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Matching Pursuit Shrinkage in Hilbert Spaces
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Abstract

In this paper, we study a variant of the Matching Pursuit named Matching Pursuit Shrinkage. Similarly

to the Matching Pursuit it seeks for an approximation of a datum living in a Hilbert space by a sparse

linear expansion in an enumerable set of atoms. The difference with the usual Matching Pursuit is that,

once an atom has been selected, we do not erase all the information along the direction of this atom.

Doing so, we can evolve slowly along that direction. The goalis to attenuate the negative impact of bad

atom selections.

We analyse the link between the shrinkage function used by the algorithm and the fact that the result

belongs to anlp space.
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I. I NTRODUCTION

A. Recollection on sparse approximation

Finding a sparse approximation of a data in a Hilbert space is areccurent problem in applied science.

The problem is to approximate a datumv ∈ H (H is a Hilbert space of finite or infinite dimension) by

a linear expansion in a dictionary of known atoms(ψi)i∈I :

v ∼
∑

i∈I

λiψi,

where(λi)i∈I ∈ R
I . The approximation is needed becausev is usually corrupted by noise. Also, it is

sometimes preferable to search for an approximation which is coarser than the noise requires. Doing so

we favors desired/expected properties of the coordinates(λi)i∈I .

Moreover, the dictionary is usually overcomplete. This offers the freedom to select among all the

possible sets of coordinates one of those agreeing with someprior knowledge or desired property of

the coordinates. The property receiving most of the attention is sparsity. Heuristically, we select the set

of coordinates offering the “simplest” explanation of the datum. Rigorously, for a given accuracy after

reconstruction, we want

l0 ((λi)i∈I)
def
= #{i ∈ I, λi 6= 0},

to be as small as possible, where# denotes the cardinality of a set.

Unfortunately, problems similar to






minimize l0 ((λi)i∈I)

under the constraint‖∑i∈I λiψi − v‖ ≤ τ
(1)

whereτ > 0 and‖.‖ is the norm associated with the scalar product of the considered Hilbert space, are

known to be NP-Hard in general (see [1]).

As a conclusion, solving (1) is both an open and interesting problem. It receives a lot of attention and

it is impossible to list all the contributions to its resolution. Before describing the most popular technics,

we give in the next section the algorithm studied in this paper. It will then be simpler to motivate our

proposal.

B. The Matching Pursuit Shrinkage

The Matching Pursuit Shrinkage (MPS) is very similar to the usual Matching Pursuit (MP) algorithm

(see [2]). The main difference is that it uses a shrinkage1 functionθ : R → R . We describe the algorithm

1The rigorous definition of shrinkage functions is given in Section II.
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in Table I.

• Input : A datumv, a dictionary(ψi)i∈I , a shrinkage functionθ andα ∈ [0, 1]

• Output : Coordinates(sn, γn)n∈N

• The algorithm

– Initialize R0v = v

– Repeat until convergence (loop inn)

1) Select a well correlated atomψγn such that

|〈ψγn , R
n
v〉| ≥ α sup

i∈I

|〈Rn
v, ψi〉|; (2)

2) Evolve alongψγn

R
n
v = snψγn +R

n+1
v, (3)

where

sn = θ(Mn) with Mn = 〈Rn
v, ψγn〉. (4)

TABLE I

THE MATCHING PURSUIT SHRINKAGE (MPS).

Several convergence criterion might be considered but, for simplicity, we always assume that the

algorithm stops wheneversn = 0.

Whenever they exist, we can construct coordinates

λi =
∑

n∈N:γn=i

sn, ∀i ∈ I (5)

from the result of the MPS. We also consider (when they exist)

u =
∑

i∈I

λiψi =
+∞
∑

n=0

snψγn
.

Notice that if we sum (3) forn = 0 . . . N − 1, we obtain

v =
N−1
∑

n=0

snψγn
+RNv. (6)

This explains the name “residual error” forRNv.

