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Abstract. This paper proposes an alternative de nition of edgescépe edgés

for the recently introduced network-based model of combinatorial landscapes:
Local Optima Networks (LONJ'he model compresses the information given by
the whole search space into a smaller mathematical object that is the graph hav-
ing as vertices the local optima and as edges the possible weighted transitions
between them. The original de nition of edges accounted for the notion of tran-
sitions between the basins of attraction of local optima. This de nition, although
informative, produced densely connected networks and required the exhaustive
sampling of the basins of attraction. The alternative escape edges proposed here
do not require a full computation of the basins. Instead, they account for the
chances of escaping a local optima after a controlled mutation (e.g. 1 or 2 bit-
ips) followed by hill-climbing. A statistical analysis comparing the two LON
models for a set oK landscapes, is presented and discussed. Moreover, a pre-
liminary study is presented, which aims at validating the LON models as a tool for
analyzing the dynamics of stochastic local search in combinatorial optimization.

1 Introduction

The performance of heuristic search algorithms crucially depends on the structural as-
pects of the spaces being searched. An improved understanding of this dependency,
can facilitate the design and further successful application of these methods to solve
hard computational search problems. Local optima networks (LON) have been recently
introduced as a novel model of combinatorial landscapes [10, 11]. This model allows
the use of complex network analysis techniques [7] in connection with the study of
tness landscapes and problem dif culty in combinatorial optimization. The model is
based on the idea of compressing the information given by the whole problem con g-
uration space into a smaller mathematical object, which is the graph having as vertices
the optima con gurations of the problem and as edges the possible transitions between
these optima. This characterization of landscapes as networks has brought new insights
into the global structure of the landscapes studied, particularly into the distribution of
their local optima. Moreover, some network features have been found to correlate and
suggest explanations for search dif culty on the studied domains.

The de nition of the edges in the LON model critically impacts upon its descrip-
tive power with regards to heuristic search. The initial de nition of edges in [10, 11],
basin-transitionedges, accounted for the notion of transitions between the local optima
basins' frontiers. This de nition, although informative, produces highly connected net-
works and requires the exhaustive sampling of the basins of attraction. We explore in
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this article an alternative de nition of edges, which we tezstapeedges, that does not
require a full computation of the basins. Instead, the edges account for the chances (of
a prospective heuristic search algorithm) of escaping a local optima after a controlled
mutation (e.g. 1 or 2 bit- ips) followed by hill-climbing. This new de nition produces

less dense and easier to build LONs, which are more amenable to sampling and get
us closer to a tness landscape model that can be used to understand (and eventually
exploit) the dynamics of local search on combinatorial problems.

The rst goal of the present study is to compare and explore the relationships be-
tween the two LON models, based on (i) basin-transition edges and (ii) escape edges,
respectively. Thereafter, we present a preliminary study that aims at validating the LON
models in their descriptive power of the dynamics of stochastic local search algorithms.
We conduct this validation by considering the behavior of two well-known stochastic
local search heuristics, namely, Tabu Search [4] and Iterated Local Search [6]. The well
known family of NK landscapes [5] is used in our study.

The article is structured as follows. Section 2, includes the relevant de nitions and
algorithms for extracting the LONSs. Section 3, describes the experimental design, and
reports a comparative analysis of the extracted networks of the two models. Section 4,
presents our model validation study. Finally, section 5 discusses our main ndings and
suggest directions for future work.

2 De nitions and algorithms

A Fitness landscape [9] is a tripl€B; V; f) whereS is a set of potential solutions i.e.
a search spac®, : S| 25, a neighborhood structure, is a function that assigns to
everys 2 S a set of neighbor¥ (s), andf : S| R isa tness function that can be
pictured as théeightof the corresponding solutions. In our study, the search space is
composed of binary strings of length, therefore its size i&\ . The neighborhood is
de ned by the minimum possible move on a binary search space, that is the single bit-
ip operation. Thus, for a bit string of lengthN , the neighborhood sizeji¥ (s)j = N.
TheHillClimbing algorithm to determine the local optima and therefore de ne the
basins of attraction, is given in Algorithm 1. It de nes a mapping from the search space
S to the set of locally optimal solutiors . Hill climbing algorithms differ in their so-
calledpivot-rule In best-improvement local search, the entire neighborhood is explored
and the best solution is returned, whereas in rst-improvement, a neighbor is selected
uniformly at random and is accepted if it improves on the current tness value. We
consider here a best-improvement local searcher (see Algorithm 1). For a comparison
between rst and best-improvement LON models, the reader is referred to [8]

