples, thus further supporting the robustness of *miR-449a* repression in *EVI1* overexpressing leukemic cells.

Deleted: (data not shown)

Deleted: T
Deleted: showed

Deleted:

MiR-449a is a direct target of the transcriptional repressor EVI1

The short time interval between *EVI1* upregulation and subsequent *miR-449a* downregulation in the U937 *EVI1* overexpression model (Fig 4A) is suggestive for a direct regulation of transcription of the *miR-449a* gene by the *EVI1* transcription factor. To test this hypothesis, we identified a potential EVI1 binding site 4875 bp upstream of the miR-449a transcription start site using MatInspector 37 (Fig 5A) and performed EVI1 ChIP analysis. Despite extensive experimental efforts, we were not able to optimize the <u>ChIP protocol in Kasumi-3 or UCSD-AML1 cell lines</u>, and we therefore performed ChIP assays in the *EVI1* overexpressing cell line TF-1 and the *EVI1* negative MOLM-13 cell line as negative control. In this analysis, we showed specific DNA binding of EVI1 to the promoter of *miR-449a* similar to previously described direct EVI1 target genes *PBX1* (Shimabe, *et al* 2009), *FAM83B* and *CRHBP* (Lugthart, *et al* 2011) (Fig 5B).

NOTCH1 and BCL2 are direct miR-449a targets

In order to identify *miR-449a* target genes, we interrogated 4 different miRNA target prediction algorithms (DIANA-microT, miRanda, PicTar, Targetscan), which rendered a list of 1607 candidate genes. This list was narrowed down to 15 genes by selecting for those genes predicted by at least 2 or more algorithms and those genes with known functions in cell viability, cell cycle regulation, apoptosis or differentiation (Supp Table 7). Next, RT-qPCR expression analysis of these candidate genes revealed decreased *NOTCH1* and *BCL2* mRNA levels in Kasumi-3 and UCSD-AML1 cells following treatment with a *miR-449a* precursor, as compared to control cells. This effect was not observed using housekeeping genes, ruling out possible broad off-target effects (Fig 6A). NOTCH1 and BCL2 modulation upon *miR-449a* re-expression was also confirmed on the protein levels (Fig 6B).

Next, we used luciferase assays to confirm that *NOTCH1* and *BCL2* are bona fide miR-449a targets. The decrease in luciferase activity was rescued by mutation of 3 critical bases in the predicted binding sites for *miR-449a* in the 3' UTR of *NOTCH1* and *BCL2* (Fig 6C, D). Finally, we used the tetracycline regulable U937 *EVI1* overexpression model (Konrad, *et al* 2009) to show additional evidence of increased *NOTCH1* and *BCL2* expression upon *EVI1* overexpression (Fig 4B), as expected from *miR-449a* repression in this model (Fig 4A).

MiR-449a exerts effects on cell viability and apoptosis partially through repression of NOTCH1 and BCL2 expression

To evaluate the role of *NOTCH1* and *BCL2* in relation to the observed phenotypic effects upon modulation of *miR-449a* expression, we performed knock down of *NOTCH1* and *BCL2* by use of siRNAs in Kasumi-3 and UCSD-AML1 and evaluated the effects on cell viability and apoptosis. Knock down of *NOTCH1* and *BCL2* was confirmed at the mRNA level using RT-qPCR and at the protein level using Western blotting (Supp Fig 3A-D). A decrease in cell viability and an increase in caspase-3 and/or caspase-7 activity, indicative of apoptosis, was observed in Kasumi-3 following *NOTCH1* and *BCL2* knock down (Figure 7A-B). Similar results were obtained for UCSD-AML1 (data not shown). Taken together, these results suggest that the observed effects on cell viability and apoptosis by *miR-449a* re-expression are at least in part due to suppression of the expression of its target genes *NOTCH1* and *BCL2*.

Discussion

Leukemias over expressing the *EVI1* oncogene are responsible for $\geq 10\%$ of all myeloid leukemias and are characterized by a poor prognosis. Recently, it was shown that transcription factors can directly regulate the expression of miRNAs, as well as of mRNAs, adding another dimension to the transcriptional control of downstream pathways (Schulte, *et al* 2008). As miRNAs are involved in processes such as proliferation, apoptosis and differentiation (Medina and Slack 2008), pathways that are deregulated in cancer, identification of miRNAs involved in *EVI1* pathogenesis could offer novel therapeutic strategies and further insight into leukemic initiation and progression.

In this study, we identified a distinct series of up- and down regulated miRNAs following expression profiling of 366 miRNAs using stem loop RT-qPCR of 38 *EVI1* rearranged and overexpressing patient samples, normal bone marrow samples, and two *EVI1* cell line knock down model systems. Upon modulation of three selected miRNAs (*miR-449a*, *miR-213* and *miR-107*), a decrease in cell viability and an increase in apoptosis was observed, with the most prominent effects observed after precursor *miR-449a* electroporation. For the latter miRNA, we further validated its expression in relation to *EVI1* expression levels using a tetracycline regulable *EVI1* overexpression model system. *MiR-449a* expression was indeed suppressed in less than 12 hours after

switching on *EVI1* expression, suggesting a direct regulation. In concordance with these data, we confirmed that *miR-449a* is a direct transcriptional target of EVI1.

Other evidence in the literature highlights the importance of *miR-449a* in cancer. Recently, the *miR-449a* promoter was shown to be hypermethylated in sarcoma (Yang, *et al* 2009). *MiR-449a* was also described as down regulated in prostate cancer and reexpression studies of *miR-449a* in prostate cancer cells resulted in cell cycle arrest and apoptosis (Noonan, *et al* 2009), similar to the results obtained in this study. In addition, a recent study showed that the tumor suppressor function of *miR-449a/b* might in part be mediated through regulation of Rb/E2F1 activity and subsequently *miR-449a/b* inhibits *CDK6* and *CDC25A*, resulting in a negative feedback loop. Furthermore, the expression of *miR-449a/b* was shown to be epigenetically silenced through histone H3 Lys27 trimethylation. This would suggest that escape from Rb/E2F1 regulation through an aberrant epigenetic event contributes to E2F1 deregulation and unrestricted proliferation in human cancer (Noonan, *et al* 2010, Yang, *et al* 2009).

In this study, we show for the first time that *BCL2* and *NOTCH1* are direct *miR-449a* targets. *BCL2* is an anti-apoptotic gene capable of antagonizing the p53 pathway, and has been described as over expressed in different types of lymphoma and AML (Nagy, *et al* 2003, Thomadaki and Scorilas 2006). The *NOTCH1* gene, which is part of a type 1 transmembrane protein family, is involved in regulation of self-renewal, apoptosis and differentiation. Up regulation of *NOTCH1* has already been described in T-cell acute lymphoblastic leukemia (T-ALL), where *NOTCH1* activating mutations occur in about 50% of the patients (Palomero and Ferrando 2008). Interestingly, the *C. elegans EVI1* homolog *EGL-43* is known to act downstream of *NOTCH* signalling in cell fate specification (Hwang, *et al* 2007). These results indicate that the relationship between *NOTCH1* and *EVI1* might be highly context dependent, differing from normal developing cells to cancer cells.