C. Other algorithms promoting sparsity

One of the oldest and simplest algorithm for building a sparse approximation is the Matching Pursuit

(MP) [2] or Projection Pursuit [3]. It corresponds to the algorithm of Table I whenθ is the identity (i.e.

sn = Mn).
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In finite dimension (see [2]) and in infinite dimension but underrestrictive conditions on the dictionary

and the signal (see [4]), the MP is known to converge exponentially. When no hypotheses are made

on the dictionary, we only know that the MP converges (see [2]). Some examples show that we cannot

expect a “good” converge rate in the most general setting (see [5]). Though the MP and the bestk-term

approximation have a similar convergence, when the dictionary is ”quasi-orthogonal” (see [6]).

There exists “fast” variants of the MP (see [7]). Also, a real-time implementation of the MP is available

for audio signal processing (see [8]). The improved performance are obtained by carefully optimizing

the structures, algorithms and their implementation. In particular, the update of(〈Rnv, ψi〉)i∈I and the

computation ofγn satisfying (2) (in Table I) are implemented in a very efficientway. Each iteration of

the MP is typically of complexityO(log(#I)). These optimization are possible because one coordinate

only is updated. IfK coordinates are modified at each iteration, we obtain a complexity O(K+log(#I)).

This might be less favorable whenK is large. Althought its approximation performances are notas good

as most modern models/algorithms, these acceleration makethe MP a usefull algorithm.

The accelerations decribed in [8] can be applied to the MPS, as described in Table I. The potential

advantage of introducing a shrinkage functionθ is to attenuate the mistakes in the selection of a coordinate

γn. Let us underline that avoiding wrong selection of coordinates is one of the key ingredient of modern

variants of the MP such as CoSaMP [9], Subspace Pursuit [10] and Iterative Hard Thresholding [11].

However, especially when the solution we are looking for is moderately sparse, those algorithms are

more computationaly intensive.

Let us go back in time. The most famous variant of the MP is the Orthogonal Matching Pursuit (OMP)

(see [12]). In Table I, it replaces the update rule (3) by an orthogonal projection onto the subspace

generated by the selected atoms. It is known to provide sparser solutions than the regular MP. From the

computational point of view, it has two drawbacks. Firstly, although several attemps have been made to

optimize it (see [13], [14]), the orthogonal projection is computationaly expensive and often requires too

much memory. Secondly, every selected coordinate is modified.As a consequence, the adaptation of the

optimization performed in [8] would only be efficient when theresult is very sparse. Algorithms such

as the Gradient Pursuit (see [15]) approximately solve the OMP at a cost more similar to the cost of

the MP. However, at each iteration, they typically update all the selected coordinates. The computational

cost of the Gradient Pursuit is therefore more important thanthe cost of a fast implementation of the

MP, when the solution is moderetely sparse.

Finally, the l1 regularization (also named Basis Pursuit and Basis Pursuit Denoising, see [16] and the
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papers citing it) is a very important sparsity promoting model. It consists in minimizing

‖v −
∑

i∈I

λiψi‖2 + β
∑

i∈I

|λi|

and it is very efficient for providing sparse approximations of v ∈ H. However, its resolution remains (and

will probably remain in a near futur) a challenge for large scale problems. A famous (and representative)

solver of thel1 regularization problem is the Iterative Soft Thresholding (see [17]). It updates all the

coordinates at each iteration and often requires many iterations before it reaches a suitable convergence

level. It is interesting to notice that, in this context, theimpact of the choice of the shrinkage function

is well understood (see [18]): Every proximal threholding function corresponds to a different objective

function.

Inspired by thel1 regularization problem, a “coordinatewise optimization algorithms” has been pro-

posed in [19]. It performs a soft thresholding, sequencially on each coordinate. The “greedy coordinate

descent” proposed in [20] is similar but selects the coordinates according to a criteria similar to the

MP. Because they only update one coordinate at each iteration, these algorithms can benefit from the

optimization proposed in [8].

D. Notations

The following notations and hypotheses hold all along the paper.