2.1 Nodes

As discussed above, a best-improvement local search algorithm based on the 1-move
operation is used to determine the local optima. A local optimiu@)( which is taken
to be a maximum here, is a solutisnsuch thaBs 2 V(s),f(s) f(s).
Let us denote byn(s), the stochastic operator that associates to each solsition
the solution obtained after applying the best-improvement hill-climbing algorithm (see
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Algorithm 1 Best-improvement local search (hill-climbing).

Choose initial solutiors 2 S
repeat ,

chooses 2 V (s), suchthaf (s') = maxy,v (s)f (X)

if f(s) <f (s) then

s s

end if

until sis a Local optimum

Algorithm 1) until convergence to BO . The size of the landscape is nite, so we can
denote byL O 4, LO,, LO3:::;LOp, the local optima. TheseOs are the vertices of
thelocal optima network

2.2 Basin-transition edges

The basin of attraction of a local optimub®; 2 Sisthe seth = fs2 Sjh(s) =
LO;g. The size of the basin of attraction of a local optimuis the cardinality ofy,
denotedb;. Notice that for non-neutréltness landscapes, as are standaid land-
scapes, the basins of attraction as de ned above, produce a partition of the con guration
spaceS. ThereforeS= [ 2s b and8i 2S8 6 i,b\ b = ;.

We can now de ne the weight of an edge that connects two feasible solutions in the
tness landscape. For each pair of solutierends’, p(s! so) is the probability to pass
fromstos’ with the given neighborhood structure. In the case of binary strings of size
N, and the neighborhood de ned by the single bit- ip operation, therd\argeighbors
for each solution, therefore, considering a uniform selection of random moves:
ifs’2V(s),p(s! s)= &+ and
if s’ 62V (s), p(s! so) =0.
The probability to go from solutios 2 S to a solution belonging to the badi, is°:

X 0
ps! B)=  p(s! s)
s%2 b

Thus, the total probability of going from badinto basing , i.e. the weightv; of edge
&j , is the average over a@l2 by of the transition probabilities to solutioss 2 b

| = 1X |
p(b ! h)—]ESZbip(S- b)

2.3 Escape edges

The escape edges are de ned according to a distance furgtfjorinimal number of
moves between two solutions), and a positive intéyer O.

* For a de nition of basins that deals with neutrality, the reader is referred to [11].
° Notice thatp(s ! B) 1 and notice also that this de nition, disregarding the tness values,
is purely topological and is not related to any particular search heuristic.
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There exists an edgg betweenLO; andLO; if it exists a solutions such that
d(s;LO;) D andh(s) = LO;. The weightw; of this edge is themw; = ]fs 2
S j d(s;LO;) D andh(s) = LOjg, which can be normalized by the number of
solutions within reach w.r.t. such a distarfjée 2 Sj d(s;LO;) Dg.

2.4 Local optima network

The weighted local optima netwofk,, = ( N; E) is the graph where the nodes2 N
are the local optima, and there is an edge2 E, with weightw; = p(b ! b),
between two nodes; andn; if p(b ! B) > 0.

According to both de nitions of edge weighta;; = p(b ! b) may be different
thanw; = p(h ! h). Thus, two weights are needed in general, and we have an
oriented transition graph.

Figure 1 depicts a representative example of the alternative LON models. The g-
ures corresponds to a rellK landscape with N = 18, K = 2, which is the lowest
ruggedness value explored in our study. The left plot illustrates the basin-transition
edges, while the center and right plots the escape edgesDwith1 andD = 2,
respectively. Notice that the basin-transition edges (left) produce a densely connected
network, while the escape edges produce more sparse networks.