An important failsafe program against tumorigenesis is provided by the gatekeeper protein p53, and it is generally accepted that this barrier must be overcome during the ontogenesis of a tumour. Interestingly, both *NOTCH1* (Beverly, *et al* 2005, Rosati, *et al* 2009, Secchiero, *et al* 2009) and *BCL2* (Thomadaki and Scorilas 2006) have been implicated in suppression of p53 activity in leukemic cells. Therefore, our findings position repression of *miR-449a* as a means by which *EVI1* leukemic cells circumvent the p53 anti-tumour barrier and it is tempting to speculate that this suppression of the p53 pathway relies on up regulation of both *BCL2* and *NOTCH1* expression.

British Journal of Haematology

Interestingly, as *EVI1* is associated with a stem cell phenotype (Goyama, *et al* 2008, Takeshita, *et al* 2008), regulation of *NOTCH1*, which is required for self-renewal, through an *EVI1-miR-449a* axis, could lead to survival of leukemic stem cells which are resistant to chemotherapeutics (Misaghian, *et al* 2009). Therefore, targeting *NOTCH1* might aid in eliminating those cells that are likely to cause disease relapse (Drewa, *et al* 2008).

In conclusion, our study uncovered *miR-449a* as a crucial direct target of *EVI1* involved in the pathogenesis of *EVI1* rearranged leukemias and unravels *NOTCH1* and *BCL2* as important novel targets of *miR-449a*. Selective restoration of *miR-449* expression, gamma secretase inhibitors targeting *NOTCH1* or small molecule inhibitors targeting *BCL2* may prove valuable as new therapeutic strategies in this poor prognostic subgroup of AML patients.

At the time of submission of our report, also other studies have investigated the role of EVI1 in miRNA regulation in myeloid leukemias. Dickstein and colleagues demonstrated that miR-124 is silenced by induced EVI1 expression in a murine MDS model (Dickstein, et al 2010), and in line with these results, Vazquez and colleagues found decreased expression of miR-124a in myeloid cell lines and AML patients with EVI1 overexpression (Vazquez, et al 2010). In another study, it was shown that miR-1-2 and miR-133-a-1 expression was correlated with EVI1 expression in AML cell lines and AML patient samples (Gomez-Benito, et al 2010). Although we were able to detect miR-133a up regulation in EVI1 rearranged patients compared to normal bone marrow samples, we did not find significant correlation of EVI1 expression with the other reported miRNAs (e.g. miR-124a and miR-1-2). However, in depth comparison of the different studies is complicated by the fact that the datasets in the above mentioned studies are not fully accessible, and conclusions from these comparisons should be carefully interpreted as the different datasets were generated from different organisms, model systems and patient samples. In conclusion, based on a large cohort of EVI1 rearranged patient samples and EVI1 model systems, we found a strong correlation with EVI1 expression for several miRNAs, and we were able to demonstrate a functional role for miR-449a in EVI1 pathogenesis.

References

- Asou, H., Suzukawa, K., Kita, K., Nakase, K., Ueda, H., Morishita, K. & Kamada, N. (1996) Establishment of an undifferentiated leukemia cell line (Kasumi-3) with t(3;7)(q27;q22) and activation of the EVI1 gene. *Japanese journal of cancer research*, 87, 269-274.
- Barjesteh van Waalwijk van Doorn-Khosrovani, S., Erpelinck, C., van Putten, W.L., Valk, P.J., van der Poel-van de Luytgaarde, S., Hack, R., Slater, R., Smit, E.M., Beverloo, H.B., Verhoef, G., Verdonck, L.F., Ossenkoppele, G.J., Sonneveld, P., de Greef, G.E., Lowenberg, B. & Delwel, R. (2003) High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. *Blood*, **101**, 837-845.
- Beverly, L.J., Felsher, D.W. & Capobianco, A.J. (2005) Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. *Cancer Res*, 65, 7159-7168.
- Bray, I., Bryan, K., Prenter, S., Buckley, P.G., Foley, N.H., Murphy, D.M., Alcock, L., Mestdagh, P., Vandesompele, J., Speleman, F., London, W.B., McGrady, P.W., Higgins, D.G., O'Meara, A., O'Sullivan, M. & Stallings, R.L. (2009) Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. *PLoS ONE*, 4, e7850.
- Breitling, R., Armengaud, P., Amtmann, A. & Herzyk, P. (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. *FEBS Lett*, **573**, 83-92.
- Buonamici, S., Chakraborty, S., Senyuk, V. & Nucifora, G. (2003) The role of EVI1 in normal and leukemic cells. *Blood cells, molecules & diseases,* **31**, 206-212.
- Chang, T.C., Yu, D., Lee, Y.S., Wentzel, E.A., Arking, D.E., West, K.M., Dang, C.V., Thomas-Tikhonenko, A. & Mendell, J.T. (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. *Nat Genet*, **40**, 43-50.
- De Weer, A., Speleman, F., Cauwelier, B., Van Roy, N., Yigit, N., Verhasselt, B., De Moerloose, B., Benoit, Y., Noens, L., Selleslag, D., Lippert, E., Struski, S., Bastard, C., De Paepe, A., Vandenberghe, P., Hagemeijer, A., Dastugue, N. & Poppe, B. (2008) EVI1 overexpression in t(3;17) positive myeloid malignancies results from juxtaposition of EVI1 to the MSI2 locus at 17q22. *Haematologica*, 93, 1903-1907.
- Deng, S., Calin, G.A., Croce, C.M., Coukos, G. & Zhang, L. (2008) Mechanisms of microRNA deregulation in human cancer. *Cell Cycle*, 7, 2643-2646.
- Dickstein, J., Senyuk, V., Premanand, K., Laricchia-Robbio, L., Xu, P., Cattaneo, F., Fazzina, R. & Nucifora, G. (2010) Methylation and silencing of miRNA-124 by EVI1 and self-renewal exhaustion of hematopoietic stem cells in murine myelodysplastic syndrome. *Proc Natl Acad Sci U S A*, **107**, 9783-9788.
- Drewa, T., Styczynski, J. & Szczepanek, J. (2008) Is the cancer stem cell population "a player" in multi-drug resistance? *Acta Pol Pharm*, **65**, 493-500.
- Girish, V. & Vijayalakshmi, A. (2004) Affordable image analysis using NIH Image/ImageJ. Indian J Cancer, **41**, 47.
- Gomez-Benito, M., Conchillo, A., Garcia, M.A., Vazquez, I., Maicas, M., Vicente, C., Cristobal, I., Marcotegui, N., Garcia-Orti, L., Bandres, E., Calasanz, M.J., Alonso, M.M. & Odero, M.D. (2010) EVI1 controls proliferation in acute myeloid leukaemia through modulation of miR-1-2. *Br J Cancer*, **103**, 1292-1296.