The datumv belongs to a Hilbert spaceH. The spaceH might be of finite or infinite dimension. For

any two elementsu andw in H, their scalar product is denoted by〈u,w〉. As usual, the norm ofu ∈ H
is defined by‖u‖ def

=
√

〈u, u〉. The dictionnary(ψi)i∈I is made of atomsψi ∈ H, such that‖ψi‖ = 1, for

all i ∈ I. We sometimes denote the dictionary byD. For simplicity, we assume thatI is enumerable. In

particular, the supremum in (2) may not be reached. In such a case, the MPS is only defined forα < 1.

For anyu ∈ H, we denote‖u‖D def
= supi∈I |〈u, ψi〉|. We denote

def
= Span{D} (7)

the closed linear span of the elements ofD. We denoteV ⊥ the orthogonal complement ofV in H. We

denote the orthogonal projection ontoV andV ⊥ by PV andPV ⊥ .

The sequences(sn)n∈N, (γn)n∈N, (Rnv)n∈N are always defined according to Table I. The coordinates

(λi)i∈I are according to (5).

We also use the standard notations :sgn(t) = 1, if t ≥ 0 and−1, if t < 0; # denotes the cardinal of

a set;⌊.⌋ is the floor function.
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E. Overview

In Section II, we define shrinkage, thresholding and gap functions. We also illustrate these definitions by

several examples. In section III, we prove that as soon asθ is a shrinkage function:(Rnv)n∈N converges

and
∑

n∈N
snψγn

exists. We also prove that(sn)n∈N is square summable. In Section IV, we prove that

whenθ is a thresholding function,(sn)n∈N is absolutely summable. This implies in particular that(λi)i∈I

exists and is absolutely summable. In Section V, we prove thatwhenθ is a gap function, the sequence

(sn)n∈N is finite. Again, this implies that(λi)i∈I exists and is finite. Finally, in Section VI, we evaluate

‖∑n∈N
snψγn

− PV v‖D, whenθ is a shrinkage function.

II. GENERAL SHRINKAGE FUNCTIONS

A. Definitions

Definition 1: A function θ(·) : R → R is called ashrinkage function if and only if it satisfies:

1) θ(·) is nondecreasing, i.e,

∀t, t′ ∈ R, t ≤ t′ =⇒ θ(t) ≤ θ(t′);

2) θ(·) shrinks the amplitude, i.e,

∀t ∈ R, |θ(t)| ≤ |t|.

Notice that this implies

θ(0) = 0,

and

θ(−t) ≤ 0 ≤ θ(t), ∀t ≥ 0. (8)

Therefore, for any shrinkage functionθ(·) and anyt ∈ R, we know that:

if t ≥ 0, 0 ≤ θ(t) ≤ t and0 ≤ θ(t)(t− θ(t)),

if t ≤ 0, 0 ≥ θ(t) ≥ t and0 ≤ θ(t)(t− θ(t)).

As a conclusion,

∀t ∈ R, θ(t)(t− θ(t)) ≥ 0. (9)

The inequality (8) also garantees that

∀t ∈ R, |t| |θ(t)| = tθ(t). (10)

Definition 2: Let θ(·) be a shrinkage function, we call
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• the internal threshold: τ− def
= inft:θ(t) 6=0 |t|

• the external threshold: τ+ def
= supt:θ(t)=0 |t|.

Moreover, we say thatθ(·) is a thresholding function if and only if: τ− > 0, i.e.

∃τ > 0,∀x ∈ R, |x| ≤ τ ⇒ θ(x) = 0. (11)

If θ(·) is a thresholding function, we trivially have

0 < τ− ≤ τ+.

The internal and external thresholds are illustrated on Figure 1.

t
0

y

y = θ(t)

y = t

−τ+
τ−

Fig. 1. Example of a thresholding functionθ. It is non-gap. Its internal and external thresholds are not equal.

Since (9) holds for any shrinkage function, the following definition is valid.

Definition 3: The gap of a shrinkage functionθ(·) is defined by:

gap(θ)
def
= inf

t:θ(t) 6=0

√

θ2(t) + 2θ(t)(t− θ(t)). (12)

If gap(θ) > 0, we call θ a gap shrinkage function and, ifgap(θ) = 0, the function is called a non-gap

shrinkage function.
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The following relation exists between the gap and the internal threshold of a shrinkage function. It

proves in particular that any gap shrinkage function is a thresholding function.