Fig. 1. Local optima network of atNK -landscape instance with N = 18, K = 2. Left: basin-
transition edges. Center and Right: escape edgesvith 1 andD = 2, respectively. The

size of the circles is proportional to the logarithm of the size of the corresponding basins of
attraction; the darker the color, the better the local optimum tness. The edges' width scales with
the transition probability (weight) between local optima, according to the respective de nitions.
Notice that the basin-transition edges model (Left) is much more densely connected.

3 Comparative analysis of the LON models

In this section, we compare the LONs resulting from the different edges de nitions
discussed above. We chose to perform this analysis oh#emodel arti cial land-
scapes, primarily to be able to compare directly with previous work [10, 11], but also
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because this problem provides a framework that is of general interest in studying the
structure of complex combinatorial problems [5].

TheNK family of correlated landscapes is in fact a problem-independent model for
constructing multimodal landscapes that can gradually be tuned from smooth to rugged.
In the modelN refers to the number of (binary) genes in the genotype, i.e. the string
length, anK to the epistatic interaction, i.e. the number of genes that in uence a par-
ticular gene. By increasing the valuekffrom 0 toN 1, the landscapes can be tuned
from smooth to rugged. Thi€ variables that form the context of the tness contribu-
tion of a gene, can be chosen according to different models, the two most widely studied
being therandom neighborhoodhodel and thedjacent neighborhoodhodel. As no
signi cant differences between the two were found, neither in terms of the landscape
global properties [5] nor in terms of their local optima networks (preliminary studies),
we conduct our full study on the more general random model.

In order to minimize the in uence of the random creation of landscapes, we consid-
ered 30 different and independent problem instances for each combinahbamdK
parameter values. In all cases, the measures reported are the average of these 30 land-
scapes. In the present study, = 18 andK 2 f 2;4;6;8;10;12;14; 16; 17g, which
are the largest possible parameter combinations that allow the exhaustive extraction of
local optima networks. LONSs for the two de nitions of edges: (i) basin-transition and
(ii) escape edges with 2 f 1; 2g, were extracted and analyZed

Table 1.Local optima network features. Values are averages over 30 random instances, standard
deviations are shown as subscrigfs.= epistasis value of the correspondiN -landscape

(N = 18); Ny = number of verticesDedge = density of edgesNe=(Nv)?>  100%); Lopt =
average shortest path to reach the global optimdjm= 1 =w; ).

K N v D edge (%) L opt

all Basin-trans. EsB1 EscD2 Basin-trans. EsB1 EscD2
2 43:027;7 74:18213;123 8:2984;715 2217509;301 21:23;0 16284;7 33:514;1
4 220639;1 5420614;413 1:46%;231 7:0660;810 412710;5 19:25;1 532712;4
6 748470.2 26:3431.963 0:46%.047 3:4660:279 80:019:1 22:23.9 66:712:9
8 16688735 1270%:512 0:228:.009 2:201p:066 110:113:.3 24:04.9 76:69:1

10 31476109:9 6:26%:244 0:132:004 1:5310:036 1528193 27:35.0 90:7g:4
12 52703103:9 3:240.079 0:088.001 1:11%:.015 1851,3.3 30:36.7 108:312:3
14 809961511 1:7749-035 0:0640;001 0:8380;009 200:216:0 38399;6 124:78:6
16 116881101:3 1:030:013 0:0510:000 0:6470:004 211:815:.0 47:911:4 1462112
17 13801074;1 0:8010;007 010470;000 015740;002 214:317;5 55:712;5 155:912;2

3.1 Network features and connectivity

Number of nodes and edgesThe2™ column of Table 1, reports the number of nodes
(local optima),N,, which is the same for all the studied landscapes and models. The

5 Some of the the tools for tness landscape analysis and the local search heuristics, were used
from the “ParadisEO” library [2]; data treatment and network analysis are done in “R” with
the “igraph” package [3].
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number of nodes increase exponentially with increasing valuds.ofhe networks,
however, have a different number of edges, as can be appreciated3f ' , and
5 columns of Table 1, which report the number of edges normalized by the square
of the number of nodes (density of edges). Clearly, the density is higher for the basin-
transition edges, followed by the escape edges Witk 2, and the smaller density
corresponds t@ = 1. The trend is, however, that density decreases steadily with
increasing values df , which supports the correlation between the two models.