- Goyama, S., Yamamoto, G., Shimabe, M., Sato, T., Ichikawa, M., Ogawa, S., Chiba, S.
 & Kurokawa, M. (2008) Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. *Cell Stem Cell*, **3**, 207-220.
- Haas, K., Kundi, M., Sperr, W.R., Esterbauer, H., Ludwig, W.D., Ratei, R., Koller, E., Gruener, H., Sauerland, C., Fonatsch, C., Valent, P. & Wieser, R. (2008) Expression and prognostic significance of different mRNA 5'-end variants of the oncogene EVI1 in 266 patients with de novo AML: EVI1 and MDS1/EVI1 overexpression both predict short remission duration. *Genes Chromosomes Cancer*, **47**, 288-298.
- Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. *Genome Biol*, 8, R19.
- Hu, S.J., Ren, G., Liu, J.L., Zhao, Z.A., Yu, Y.S., Su, R.W., Ma, X.H., Ni, H., Lei, W. & Yang, Z.M. (2008) MicroRNA expression and regulation in mouse uterus during embryo implantation. *J Biol Chem*, **283**, 23473-23484.
- Hwang, B.J., Meruelo, A.D. & Sternberg, P.W. (2007) C. elegans EVI1 proto-oncogene, EGL-43, is necessary for Notch-mediated cell fate specification and regulates cell invasion. *Development*, **134**, 669-679.
- Konrad, T.A., Karger, A., Hackl, H., Schwarzinger, I., Herbacek, I. & Wieser, R. (2009) Inducible expression of EVI1 in human myeloid cells causes phenotypes consistent with its role in myelodysplastic syndromes. *J Leukoc Biol*, **86**, 813-822.
- Lanotte, M., Martin-Thouvenin, V., Najman, S., Balerini, P., Valensi, F. & Berger, R. (1991) NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). *Blood*, **77**, 1080-1086.
- Lugthart, S., Drunen, E.V., Norden, Y.V., Hoven, A.V., Erpelinck, C.A., Valk, P.J., Beverloo, H.B., Lowenberg, B. & Delwel, R. (2008) High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. *Blood*, **111**, 4329-4337.
- Lugthart, S., Figueroa, M.E., Bindels, E., Skrabanek, L., Valk, P.J., Li, Y., Meyer, S., Erpelinck-Verschueren, C., Greally, J., Lowenberg, B., Melnick, A. & Delwel, R. (2011) Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1. *Blood*, **117**, 234-241.
- Medina, P.P. & Slack, F.J. (2008) microRNAs and cancer: an overview. *Cell Cycle*, 7, 2485-2492.
- Mendell, J.T. (2008) miRiad roles for the miR-17-92 cluster in development and disease. *Cell*, **133**, 217-222.
- Mestdagh, P., Feys, T., Bernard, N., Guenther, S., Chen, C., Speleman, F. & Vandesompele, J. (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. *Nucleic Acids Res*, **36**, e143.
- Mestdagh, P., Van Vlierberghe, P., De Weer, A., Muth, D., Westermann, F., Speleman, F. & Vandesompele, J. (2009) A novel and universal method for microRNA RTqPCR data normalization. *Genome Biol*, **10**, R64.
- Misaghian, N., Ligresti, G., Steelman, L.S., Bertrand, F.E., Basecke, J., Libra, M., Nicoletti, F., Stivala, F., Milella, M., Tafuri, A., Cervello, M., Martelli, A.M. & McCubrey, J.A. (2009) Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. *Leukemia*, 23, 25-42.
- Nagy, B., Tiszlavicz, L., Eller, J., Molnar, J. & Thurzo, L. (2003) Ki-67, cyclin D1, p53 and bcl-2 expression in advanced head and neck cancer. *In Vivo*, **17**, 93-96.

- Noonan, E.J., Place, R.F., Basak, S., Pookot, D. & Li, L.C. (2010) miR-449a causes Rbdependent cell cycle arrest and senescence in prostate cancer cells. *Oncotarget*, **1**, 349-358.
- Noonan, E.J., Place, R.F., Pookot, D., Basak, S., Whitson, J.M., Hirata, H., Giardina, C. & Dahiya, R. (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. *Oncogene*, **28**, 1714-1724.
- Nucifora, G. (1997) The EVI1 gene in myeloid leukemia. Leukemia, 11, 2022-2031.

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 48 49

- Ohlsson Teague, E.M., Van der Hoek, K.H., Van der Hoek, M.B., Perry, N., Wagaarachchi, P., Robertson, S.A., Print, C.G. & Hull, L.M. (2009) MicroRNAregulated pathways associated with endometriosis. *Mol Endocrinol*, 23, 265-275.
- Oval, J., Jones, O.W., Montoya, M. & Taetle, R. (1990) Characterization of a factordependent acute leukemia cell line with translocation (3;3)(q21;q26). *Blood*, 76, 1369-1374.
- Palomero, T. & Ferrando, A. (2008) Oncogenic NOTCH1 control of MYC and PI3K: challenges and opportunities for anti-NOTCH1 therapy in T-cell acute lymphoblastic leukemias and lymphomas. *Clin Cancer Res*, **14**, 5314-5317.
- Poppe, B., Dastugue, N., Vandesompele, J., Cauwelier, B., De Smet, B., Yigit, N., De Paepe, A., Cervera, J., Recher, C., De Mas, V., Hagemeijer, A. & Speleman, F. (2006) EVI1 is consistently expressed as principal transcript in common and rare recurrent 3q26 rearrangements. *Genes, chromosomes & cancer*, **45**, 349-356.
- Pradervand, S., Weber, J., Thomas, J., Bueno, M., Wirapati, P., Lefort, K., Dotto, G.P. & Harshman, K. (2009) Impact of normalization on miRNA microarray expression profiling. *RNA*, **15**, 493-501.
- Qiu, Y., Lynch, J., Guo, L., Yatsula, B., Perkins, A.S. & Michalak, M. (2008) Regulation of the calreticulin gene by GATA6 and Evi-1 transcription factors. *Biochemistry*, 47, 3697-3704.
- Roldo, C., Missiaglia, E., Hagan, J.P., Falconi, M., Capelli, P., Bersani, S., Calin, G.A., Volinia, S., Liu, C.G., Scarpa, A. & Croce, C.M. (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. *J Clin Oncol*, 24, 4677-4684.
- Rosati, E., Sabatini, R., Rampino, G., Tabilio, A., Di Ianni, M., Fettucciari, K., Bartoli, A., Coaccioli, S., Screpanti, I. & Marconi, P. (2009) Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. *Blood*, **113**, 856-865.
- Schulte, J.H., Horn, S., Otto, T., Samans, B., Heukamp, L.C., Eilers, U.C., Krause, M., Astrahantseff, K., Klein-Hitpass, L., Buettner, R., Schramm, A., Christiansen, H., Eilers, M., Eggert, A. & Berwanger, B. (2008) MYCN regulates oncogenic MicroRNAs in neuroblastoma. *Int J Cancer*, **122**, 699-704.
- Secchiero, P., Melloni, E., di Iasio, M.G., Tiribelli, M., Rimondi, E., Corallini, F., Gattei, V. & Zauli, G. (2009) Nutlin-3 up-regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. *Blood*, **113**, 4300-4308.
- Shimabe, M., Goyama, S., Watanabe-Okochi, N., Yoshimi, A., Ichikawa, M., Imai, Y. & Kurokawa, M. (2009) Pbx1 is a downstream target of Evi-1 in hematopoietic stem/progenitors and leukemic cells. *Oncogene*, 28, 4364-4374.
- Spensberger, D. & Delwel, R. (2008) A novel interaction between the proto-oncogene Evi1 and histone methyltransferases, SUV39H1 and G9a. FEBS Lett, 582, 2761-2767.