Proposition 1: For any gap functionθ(·), we have

gap(θ) ≤ τ−

whereτ− is the internal threshold ofθ(·).
Proof: The proof is given in Appendix.

B. Examples

Let us illustrate the above definitions through some examples.

1) For τ > 0, the soft thresholding functionρτ (·) defined by

ρτ (t) = sgn(t) · max(|t| − τ, 0).

is a thresholding function and it is a non-gap shrinkage function, i.e.,gap(ρτ ) = 0.

2) For τ > 0, the hard thresholding function defined by

hτ (t) =







t , if |t| > τ,

0 , otherwise.

is a thresholding function and it is a gap shrinkage functionwith gapτ .

3) The identity function defined as:

i(t) = t,∀t ∈ R, (13)

is not a thresholding function and it is a non-gap shrinkage function.

4) For τ > 0, the Non-Negative Garrote threshold function (see [21]) defined as:

δG
τ (t) = tmax

(

0,

(

1 − τ2

t2

))

,∀t ∈ R, (14)

is a thresholding function and it is non-gap.

5) For 0 < τ1 < τ2, the firm shrinkage function (see [22]) defined as:

δτ1,τ2
(t) =



















0, if |t| ≤ τ1;

sgn(t) τ2(|t|−τ1)
τ2−τ1

if τ1 < |t| < τ2;

t, if |t| ≥ τ2,

(15)

is a thresholding function and it is non-gap.
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6) For p ∈ N, τ > 0, the generalized threshold function (see [23]) defined as:

δp
τ (t) =







t, if |t| ≤ τ ;

t− τp

tp−1 (sgn(t)p), if |t| > τ,
(16)

a thresholding function and it is non-gap.

III. C ONVERGENCE OF THEMP SHRINKAGE FOR A SHRINKAGE FUNCTION

This section is devoted to prove that under mild condition, the MP shrinkage algorithm converges.

Proposition 2: Let (ψi)i∈I be a normed dictionary,v ∈ H andθ(·) be a shrinkage function. For any

M > 0 and anyv ∈ H, the quantities defined in Table I satisfy:

‖v‖2 =

M−1
∑

n=0

(

s2n + 2sn(Mn − sn)
)

+ ‖RMv‖2. (17)

As a consequence, we have

‖v‖2 ≥
M−1
∑

n=0

s2n + ‖RMv‖2, (18)

+∞
∑

n=0

s2n < +∞, (19)

+∞
∑

n=0

|sn| |Mn| < +∞, (20)

(‖Rn‖)n∈N is nonincreasing. (21)

Proof: We can deduce from

Rn+1v = Rnv − snψγn
,

and 〈ψγn
, ψγn

〉 = 1 that

‖Rn+1v‖2 = ‖Rnv‖2 − 2sn〈Rnv, ψγn
〉 + s2n

= ‖Rnv‖2 − 2sn(Mn − sn) − s2n.

Summing these equalities for alln = 0, . . . ,M − 1, we obtain after simplification

‖RMv‖2 = ‖R0v‖2 −
M−1
∑

n=0

(s2n + 2sn(Mn − sn)).

We then obtain (17) fromR0v = v.

Using (9), we know that

sn(Mn − sn) = θ(Mn)(Mn − θ(Mn)) ≥ 0.
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Together with (17) this leads to (18).

Notice that this also provides (21). Moreover, (18) garantees that(
∑M

n=0 s
2
n)M∈N is a bounded increas-

ing sequence. It converges and (19) holds. We also have

2

M−1
∑

n=0

|sn| |Mn| = 2

M−1
∑

n=0

snMn from (10)

= ‖v‖2 − ‖RMv‖2 +
M−1
∑

n=0

s2n from (17)

≤ ‖v‖2 +
+∞
∑

n=0

s2n.

This ensures that (20) holds.

Now we can prove the convergence of the MP algorithm.

Theorem 1:Let (ψi)i∈I be a normed dictionary,v ∈ H andθ(·) be a shrinkage function. The sequences

defined in (4) satisfy:

(Rnv)n∈N converges.