With the basin-transition edges, LONs are densely connected, especiallykvhen
is low: 74% and54% of all possible edges are present, on averageKfa2 f 2; 4g.
The escape edges produce sparsely connected graphs. Inde@d-theescape edge
model, produces networks that are not completely connected, with the number of con-
nected components ranging betwele67 and8:37 in average. The global optimum,
though, always happens to belong to the largest connected component, which, in our
analysis, comprises an average proportion of solutions raising, with increasing values
of K, from 0:9392764to 0:9999879

The networks with escape edges dnd= 2, are always connected. The density
decreases with the epistasis degree. For Kigh the density values are close to those
of the basin-transition networks. Figure 2 (Left) illustrates what is happening in terms
of the average degree of the outgoing links. First, notice that the difference with the
basin-transition networks is maximal whknis betweert and12. Whereas fob =1
the outgoing degree only increases frdri to 5:5 across the range &€ values, for
D = 2 the growth is faster and reach&&2, not far from thel095 score of the LON
with basin-transition edges. The size of the basins could provide an explanation for this:
at high values oK basins are so small thaRabit mutation from the local optimum is
almost enough to recover the complete topology.
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Fig. 2. Average out-degree (Left) and average clustering coef cient (Right) vs epistasis value.

Clustering coef cient. LONs with basins-transitions edges present a somewhat
symmetric structure: when two nodesindj are connected, both edges ande;
are present (even though their weights are in general diffengnts w;; ). Moreover,
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those connections often form triangular closures whose frequency is given by the global
clustering coef cient. As Figure 2 (Right) shows, this measure of transitivity is lower
with the escape-transition edges, but the difference could be due to the different number
of edges of those LONs. Values fbr = 1 are remarkably low, even if the calculation
disregarded the direction of edges. Overall though, the decreasing trend w.r.t. the land-
scape ruggedness, remains common. In other words, even with escape-transition edges,
the clustering coef cient can be retained as a measure related to problem complexity: it
decreases with the non-linearity of theéK -) problem.

Shortest paths.Due to the differences in topology, in the escape edges networks
not all the paths are possible: few nodes might be disconnected, or they might not be
reachable due to direction constraints (these are more “asymmetric” networks, as can be
seen in Fig. 1). Thus, while evaluating shortest paths, only paths connecting reachable
couples of nodes are averaged. Moreover, there are different ranges of weights, so the
values displayed in Figure 3 have been normalized. An unexpected behavior can be
observed folD = 2: the average path length peaksat= 4 and stays always high.
Maybe the increasing connectivity of nodes (see Fig. 2) counteracts their increase in
numbers. However, some paths are more important than others, for example those who
lead to the global optimum (see Fig. 3 (right)). With respect to these paths, all the LON
models show the same trend: the paths increase in length as ruggedness increases.
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Fig. 3. Shortest paths over the LON vs epistasis value. Left: average geodesic distance between
optima. Right: average shortest path to the global optimum. Each curve has been divided by its
respective maximum value.

3.2 Characterization of weights

Disparity. Figure 2 (Left) gave the average connectivity of vertices, counting outgoing
links. One might then ask whether or not there are preferential directions when leaving
a particular basin, i.e. if for a given nodgthe weightsw;; (with j & i) are equivalent.

For this purpose, we measure the dispa¥iy[1], which gauges the heterogeneity of
the contributions of the edges of nod the total weight. For a large enough degree
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zi, when there is not a dominant weight, then  1=z. The connectivity of LONs
with escape edges wilh = 1 is weak, and it is dif cult to draw conclusions based on
disparity only, as Figure 4 (left) illustrates. In the example illustrated, wKere 4,
(i.e. relatively low epistasis, and so not a random structifg)approached=z for
escapdd = 1, whereas it has distinctively higher values for both the es@ape-2,
and the basin-transition edges.