- Takahashi, S. & Licht, J.D. (2002) The human promyelocytic leukemia zinc finger gene is regulated by the Evi-1 oncoprotein and a novel guanine-rich site binding protein. *Leukemia*, **16**, 1755-1762.
 - Takeshita, M., Ichikawa, M., Nitta, E., Goyama, S., Asai, T., Ogawa, S., Chiba, S. & Kurokawa, M. (2008) AML1-Evi-1 specifically transforms hematopoietic stem cells through fusion of the entire Evi-1 sequence to AML1. *Leukemia*, 22, 1241-1249.
 - Thomadaki, H. & Scorilas, A. (2006) BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. *Crit Rev Clin Lab Sci*, **43**, 1-67.
- Tzur, G., Levy, A., Meiri, E., Barad, O., Spector, Y., Bentwich, Z., Mizrahi, L., Katzenellenbogen, M., Ben-Shushan, E., Reubinoff, B.E. & Galun, E. (2008) MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells. *PLoS ONE*, **3**, e3726.
- Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. & Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology*, 3, 1-11.
- Vazquez, I., Maicas, M., Marcotegui, N., Conchillo, A., Guruceaga, E., Roman-Gomez, J., Calasanz, M.J., Agirre, X., Prosper, F. & Odero, M.D. (2010) Silencing of hsamiR-124 by EVI1 in cell lines and patients with acute myeloid leukemia. *Proc Natl Acad Sci U S A*, **107**, E167-168; author reply E169-170.
- Wang, L.L., Zhang, Z., Li, Q., Yang, R., Pei, X., Xu, Y., Wang, J., Zhou, S.F. & Li, Y. (2009) Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. *Hum Reprod*, 24, 562-579.
- Wong, T.S., Liu, X.B., Wong, B.Y., Ng, R.W., Yuen, A.P. & Wei, W.I. (2008) Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. *Clin Cancer Res*, **14**, 2588-2592.
- Yanagisawa, K., Horiuchi, T. & Fujita, S. (1991) Establishment and characterization of a new human leukemia cell line derived from M4E0. *Blood*, **78**, 451-457.
- Yang, X., Feng, M., Jiang, X., Wu, Z., Li, Z., Aau, M. & Yu, Q. (2009) miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. *Genes Dev*, 23, 2388-2393.
- Yatsula, B., Lin, S., Read, A.J., Poholek, A., Yates, K., Yue, D., Hui, P. & Perkins, A.S. (2005) Identification of binding sites of EVI1 in mammalian cells. *J Biol Chem*, 280, 30712-30722.
- Yuasa, H., Oike, Y., Iwama, A., Nishikata, I., Sugiyama, D., Perkins, A., Mucenski, M.L., Suda, T. & Morishita, K. (2005) Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. *EMBO J*, 24, 1976-1987.

FIGURE LEGENDS

Figure 1. Overall strategy for microRNA selection. The expression of 384 small RNAs was determined for 38 *EVI1* rearranged patient samples, 6 normal bone marrow samples and *EVI1* knock down model systems of the *EVI1* rearranged cell lines Kasumi-3 and UCSD-AML1. Analysis of the microRNA profiles lead to the identification of 25 downregulated and 24 upregulated microRNAs in *EVI1* samples compared to normal bone marrow (p<0.05). Three downregulated (*miR-190, miR-215* and *miR-449a*) and 3 upregulated microRNAs (*miR-213, miR-187* and *miR-107*) were identified as differentially expressed in both the cell line models and patient samples. Of these overlapping microRNAs, three (*miR-449a, miR-213* and *miR-107*) were selected for further functional analysis, based on a known role in tumorigenesis (*miR-213* and *miR-107*) or homology to microRNAs with an established role in cancer (*miR-449a*). *MiR-449a* was selected for further analysis, as the most prominent functional effects were achieved upon modulation of this microRNA.

Figure 2. *MiR-449a*, *miR-213* and *miR-107* expression in *EVI1* rearranged patient samples and EVI1 knockdown models

Expression levels of A) *miR-449a*, B) *miR-213* and C) *miR-107*, in 38 *EVI1* deregulated patient samples, 6 normal bone marrow samples and two *EVI1* rearranged cell lines Kasumi-3 and UCSD-AML1 (with or without *EVI1* siRNA electroporation, triplicate) as determined with RT-qPCR. Red bars indicate the median expression.

Figure 3. *MiR-449a* re-expression or inhibition of *miR-213* or *miR-107* results in decreased cell viability and increased apoptosis in the Kasumi-3 and UCSD-AML1 cell lines

Kasumi-3 (A,B) or UCSD-AML1 (C,D) cells were electroporated with precursor *miR-449a*, *anti-miR-213* or *anti-miR-107* and effects on cell viability (A+C) and caspase-3 and caspase-7 activity (B+D) were measured 96h (cell viability) or 48h (apoptosis) after electroporation. Measurements were performed in duplicate for each condition within one biological experiment. Viability or caspase-3 and caspase-7 activity of cells treated with a scrambled precursor or anti-miRNA was set to 100% or 1, respectively.

Deleted: A)
Deleted: B)

Figure 4. *MiR-449a*, *NOTCH1* and *BCL2* expression in a tetracycline inducible U937 *EVI1* overexpression model

Expression of *miR-449a* (A) and *NOTCH1* and *BCL2* (B) in a tetracycline regulable *EV11* overexpression model system was determined using RT-qPCR. U937T EVI1-HA cells were transferred to media without tetracycline and RNA was extracted at the indicated time points thereafter. The expression of *miR-449a*, *NOTCH1* or *BCL2* in cells transduced with an empty vector was set to 100%. <u>Lach RT-qPCR reaction was performed in duplicate for all conditions in a single experiment.</u>

Deleted: All RT-qPCR measurements were performed in duplicate.

