%0 Journal Article
%T On cyclic branched coverings of prime knots
%+ Laboratoire Émile Picard (LEP)
%+ Institut de Mathématiques de Bourgogne [Dijon] (IMB)
%A Boileau, Michel
%A Paoluzzi, Luisa
%< avec comité de lecture
%J J. Topol.
%V 1
%P 557-583
%8 2008
%D 2008
%Z Mathematics [math]/Geometric Topology [math.GT]Journal articles
%X We prove that a prime knot K is not determined by its p-fold cyclic branched cover for at most two odd primes p. Moreover, we show that for a given odd prime p, the p-fold cyclic branched cover of a prime knot K is the p-fold cyclic branched cover of at most one more knot K' nonequivalent to K. To prove the main theorem, a result concerning symmetries of knots is also obtained. This latter result can be interpreted as a characterisation of the trivial knot.
%G English
%L hal-00638092
%U https://hal.archives-ouvertes.fr/hal-00638092
%~ UNIV-TLSE3
%~ CNRS
%~ UNIV-BOURGOGNE
%~ INSMI
%~ IMB_UMR5584