However, the common trend is that disparity decreases with increasing epistasis: as
the landscapes become more rugged, the transition probabilities to leave a particular
basins appear to become more uniform, which could relate to the search dif culty. This
is clear from Fig 4 (right), wher¥, approacheg§=z on average ak grows.
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Fig. 4. Disparity of edges' weights. Left: scatter plot of disparity against outgoing degree (lin-log
scale) for an instance with epistagis = 4. Right: average vertex disparity for outgoing edges
Vs epistasis value. Dotted lines represent the inverse of the outgoing degree.

Strength. In a general weighted network, the degree of a vertex naturally extends
into its strength, which measures its weighted connectivity. In LON model, basins size,
as well as connectivity, generally correlate with tness value [8]. Thus we ask if the
incoming strength of a given node, i.e. the sum of the transition probabilities for all
the incoming connections, correlates with the tness of its LO. Figure 5 gives a clear
af rmative answer for all the de nition of edges.

Correlation of weights among edges' de nitions.The LON models resulting from
the alternative de nition of edges show different structures but common trends w.r.t. the
features that are related to problem dif culty. We conclude this subsection by directly
comparing the transition probabilities that result from the alternative edge de nitions.
For this purpose, Figure 6 shows the Spearman's rank correlation between the corre-
sponding rows of the weighted adjacency matrix, for different LON models of the same
instance. The statistic is always positive, but, given the sparser nature of the escape-
D =1 networks, the result is weaker in this case. Vith= 2, though, the correlation
with the basin-transition de nition is consistently good, which agrees with the previous
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Fig. 5. Correlation between the strength of a node and its tness value. Left: scatter plot of thess
against weighted connectivity (lin-log scale) for an instance with epistasis4 . Right: average
correlation Spearman's coef cient between in-strength and tness value vs epistasis value.

ndings on this topology. Indeed, as the landscape ruggedness increases, the correlation
betweerD = 1 andD = 2 becomes smaller.

4 Model validation: local search dynamics

In this section, we analyze the connection between the LON model and dynamics of
local search (LS) in an attempt to validate its descriptive power. Does a LS follow the
edges of the LON? Which edge de nition is the most accurate to predict the dynamics
of a local search heuristic? This is a preliminary study on one partiblHarlandscape
instance witiN = 18 andK = 4, a larger analysis will be the subject of future work.

4.1 Experiment setup

We choose two simple but ef cient stochastic LS heuristics, namely Iterated Local
Search (ILS) [6], and Tabu Search (TS) [4]. Both are gi2eh 10* function eval-
uations ( 10%of the search space), or stop when reaching the global optimum.

The search trajectory is traced and Itered according to the basins of attraction: each
solution belongs to one basin, so it is labelled by the corresponding local optimum. We
then considered that a LS stays in the same basin, if the soluwjoasd s;.; both
belong to the same basin and the tness incredsgs) f (si+1 ). Otherwise, the LS
jumps from one basin to another one. In that manner, when accumulated from a number
of independent runs of the L30* in our experiments, it is possible to compare the
empirical transition frequencies between basins with the corresponding edge weights
of a given LON. Such a high number of independent runs is necessary because often
times single trajectories go through few LOs and only once.

When a LS performs a transition between two basins that are not connected in the
LON model, we add to the latter a virtual edge with weight equét@ Of course, we
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Fig. 6. Correlation between the weights resulting from the the new and the old de nition of edges.
Left: scatter plot for an instance with epistal€is= 4 . Right: average Spearman's rank correlation
coef cient vs epistasis value. No self-loops.

do not consider the LON edges that are not sampled, as it is not possible to compute
the transition frequency between nodes that have not been visited. Finally, the LS under
study are based on hill-climbing, thus the LON self-loops are also discarded.

4.2 Results

Figure 7 shows the scatter plots for the correlations between the edges weights of the
different LON models and the empirical transition frequencies between basins.