Figure 5. MiR-449a is a direct target of EVI1

A) Schematic representation of the predicted EVI1 binding site in the promoter region of *miR-449a*. B) Specific DNA binding of EVI1 to the promoter region -4875 bp of the transcription start site of *miR-449a* was detected by ChIP. Real time PCR was performed on fragmented chromatin precipitated by anti-EVI1 antibody (black bars) or normal Rabbit IgG (grey bars) from an *EVI1* positive (*EVI1*⁺) TF-1 cell line and the *EVI1* negative (*EVI1*⁺) MOLM-13 cell line. Primers were designed to amplify the predicted EVI1 binding site in the promoter region *miR449*. Primers directed to the promoter region of the *EVI1* positive target genes *PBX1*, *FAM83B* and *CRHBP* were used as positives controls. The ratio of immunoprecipitated DNA versus input material (in %) is shown.

Figure 6. NOTCH1 and BCL2 are direct targets of miR-449a

A) Kasumi-3 cells were electroporated with the precursor *miR-449a* and the mRNA expression of *NOTCH1*, *BCL2*, *YWHAZ*, *RPL13A* and *GAPDH* was determined using RT-qPCR. For each time point, expression of these genes in a control fraction treated with a scrambled precursor was set to 100%. Each RT-qPCR reaction was performed in duplicate for all conditions in a single experiment. B) Kasumi-3 was electroporated with the precursor *miR-449a* and the protein levels of NOTCH1 and BCL2 were evaluated using Western blotting. As a loading control, the blots were stained with an α-tubulin antibody. C) The *NOTCH1* and *BCL2* 3'UTR *miR-449a* putative target sites (www.targetscan.org). D) Luciferase activity upon transfection of HEK293 cells with a vector containing the wild-type 3'UTR *NOTCH1 miR-449a* binding site or a vector *miR-449a*. Also the luciferase activity of the mutated constructs in combination with the precursor *miR-449a* was determined. Luciferase activity of cells transfected with the precursor *miR-449a* was determined.

Deleted: Measurements were performed in duplicate.

empty vector was set to 1 and data were normalized accordingly. The luciferase experiment shown is representative for two independent biological assays; in each experiment, luciferase measurements were performed in duplicate for each condition.

Deleted: Experiment was performed twice each time with duplicate measurements.

Figure 7. Knockdown of NOTCH1 or BCL2 results in decreased cell viability and increased apoptosis

Kasumi-3 was electroporated with NOTCH1 or BCL2 siRNAs and A) cell viability or B) caspase-3 and caspase-7 activity was measured 96h (cell viability) or 48h (apoptosis) after electroporation. Viability or caspase-3 and caspase-7 activity of cells treated with a scrambled siRNA was set to 100% or 1, respectively. Measurements were performed in duplicate for each condition within one biological experiment.

Figures

Figure 1. Overall strategy for microRNA selection.

Figure 3. *MiR-449a* re-expression or inhibition of *miR-213* or *miR-107* results in decreased cell viability and increased apoptosis in the Kasumi-3 <u>and UCSD-AML1</u> cell line<u>s</u>

Deleted: ¶

Figure 6. NOTCH1 and BCL2 are direct miR-449a targets

27

1	
י כ	
2	
3	
4	
5	
6	
7	
פ	
0	
9	_
1	0
1	1
1	2
1	3
1	1
1	4
1	5
1	6
1	7
1	8
1	a
~	0
2	U
2	1
2	2
2	3
2	Δ
2	5
2	0
2	6
2	7
2	8
2	9
2	ñ
3	4
3	1
3	2
3	3
3	4
3	5
2	e e
3	2
3	1
3	8
3	9
4	0
4	1
1	2
4	~
4	3
4	4
4	5
4	6
۵	7
1	ò
4	0
4	9
5	0
5	1
5	2
5	2
г	ر ∧
5	4
5	5
5	6
5	7
_	~

Figure 7. Knockdown of NOTCH1 or BCL2 results in decreased cell viability and

Supplementary files

Legends to supplementary figures

Supplementary Figure 1. Introduction of *EVI1* siRNAs results in efficient *EVI1* knockdown on mRNA and protein level

Two *EVI1* overexpressing cell lines Kasumi-3 and UCSD-AML1 were electroporated with a combination of two *EVI1* targeting siRNAs and RT-qPCR and Western blotting were performed. A) RT-qPCR with *EVI1* specific primers (measurements were performed in duplicate). The expression of *EVI1* mRNA in cells treated with a scrambled siRNA duplex (NTC) was set to 100%. B) Western blotting with a monoclonal *EVI1* antibody. The 145 kDa protein band corresponding to the full length *EVI1* protein is displayed. As a loading control, the blots were treated with an α -tubulin antibody.

Supplementary Figure 2. Introduction of miR-449a or anti-miR-213 and anti-miR-107 does not significantly alter cell viability and apoptosis in non EVI1 rearranged cell line models

NB-4 (A and C) and ME-1 (B and D) cells were electroporated with the precursor miR-449a or a combination of the anti-miR-213 and anti-miR-107 and effects on A) and B) cell viability and C) and D) caspase-3 and caspase-7 activity were measured. Viability or caspase-3 and caspase-7 activity of cells treated with a scrambled precursor or antimicroRNA was set to 100% or 1, respectively.

Supplementary Figure 3. Introduction of *NOTCH1* or *BCL2* siRNAs results in efficient *NOTCH1* or *BCL2* knockdown

Kasumi-3 and UCSD-AML1 cells were electroporated with A-B) *NOTCH1* siRNAs or C-D) *BCL2* siRNAs and RT-qPCR for *NOTCH1* (A) or *BCL2* (C) expression was performed. The expression of *NOTCH1* or *BCL2* in cells treated with a scrambled siRNA duplex (NTC) was set to 100%. (B) and (D) Western blotting with a polyclonal NOTCH1 or a polyclonal BCL2 antibody was performed. As a loading control, the blots were treated with an α -tubulin antibody.