As a consequence,
+∞
∑

n=0

snψγn
exists.

We denote the limit of(Rnv)n∈N by R+∞v and we trivially have

v =
+∞
∑

n=0

snψγn
+R+∞v.

Proof: The proof is based on Jones’ proof for the convergence of projection pursuit regressions (see

[24]) and the proof of Theorem 1 in [2].

First notice that the statement of the proposition is trivialfor v = 0. We further assume thatv 6= 0.

In order to prove the theorem, we prove that the sequence(Rnv)n∈N is a Cauchy sequence. Before

doing so, let us start with some preliminaries.

Notice first that for allw1, w2 ∈ H, we have:

‖w1 − w2‖2 = ‖w1‖2 − ‖w2‖2 − 2〈w2, w1 − w2〉

≤ ≤ ‖w1‖2 − ‖w2‖2 + 2|〈w2, w1 − w2〉|. (22)

Moreover, forN2 > N1 ≥ 0, from (6) we have

RN1v −RN2v =

N2−1
∑

n=N1

snψγn
. (23)

July 8, 2009 DRAFT



11

Finally, for anyn ≥ 0 and anym ≥ 0,

|〈Rmv, snψγn
〉| = |sn| |〈ψγn

, Rmv〉|

≤ |sn| sup
i∈I

|〈ψi, R
mv〉|

≤ 1

α
|sn| |Mm|. (24)

Let us now considerN2 > N1 ≥ 0. Using (22), (23) and (24), we obtain

‖RN1v −RN2v‖2

≤ ‖RN1v‖2 − ‖RN2v‖2 + 2|〈RN2v,

N2−1
∑

n=N1

snψγn
〉|

≤ ‖RN1v‖2 − ‖RN2v‖2 +
2

α
|MN2

|
N2−1
∑

n=N1

|sn|. (25)

Using (21) of Proposition 2, we know that the sequence(‖Rnv‖)n∈N is non-negative and non-

increasing. Therefore, it converges to some valueR∞ and for anyǫ > 0, there exitsK > 0 such

that for allm > K,

R2
∞ ≤ ‖Rmv‖2 ≤ R2

∞ + ǫ2.

As a consequence, for anyN2 > N1 ≥ K,

‖RN1v −RN2v‖2 ≤ ǫ2 +
2

α
|MN2

|
N2
∑

n=N1

|sn| (26)

Using (20), we know that
∑+∞

n=0 |Mn||sn| < +∞. Moreover,0 ≤ |sn| ≤ |Mn| for all n ∈ N. So

Lemma 2 (see Appendix) can be applied withxn ≡ |sn| andyn ≡ |Mn|. Two situations might occur :

• The first one is that:
∑+∞

n=0 |sn| < +∞. In this case, we know that there isK ′ > 0 such that for

anyN2 > N1 ≥ K ′

N2
∑

n=N1

|sn| ≤
α

2‖v‖ǫ
2.

Moreover, from (17) we know that

|MN2
| = |〈RN2v, ψγN2

〉| ≤ ‖RN2v‖ ≤ ‖v‖.

So (26) becomes : for anyǫ > 0 there areK andK ′ > 0 such that for anyN2 > N1 ≥ max(K,K ′)

‖RN1v −RN2v‖2 ≤ ǫ2 + ǫ2.

As a conclusion(Rnv)n∈N is a Cauchy sequence.
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• The second one is that:lim infq→+∞ |Mq|
∑q

n=0 |sn| = 0. In this case, letǫ > 0 and letp > 0 be

an integer. We are going to estimate‖Rmv −Rm+pv‖, for m > K (K is such that (26) holds).

First, there isq > m+ p such that

|Mq|
q
∑

n=0

|sn| ≤
α

2
ǫ2. (27)

Moreover, we can decompose

‖Rmv −Rm+pv‖ ≤ ‖Rmv −Rqv‖ + ‖Rm+pv −Rqv‖.

Applying (26) withN1 = m andN2 = q and using (27) we obtain

‖Rmv −Rqv‖2 ≤ ǫ2 + ǫ2.