Iterated Local Search. Our implementation is based on a steepest-ascent (best-
improvement) hill-climbing, which, at each iteration, moves to the best neighboring
solution, and stops on a local optimum. The ILS perturbation ikthi- ip mutation,
which ips k bits at randomk 2 f 1; 2g in the present study. A mutation is accepted as
a new solution if its tness value is strictly better than the current one. Intuitively, the
ILS follows the same edges of the escape de nition: from the k. Bits are ipped; the
the main difference lies in the acceptance criterion used by the ILS. Indeed (see Fig. 7),
correlations are all signi cant. As expected, for thit- ip perturbation, Spearman
coef cient is higher for escape edges with= 1, and lower forD = 2-escape edges
(0:49for D = 1, 0:45for D = 2, and0:48 for basin edges). For th&bit- ips pertur-
bation, the highest correlation is for the escape edgesivith2 , and the smallest for
escape edges with =1 (0:41forD =1, 0:75for D = 2, and0:72 for basin edges).
Notice how gures for basin edges al= 2 -escape edges are very similar.

Tabu Search. Our implementation uses thebit- ip mutation, and, in order to
obtain a better diversi cation, a set of moves are forbidden during the search; those
tabu-moves are stored in a memory that lasts N = 18 iterations. A tabu move is
nonetheless accepted when it nds a new best-so-far solution. Referring to Figure 7,
the correlation values a®27 for theD = 1-escape edge§;53for D = 2, and0:79
for the basin edges. All values are signi cant and positive, particularly so for the more
interesting LON de nitionsD = 2-escape edges and basin edges.
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Fig. 7. Correlation (Spearman coef cient) between the edge weight and the empirical transition
frequency of a local search0* independent runs on @K -instance withN = 18, K = 4.

From top to bottom, Iterated Local Search withand 2-bit- ips, and Tabu Search have been
tested. From left to right, the empirical frequencies are plotted against the corresponding edge
weights according to the Escape?2 f 1; 2g and Basins de nition, respectively. Only transitions
between different basins are considered (no self-loops).

The result of this preliminary study is encouraging because it shows that the LON
could capture the coarse-grained dynamics of a LS. In particular, the escape edge de -
nition with D = 2 seems to be informative enough to correlate with the trajectories of
a simple ILS, or a simple TS. Of course, further studies have to con rm this result for a
larger class of LS, a broader number of instances, and on other problems, as to delineate
the validity domain of the LON model.

5 Concluding remarks

The local optima networks (LON) model is a mesoscopic representation of a prob-
lem search space, which deals with the local-optima basins of attractions as the meso-
state level of description. In this contribution, an alternative de nition of edgssape

edge}, has been proposed. Our statistical analysis, on a $¢Koflandscapes, shows

that the escape edges are as informative as the original (basin- transition) edges. We
reach this conclusion because, for both LON models, the analyzed network features
(such as the clustering coef cient, disparity, correlation between in-strength and tness
of local optima, and path length to global optimum) are always consistent with the non-
linearity of the problem (thé& parameter ), which tunes the landscape ruggedness.
Indeed, the edges' weights are positively correlated between the different de nitions.
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We also present a preliminary analysis that aims at validating the model. We show
that the dynamics of simple stochastic local search heuristics such as Iterated Local
Search, or Tabu Search, tend to follow the edges of LONs according to the rate de ned
by the weights. The model validation in the present study is a rst step. Starting from the
work by Reidys and Stadler [9] on combinatorial tness landscapes, we could conduct
a spectral analysis of the LON model. From the adjacency matrix of the LON graphs, it
should be possible to build a Markov Chain having the previously discussed transition
probabilities. That would allow us to compare the stationary distribution of different
LON models of the same search space. In this case, an empirical assessment could be
performed in a more informed way, because we could estimate the number of local
search runs that are necessary to have a good sampling, as in a Monte Carlo method.
The model validation could, then, go together with a prediction of the LS dynamics.

Overall, the present study opens up relevant perspectives. The escape edges de ni-
tion will allow us to design a sampling methodology of the LONs. The enumeration of
the basins of attraction is impossible on realistic search spaces. Therefore, the original
de nition of edges is restricted to study small search spaces. With the new de nition,
and through sampling of large networks such as breadth- rst search, forest- re or snow-
ball sampling, we will be able to study the properties of LONSs for real-world combi-
natorial search spaces. Our hope is that, by combining the LON model of the search
dynamics and the ability to build LONs for large search spaces, we will be able to per-
form off-line parameter tuning of evolutionary algorithms and local search heuristics.
Moreover, if the LON features are collected along the search process, on-line control of
the parameters could also be achieved.
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