 Case	Diagnosis ¹	Age at diagnosis	Karyotype ²
 1	AML	64	45,XY, inv(3)(q21q26) ,-7[13]
2	AML	69	45,XX,inv(3)(q21q26),del(5)(q22q32),-7[14]
3	AWL	51	46,XY, inv(3)(q21q26) [7]/ 46,XY[8]
4	MDS	71	45,XX, t(3;8)(q26;q23) ,-7[8]
5	MDS	66	46,XY,inv(3)(q21q26)[8]/
			46,XY[2]
6	AML	72	43,XY,inv(2)(p25q34),inv(3)(q21q26),add(10)(p15),t(11;16)(q10;p10),-17,-18,-21[15]
7	AML	56	45,X,add(x)(p22),t(1;3)(p32;p13),inv(3)(q21q26),-5,del(11)(p14),+mar[15]
8	AML	70	46,XY, t(3;6)(q26;q25) ,del(5)(q22q34)[16]
9	AML	48	46,XX, inv(3)(q21q26) [4]/ 46,XX[6]
10	AML	30	46,XX, t(3;12)(q26;p13) ,del(7)(q11q35)[13]/ 46,XX[3]
11	AML	52	46,XY, t (2 ; 3)(p22 ; q26)[15]
12	AML	66	45,XY, inv(3)(q21q26) ,-7[20]
13	CML-BC	79	46,XY,t(9;22)(q34;q11)[5]/ 46,sl, t(3;21)(q26;q22) [10]
14	CML-BC	36	46,XY,t(9;22)(q34;q11)[6]/ 46,sl, inv(3)(q21q26)[24]
15	AML	45	48,XY, add(3)(q26) ,+8,del(8)(q24),t(9;22)(q34;q11),+16,add(16)(p13)[9]/ 54,sl,+4,+del(8)(q24),+10,+12,+20,+der(22)t(9;22)[21]
16	MDS	71	45,XX, inv(3)(q21q26),-7[10]

Supplementary Table 1. Patient and cell line characteristics: diagnosis, age at diagnosis and karyotype

17	AML	42	45,XX,-7[1]/ 45,XX,sl, t(3;21)(q26;q22) [6]/ 46,XX[18]
18	AML	26	$\begin{array}{l} 47, XY, t(1;6)(p22;q27), \textbf{t(3;7)}(\textbf{q26;p15}), add(7)(p21), +8, t(14;15)(q24;q25)[12]/\\ 47, XY, inv(1)(p21q44), +8, add(13)(q34), t(16;17)(p12;q12)[8] \end{array}$
19	AML	52	45,X,-Y,inv(3)(q21q26)[5]/
			46,XY[5]
20	AML	35	46,XX,t(3;14)(q26;q32)[1]/
			45,sl,-7[21]
21	AML	47	46,XY,t(9;22)(q34;q11)[1]/
			46,s1, inv(3)(q21q26) [5]/
			46,XY[14]
22	AML	77	46,XY, t(3;12)(q26;p12) [8]
23	AML	40	46,XX,ins(3)(q21;q24q26~27)[9]/
			46,XY[1]
24	AML	76	46,XX,t(9;22)(q34;q11)[6]/
			47,sl,add(2)(q33),t(3;21)(q26;q22),+der(22)t(9;22)[10]/
25	AML	1	46,XX,t(3;21)(q21;q22)[9]/
			46,sl,add(2)(q3?),add(4)(q23)[7]/
			46,sl,add(1)(p36)[3]
26	MDS	73	46,XX, inv(3)(q22q26), t(3;10)(q13;q21)[8]
27	AML	54	47,XX, t(3;21)(q26;q22) ,+8[8]/
			46,XX[2]
28	CML	78	46,XX,inv(3)(q21q26)[3]/
			46,XX[21]
29	MDS	49	46,XX, inv(3)(q21q26) [23]/
			46,XX[1]
30	AML	78	47,XXY,ins(3)(q26q21q26)[10]

			47,XXY,del(7)(q22q34)[13]
31	MDS	58	46,XX, t(3;21)(q26;q22) [25]
32	AML	40	46,XY, t(3;3)(q21;q26) [1]/
			46,sl,t(1;11)(p36;p11),del(6)(q15q23)[10]/
			45,sl,t(1;5)(q21q31?),t(9;16)(q22;q24),add(10)(q26),-14[3]/
			46,XY[12]
33	AML	82	46,XY,t(3;3)(q21;q26)[8]/
			45, X ,-Y,sl[5]/
			46,XY[1]
34	AML	41	46,XY, t(3;3)(q21;q26) [19]
35	AML	69	46,XY, t(3;3)(q21;q26) ,-7,+13[6]
36	AML	65	46,XX, t(3;21)(q26;q22) [10]
37	CML-BC	51	46,XX, t(3;21)(q26;q21) ,t(9;22)(q34;q11)[9]/
			48,sl,+8,+der(22)t(9;22)[2]/
			49,sl,+8,+12,+der(22)t(9;22)[2]/
			49,sl,del(6)(q16q23),+8,+12,+der(22)t(9;22)[2]/
			50,sl,del(6),+8,+12,+2xder(22)t(9;22)[2]
38	CML-BC	57	50,XY, t(3;9;22;17) (q26;q34;q11;q22),+8,+der(9)t(3;9;22;17),+10,+12,del(16)(q23)[15]
Kasumi-3	AML	/	46,XY,t(2;5)(p13;q33),t(3;7)(q26;q22),del(5)(q15),-8,del(9)(q32),add(12)(p11),add(16)(q13),+mar[20]
UCSD-AML1	AML	/	45,XX, t(3;3) (q21;q26),-7,t(2;22)(p13;q12)[20]
1 AML = acute 1	myeloid leukem	ia, MDS = mye	odysplastic syndrome and CML-BC = chronic myeloid leukemia in blast crisis
² The chromoso	mal aberration i	mplicating the	EVI1 locus is indicated with bold formatting. Karyotype nomenclature according to ISCN 2009.

BCL2 siRNA 1

BCL2 siRNA 2

BCL2 siRNA 3 BCL2 siRNA 4

Supplementary Table 2. EVI1, NOTCH1 and BCL2 siRNA sequences							
siRNA name	Sequence 5' - 3'						
EVI1 siRNA 1	AUUGAAGCCAGAUUCUGAAGAGGC						
EVI1 siRNA 2	UUUCGAGGCUCAGUCAGCUUUGUCC						
NOTCH1 siRNA 1	GCGACAAGGUGUUGACGUU						
NOTCH1 siRNA 2	GAUGCGAGAUCGACGUCAA						
NOTCH1 siRNA 3	GGACAUCACGGAUCAUAUG						
NOTCH1 siRNA 4	GAACGGGGCUAACAAAGAU						