Similarly, applying (26) forN1 = m+ p andN2 = q and using (27) we obtain

‖Rm+pv −Rqv‖2 ≤ ǫ2 + ǫ2.

Hence, we finally obtain

‖Rmv −Rm+pv‖ ≤ 2
√

2ǫ,

which proves that(Rnv)n∈N is a Cauchy sequence.

As a conclusion,(Rnv)n∈N converges. The second statement directly follows from (6).

Proposition 2 ensures that
+∞
∑

n=0

|sn|2 (28)

exists.

IV. l1 NORM BOUNDS

In general, whenH is an infinite dimensional space, we have no guarantee that

+∞
∑

n=0

|sn| (29)

exists. A simple counter example consists in considering(ψi)i∈I a Riesz basis (for definition, see [25])

of H, v =
∑

i∈I siψi ∈ H such that
∑

i∈I |si| diverges andθ(t) ≡ t.

Below, we prove that (29) exists, whateverv ∈ H and whatever the dictionary, as soon asθ is a

thresholding function.
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Proposition 3: Let (ψi)i∈I be a normed dictionary,v ∈ H and θ(·) be a thresholding function. The

quantities defined in Table I satisfy:
+∞
∑

n=0

|sn| ≤
‖v‖2 − ‖R+∞v‖2

τ−
≤ ‖v‖2

τ−
, (30)

whereτ− > 0 denotes the internal threshold as defined in the Definition 2.

Proof: Let M ∈ N fixed. Using (18), we know that

M−1
∑

n=0

s2n ≤ ‖v‖2 − ‖RMv‖2.

Together with (17), this leads to

M−1
∑

n=0

snMn =
1

2

(

‖v‖2 +
M−1
∑

n=0

s2n − ‖RMv‖2

)

≤ ‖v‖2 − ‖RMv‖2.

Using (10) and the fact thatθ(·) is a thresholding function, for anyn ∈ N, we have:

snMn = |sn||Mn| ≥ τ−|sn|,

where the last inequality is obtained via the discussing on two cases:sn = 0 or sn 6= 0.

As a conclusion for allM ∈ N we have
M−1
∑

n=0

|sn| ≤
‖v‖2 − ‖RMv‖2

τ−
. (31)

Letting M go to infinity, we obtain (30).

Remark 1:The above upper bound does not depend on the dictionary(ψi)i∈I . It holds for anyv ∈ H.

We therefore do not expect this bound to be tight in any dedicated or applicative context.

Remark 2:As a side effect, the above proposition garantees that the coordinatesλi exist for all i ∈ I

(see (5)). We even know that
∑

i∈I

|λi| < +∞.

V. l0 BOUNDS

If θ(·) is a gap shrinkage function the MP shrinkage stops automatically after a finite number of

iterations.

Proposition 4: Let (ψi)i∈I be a normed dictionary,v ∈ H and θ(·) be a gap shrinkage function (i.e.

gap(θ) > 0). The sequence(sn)n∈N defined in Table I satisfies:

#{n|sn 6= 0} ≤ ⌊ ‖v‖2

gap(θ)2
⌋.
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Proof: Suppose that the sequence(sn)n∈N containsM non-zero terms. Observing Definition 3, for

eachsn 6= 0, we have:

s2n + 2sn(Mn − sn) ≥ gap(θ)2,

where we recall thatMn = 〈Rnv, ψγn
〉, sn = θ(Mn).

From (17), we know that:

‖v‖2 ≥
∑

n∈N:sn 6=0

(

s2n + 2sn(Mn − sn)
)

≥M · gap(θ)2.

Noting thatM is integer, we have:

M ≤ ⌊ ‖v‖2

gap(θ)2
⌋.

Remark 3:An interesting consequence of the proposition is that

#{i ∈ I, λi 6= 0} ≤ ⌊ ‖v‖2

gap(θ)2
⌋.

In words,v is approximated with less than⌊ ‖v‖2

gap(θ)2 ⌋ non-zero coordinates.

VI. B OUND ON THE RESIDUAL ERROR

In this section, we are interested in the residual error norm. The result concerns shrinkage functions.