GGGAGAACAGGGUACGAUA

GAAGUACAUCCAUUAUAAG

Oligonucleotide name ¹	Sequence 5' - 3 ²
NOTCH1 F	TCGATTATGTACTTTTATTTTACACAGAAACACTGCCTTTTTATTTA
<i>NOTCH1</i> R	GGCCGATAAAACAGTACATATAAATAAAAAAGGCAGTGTTTCTGTGTAAAATAAAAGTACATAA
BCL2 F	<i>TCGA</i> CAGGCAAAACGTCGAATCAGCTATTT <u>ACTGCCA</u> AAGGGAAATATCATTTATTTTTACA
BCL2 R	GGCCTGTAAAAAATAAATGATATTTCCCTT <u>TGGCAGT</u> AAATAGCTGATTCGACGTTTTGCCTG
NOTCH1 mut F	<i>TCGA</i> TTATGTACTTTTATTTTACACAGAAA <u>CGCCGTC</u> TTTTTATTTATGTACTGTTTTATC
NOTCH1 mut R	GGCCGATAAAACAGTACATATAAATAAAAA <u>GACGGCG</u> TTTCTGTGTAAAATAAAAGTACATAA
BCL2 mut F	<i>TCGA</i> CAGGCAAAACGTCGAATCAGCTATTT <u>AATACTA</u> AAGGGAAATATCATTTATTTTTACA
BCL2 mut R	GGCCTGTAAAAAAAAAAAGATATTTCCCTT <u>TAGTATT</u> AAATAGCTGATTCGACGTTTTGCCTG
¹ $F =$ forward, $R =$ reverse an	d mut = mutated
² Oligonucleotide comprises <i>h</i>	Not1 or Xho1 restriction site (Italics), 26 nucleotides left from target sequence, target sequence according to TargetScanH
(www.targetscan.org) (under	lined, point mutations indicated in bold formatting) and 26 nucleotides right from target sequence
(

British Journal of Haematology

Supplementary Table 5. Up- and downregulated microRNAs in two EVI1 knockdown model systems using a combination of two EVI1 siRNAs

1 DOWN regulated microRNAs after siRNA treatment							UP regulat	ed microRNAs at	fter siRNA	treatment		
2			Kasumi	3								
3 12h time po	oint	24h time po	oint	48h time point		12h time po	12h time point		24h time point		48h time point	
$\frac{4}{5^{\text{MicroRNA ID}^1}}$	Fold change ²	MicroRNA ID ¹	Fold change ²	MicroRNA ID ¹	Fold change ²	MicroRNA ID ¹	Fold change ²	MicroRNA ID ¹	Fold change ²	MicroRNA ID ¹	Fold change ²	
6 hsa-let-7f	4.0971	hsa-mir-213	4.3519	hsa-mir-220	3.7943	hsa-mir-141	4.2972	hsa-mir-139	7.5819	hsa-mir-410	6.6164	
7 hsa-mir-544	2.8722	hsa-mir-107	4.1011	hsa-mir-500	3.4824	hsa-mir-23b	3.9814	hsa-mir-31	3.5201	hsa-mir-449a	3.7619	
8 hsa-mir-139	2.6045	hsa-mir-204	3.6594	hsa-mir-514	3.3594	hsa-mir-432	3.7962	hsa-mir-520d*	2.4293	hsa-mir-521	2.6209	
o hsa-mir-432*	2.5093	hsa-mir-508	3.4388	hsa-mir-517*	2.9009	hsa-mir-501	3.5560	hsa-mir-551a	2.3453	hsa-mir-33	2.3291	
hsa-mir-187	2.2751	hsa-let-7f	3.3384	hsa-mir-302d	2.8016	hsa-mir-335	3.3066	hsa-mir-521	2.2647	hsa-mir-215	2.2260	
hsa-mir-526b*	2.0241	hsa-mir-509	3.1167	hsa-mir-107	2.5760	hsa-mir-215	3.2656	hsa-mir-215	2.1589	hsa-mir-184	1.9912	
¹ hsa-mir-213	2.0230	hsa-mir-199b	3.0701	hsa-mir-31	2.3323	hsa-mir-502	3.0249	hsa-mir-449a	2.1246	hsa-mir-520g	1.9140	
12asa-mir-107	2.0210	hsa-mir-514	2.9235	hsa-mir-213	2.0765	hsa-mir-616	2.7049	hsa-mir-656	1.9532	hsa-mir-147	1.8868	
13 nsa-mir-514	2.0010	hsa-mir-383	2.5816	hsa-mir-497	2.0351	hsa-mir-503	2.5061	hsa-mir-184	1.8250	hsa-mir-135b	1.8526	
14 sa-mir-520b	1.9017	hsa-mir-505	2.5519	hsa-let-7f	2.0250	hsa-mir-135b	2.4798	hsa-mir-302d	1.6844	hsa-mir-651	1.7909	
15 hsa-mir-539	1.7411	hsa-mir-539	2.4426	hsa-mir-187	2.0140	hsa-mir-379	2.3692	hsa-mir-432*	1.6026	hsa-mir-507	1.7821	
16hsa-mir-656	1.7188	hsa-mir-503	2.3200	hsa-mir-501	1.7811	hsa-mir-573	2.3425	hsa-mir-526b*	1.5285	hsa-mir-302a*	1.6546	
hsa-mir-302c	1.7093	hsa-mir-187	2.2423	hsa-mir-503	1.7569	hsa-mir-511	2.2638			hsa-mir-204	1.5740	
hsa-mir-632	1.5419	hsa-mir-153	2.1006	hsa-mir-573	1.7494	hsa-mir-216	2.1783					
10		hsa-mir-107	2.0105	hsa-let-7e	1.6809	hsa-mir-449a	2.1773					
19		hsa-mir-9*	1.8857	hsa-mir-30e-3p	1.6481	hsa-mir-410	2.0212					
20		hsa-mir-429	1.7556	hsa-mir-520h	1.5520	hsa-mir-23a	1.9675					
21		hsa-mir-374	1.6690	hsa-mir-326	1.5351	hsa-mir-181a	1.9423					
22		hsa-mir-7	1.6458	hsa-mir-580	1.5342	hsa-mir-9*	1.9218					
23		hsa-mir-511	1.6211	hsa-mir-509	1.5327	hsa-mir-662 🧹	1.7580					
24						hsa-mir-449b	1.7091					
25						hsa-mir-34b	1.6528					
20						hsa-mir-148a	1.6388					
20						hsa-mir-452*	1.6163					
27						hsa-mir-100	1.5418					
28						hsa-mir-184	1.5227					
29												
30		UCSD-AM	L1					UCSD-AN	IL1			

30			UCSD-AN	ſL1							
31 12h time po	31 12h time point 24h time point		oint	48h time point		12h time point		24h time point		48h time point	
32 icroRNA ID ¹	Fold change ²	MicroRNA ID ¹	Fold change ²	MicroRNA ID ¹	Fold change ²	MicroRNA ID ¹	Fold change ²	MicroRNA ID ¹	Fold change ²	MicroRNA ID ¹	Fold change ²
	3.4511	hsa-mir-7	13.3526	hsa-mir-7	10.4877	hsa-mir-190	3.7895	hsa-mir-489	4.1702	hsa-mir-190	2.5778
$34_{hsa-mir-7}$	2.5165	hsa-mir-627	3.4528	hsa-mir-107	2.7899	hsa-mir-139	2.5465	hsa-mir-662	3.4666	hsa-mir-139	2.4896
35 _{hsa-mir-187}	2.4155	hsa-mir-147	2.9738	hsa-mir-220	1.9857	hsa-mir-216	1.7575	hsa-mir-190	3.4624	hsa-mir-662	2.0114
36 _{hsa-mir-503}	1.8455	hsa-mir-520a	2.7131	hsa-mir-373*	1.8556	hsa-mir-449a	1.7357	hsa-mir-138	2.2722	hsa-mir-622	1.9575

Page 39 of 44				British Journal of Haematology							
hsa-mir-493-3p hsa-mir-525 hsa-mir-220 hsa-mir-409-5p 3 hsa-mir-373* 4 hsa-mir-302d 5 hsa-mir-652	1.8232 1.7266 1.6575 1.6232 1.5547 1.5323 1.5121	hsa-mir-302a hsa-mir-183 hsa-mir-107 hsa-mir-148a hsa-mir-521 hsa-mir-520c hsa-mir-96	2.5379 2.1515 2.1472 1.9461 1.7831 1.6711 1.6345	hsa-mir-519d hsa-mir-302c hsa-mir-323 hsa-mir-600 hsa-mir-20a	1.7690 1.7458 1.7211 1.5646 1.5545	hsa-mir-520a hsa-mir-518c* hsa-mir-558 hsa-mir-137	1.6558 1.6455 1.5679 1.5434	hsa-mir-139 hsa-mir-449a hsa-mir-657 hsa-mir-182*	2.1097 1.8212 1.7214 1.6082	hsa-mir-525 hsa-mir-409-5p hsa-mir-449a hsa-mir-519e* hsa-mir-520a hsa-mir-182* hsa-mir-558 hsa-mir-23a	1.9323 1.9118 1.7933 1.7480 1.6991 1.6428 1.5788 1.5121
¹ Bold formatting inc	licates micr	oRNAs that were a	lso identified	as being differenti	ially expressed	d in EVI1 deregulate	d patient sa	mples compared to	o normal bo	one marrow.	
2 8 $^{-0.05}$ 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44		okinas mai were a									
40 47											

48 ⊿0 Supplementary Table 6. Up- and downregulated microRNAs in EVI1 rearranged

patients compared to normal bone marrow

	DOWN regul	ated microRNAs	3
MicroRNA ID ¹	Adjusted P-value	Fold change	Chromosomal position ²
hsa-mir-627	< 0.0001	2.9174	15q15.1
hsa-mir-376a	< 0.0001	8.4942	14q32.31
hsa-mir-377	< 0.0001	14.8259	14q32.31
hsa-mir-182	< 0.0001	21.6981	7q32.2
hsa-mir-96	0.0004	23.2055	7q32.2
hsa-mir-302c	0.0004	25.0552	4q25
hsa-mir-373	0.0021	29.3798	19q13.41
hsa-mir-486	0.004	37.0995	8p11.21
hsa-mir-451	0.0093	39.1498	17q11.2
hsa-mir-519b	0.0086	42.764	19q13.41
hsa-mir-453	0.0084	42.9166	14q32.31
hsa-mir-190	0.0083	43.2435	15q22.2
hsa-mir-210	0.0098	43.7469	11p15.5
hsa-mir-519e	0.0095	44.7324	19q13.41
hsa-mir-555	0.0104	44.8523	1q22
hsa-mir-215	0.0162	45.9622	1q41
hsa-mir-411	0.0309	48.7512	14q32.31
hsa-mir-449b	0.0351	53.0335	5q11.2
hsa-mir-192	0.0333	54.2642	11q13.1
hsa-mir-449a	0.037	54.3671	5q11.2
hsa-mir-18b	0.0469	55.3124	xq26.2
hsa-mir-518c	0.0458	57.3651	19q13.41
hsa-mir-382	0.0471	57.9604	14q32.31
hsa-mir-566	0.0471	58.2334	3p21.31
hsa-mir-193b	0.0462	58.3512	16p13.12
	UP regulate	ed microRNAs	
MicroRNA ID ¹	Adjusted P-value	Fold change	Chromosomal position ²
hsa-mir-213	< 0.0001	7.6312	1q31.3
hsa-mir-34a	< 0.0001	21.2414	1p36.23
hsa-mir-372	< 0.0001	22.5682	19q13.41
hsa-mir-202	< 0.0001	23.1649	10q26.3
hsa-let-7e	< 0.0001	25.1082	19q13.33
nsa-mir-369-3p	< 0.0001	30.8797	Xq28
hsa-mir-107	< 0.0001	31.0029	10q23.31
hsa-mir-187	< 0.0001	37.0609	18q12.2
hsa-mir-208	0.0009	39.0362	14q11.2
hsa-mir-133a	0.0008	39.0706	18q11.2
hsa-mir-519e	0.0009	41.9395	19q13.41
hsa-mir-496	0.0017	43.7542	14q32.31
hsa-mir-128b	0.005	47.5518	3p22.3
hsa-mir-33	0.0118	51.3368	22q13.2
hsa-mir-517	0.0119	51.5086	19q13.41
hsa-mir-223	0.0225	54.8395	Xq12
hsa-mir-23b	0.0242	55.6051	9q22.32
hsa-mir-196b	0.0241	55.9266	7p15.2

British Journal of Haematology

1				
2	hsa-mir-133b	0.0319	58,1882	6n12.2
3	hsa-mir-527	0.0308	58.294	19a13.41
4	hsa-mir-551a	0.0365	59.5325	1p36.32
5	hsa-mir-219	0.0417	60.5877	6p21.32
6	hsa-mir-520c	0.0497	61.9214	19q13.41
7	hsa-mir-181a	0.0482	61.984	1q31.3
8	¹ Bold formatting indic	ates microRNAs t	hat were also identified	as being differentially expressed in EVI1
9	overexpressing cell line	es.		
10	² Based upon the UCSC	c genome browser	(http://genome.ucsc.ed	lu/cgi-bin/hgGateway)
12	1	C		
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
20				
20				
21				
20				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				
41				
42				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				
54				
55 56				
00 57				
58				
59				
60				

Supplementary Table 7. Selection of *miR-449a* target genes based on known function in

cell viability, cell cycle regulation, apoptosis or differentiation

Gene name	Description
ACCN1	Amiloride-sensitive cation channel 1
BCL2	Apoptosis regulator Bcl-2
CCNE2	G1/S-specific cyclin-E2
DLL1	Delta-like protein 1
E2F5	Transcription factor E2F5
EFNB1	Ephrin-B1
FOXG1B	Forkhead box protein G1C
IGFBP3	Insulin-like growth factor-binding protein 3
JAG1	Jagged-1
NOTCH1	Neurogenic locus notch homolog protein 1
RARG	Retinoic acid receptor gamma-1
SEMA4C	Semaphorin-4C
SEMA5B	Semaphorin-5B
SGPP1	Sphingosine-1-phosphate phosphatase 1
UHRF2	Ubiquitin-like PHD and RING finger domain-containing protein 2

Supplementary Figure 2

Supplementary figure 3