Before stating the result, let us give the following lemma:

Lemma 1:Let (ψi)i∈I be a normed dictionary,v ∈ H andθ(·) be a shrinkage function. The sequence

(Mn)n∈N defined in Eq.(4) satisfies:

lim sup
n→+∞

Mn ≤ sup
t:θ(t)=0

t, (32)

and

inf
t:θ(t)=0

t ≤ lim inf
n→+∞

Mn. (33)

Proof: Let us prove the first statement. Ifsupt:θ(t)=0 t = +∞ the statement is trivial. We therefore

focus on the casesupt:θ(t)=0 t < +∞. Let us assume that (32) does not hold. Then there existsǫ > 0

and an increasing sequence(kn)n∈N ∈ N
N such that

Mkn
≥ sup

t:θ(t)=0
t+ ǫ, ∀n ∈ N.

So there exists an increasing sequence(kn)n∈N ∈ N
N such that

skn
= θ(Mkn

) ≥ θ( sup
t:θ(t)=0

t+ ǫ) > 0

July 8, 2009 DRAFT



15

This means that

lim sup
n→+∞

sn > 0.

The latter statement is impossible since, from (19), we know that limn→+∞ sn = 0. This proves (32).

The proof of (33) is similar.

In particular, if the external threshold ofθ(·) is zero (i.e.τ+ = 0),

lim
n→+∞

Mn = 0,

sincesupt:θ(t)=0 t = inft:θ(t)=0 t = 0.

Recall that we have defined the semi-norm onH as

‖u‖D def
= sup

i∈I

|〈u, ψi〉|, ∀u ∈ H.

Notice that‖ · ‖D is a norm as soon asD generatesH. Geometrically,

{u ∈ H, ‖u‖D ≤ τ}

is a polyhedron, forτ ≥ 0.

Recall that in (7) we denoteV
def
= Span((ψi)i∈I), the closure of vector space spanned by the dictionary

(ψi)i∈I , V ⊥ its orthogonal complement and we denote the orthogonal projection ontoV andV ⊥ by PV

andPV ⊥ respectively.

Proposition 5: Let (ψi)i∈I be a normed dictionary,v ∈ H andθ(·) be a shrinkage function. The limits

defined in Theorem 1 satisfy
∥

∥

∥

∥

∥

+∞
∑

n=0

snψγn
− PV v

∥

∥

∥

∥

∥

D

=
∥

∥R+∞v − PV ⊥v
∥

∥

D
≤ τ+

α
,

whereτ+ is the external threshold ofθ(·), as defined in Definition 2.

Proof: Let ǫ > 0, from Lemma 1, we know that for anyk ≥ 0 there isnk ≥ k

inf
t:θ(t)=0

t− ǫ ≤Mnk
≤ sup

t:θ(t)=0
t+ ǫ.

Given the definition ofτ+, we therefore know that

−τ+ − ǫ ≤Mnk
≤ τ+ + ǫ.

We rewrite

|Mnk
| ≤ τ+ + ǫ.
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Moreover, sincePV is contractive and given the construction ofMnk
, we know that

|Mnk
| ≥ α sup

i∈I

|〈Rnkv, ψi〉| ≥ α sup
i∈I

|〈PV (Rnkv), ψi〉|.

Therefore, for alli ∈ I,

|〈PV (Rnkv), ψi〉| ≤
τ+

α
+
ǫ

α
.

Since(Rnkv)k∈N converges toR+∞v (see Theorem 1), we finally have

|〈PV (R+∞v), ψi〉| ≤
τ+

α
+
ǫ

α
,

for all i ∈ I. Since the above inequalities hold for anyǫ > 0, we obtain

∥

∥PV (R+∞v)
∥

∥

D
≤ τ+

α
.

Moreover, using Theorem 1, we know that

PV ⊥

(

R+∞v
)

= PV ⊥ (v) − PV ⊥

(

+∞
∑

n=0

snψγn

)

= PV ⊥ (v) .

We therefore obtain
∥

∥R+∞v − PV ⊥v
∥

∥

D
=
∥

∥PV (R+∞v)
∥

∥

D
≤ τ+

α
.

Using Theorem 1 (again), we also know that

+∞
∑

n=0

snψγn
= PV

(

+∞
∑

n=0

snψγn

)

= PV (v) − PV (R+∞v)

Therefore,
∥

∥

∥

∥

∥

+∞
∑

n=0

snψγn
− PV (v)

∥

∥

∥

∥

∥

D

=
∥

∥PV (R+∞v)
∥

∥

D
≤ τ+

α
.

This finishes the proof of the theorem.

Remark 4:A consequence of the above proposition is that when the MPS is used with a thresholding

function, it provides a feasible point for the “Dantzig selector” (see [26]). The “Dantzig selector” consists

in the optimization problem:

min
(λi)i∈I

∑

|λi| subject to ‖
∑

i∈I

λiψi − PV v‖D ≤ τ+

α
.

From Proposition 3, we know that the MPS provides a set of coordinates(λi)i∈I (see (5)) such that

min
(λi)i∈I

∑

|λi|

is finite. Proposition 5 garantees that the constraint is satisfied.
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APPENDIX

Proof of Proposition 1

Proof ofgap(θ) ≤ inft:θ(t) 6=0 |t|. Let t0 ∈ R be such thatt0 > inft:θ(t) 6=0 |t|. We cannot simultaneously

haveθ(t0) = 0 andθ(−t0) = 0, sinceθ(·) is nondecreasing. Let us denote

t =







t0 , if θ(t0) 6= 0

−t0 , if θ(t0) = 0

We haveθ(t) 6= 0 and given the definition of the gap, we know that

gap(θ)2 ≤ θ(t)2 + 2θ(t)(t− θ(t)),

= t2 − (t− θ(t))2,

≤ t2 = t20.

As a conclusion, for anyt0 such thatt0 > inft:θ(t) 6=0 |t|, we havegap(θ) ≤ t0. So

gap(θ) ≤ inf
t:θ(t) 6=0

|t|.

Lemma used in the proof of Theorem 1

This lemma is a variation on the Lemma used for the proof of Theorem 1 in [2].

Lemma 2:Let (xk)k∈N and (yk)k∈N be two sequences such that

∀k ∈ N, 0 ≤ xk ≤ yk (34)

and
+∞
∑

k=0

xkyk < +∞.

One of the following alternatives holds :

• either
+∞
∑

k=0

xk < +∞
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• or

lim inf
j→+∞

yj

j
∑

k=0

xk = 0.

Proof: First, since(yk)k∈N is a sequence of nonnegative real numbers, its inferior limit always exists.

We

• either havelim infk→+∞ yk > 0,

• or lim infk→+∞ yk = 0

Let us first assume that

lim inf
k→+∞

yk > 0.

There existsǫ > 0 andn > 0 such that for anyk ≥ n, yk ≥ ǫ. Therefore, we have

ǫ

+∞
∑

k=n

xk ≤
+∞
∑

k=n

xkyk < +∞

and finally
+∞
∑

k=0

xk < +∞.

The first alternative holds.

Let us from now on assume that

lim inf
k→+∞

yk = 0

and considerǫ > 0 andm ≥ 0. Since
∑+∞

k=0 xkyk < +∞, there isn ≥ m such that

+∞
∑

k=n

xkyk <
ǫ

2
. (35)

Sincelim infk→+∞ yk = 0, there isp ≥ 0 such that

yn+p <
1

2
∑n−1

k=0 xk

ǫ. (36)

Let j ∈ {n, . . . n+ p} be such that

yj ≤ yk, ∀k ∈ {n, . . . n+ p}. (37)
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We have

yj

j
∑

k=0

xk = yj

n−1
∑

k=0

xk + yj

j
∑

k=n

xk

≤ yn+p

n−1
∑

k=0

xk + yj

j
∑

k=n

xk from (37)

<
ǫ

2
+

+∞
∑

k=n

xkyk from (36) and (34)

< ǫ from (35).

As a conclusion, for anyǫ > 0 and anym ≥ 0, there isj ≥ m such that

yj

j
∑

k=0

xk < ǫ.

This means that the second alternative holds.
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