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Abstract— Off-line robot dynamic identification methods are 
mostly based on the use of the inverse dynamic model, which is 
linear with respect to the dynamic parameters. This model is 
calculated with torque and position sampled data while the 
robot is tracking reference trajectories that excite the system 
dynamics. This allows using linear least-squares techniques to 
estimate the parameters. This method requires the joint 
force/torque and position measurements and the estimate of the 
joint velocity and acceleration, through the bandpass filtering 
of the joint position at high sampling rates. A new method 
called DIDIM (Direct and Inverse Dynamic Identification 
Models) has been proposed and validated on a 2 degree-of-
freedom robot [1]. DIDIM method requires only the joint 
force/torque measurement. It is based on a closed-loop 
simulation of the robot using the direct dynamic model, the 
same structure of the control law, and the same reference 
trajectory for both the actual and the simulated robot. The 
optimal parameters minimize the 2-norm of the error between 
the actual force/torque and the simulated force/torque. A 
validation experiment on a 6 dof Staubli TX40 robot shows that 
DIDIM  method is very efficient on industrial robots. 

I. INTRODUCTION 

HE usual identification method based on the inverse 
dynamic identification model and least-squares (IDIM-

LS) technique has been successfully applied to identify 
inertial and friction parameters of several robotic prototypes 
and industrial robots [2], [3], [4], [5], [6], [7], [8], [9] , 
amongst others. Good results can be obtained provided a 
well-tuned derivative bandpass filtering of joint position to 
calculate the joint velocities and accelerations is used. 

The Direct and Inverse Dynamic Identification Models 
(DIDIM) method needs only the joint force/torque 
measurements [1]. It is based on a closed-loop simulation 
using the direct dynamic model while the optimal 
parameters minimize the 2-norm of the error between the 
actual force/torque and the simulated force/torque, assuming 
the same control law and the same reference trajectory. In 
spite it is difficult to know details on the control law for 
most industrial robots, it is possible to get this information 
from collaboration with manufacturers who want to  
improve the performances of their robots. This non-linear 

 
 

least-squares problem is dramatically simplified using the 
inverse dynamic model to formulate the simulated 
force/torque as an algebraic function linear in relation to the 
parameters. This paper recalls the DIDIM method and gives 
new experimental results obtained using a 6 dof robot. 

The paper is organized as follows: section II reviews the 
usual identification technique of the dynamic parameters of 
the robot. Section III presents the DIDIM method. The 
modeling of the TX40 industrial robot is presented in 
sectionIV. The experimental results are given in section V. 
Finally, section VI is the conclusion. 

II. IDIM: INVERSE DYNAMIC IDENTIFICATION MODEL 

TECHNIQUE 

Identification results obtained with the IDIM method are 
compared with those obtained with the new DIDIM method. 
Moreover, the IDIM method is used at each step of the 
iterative procedure in DIDIM. So it is important to give a 
review of the conventional IDIM method.  

The inverse dynamic model (IDM) of a rigid robot 
composed of n  moving links calculates the motor torque 
vector idmτ , as a function of the generalized coordinates and 

their derivatives. It can be obtained from the Newton-Euler 
or the Lagrangian equations [10]. It is given by: 

= ( )  + ( , )idmτ M q q N q q    (1) 

Where q , q  and q  are respectively the  x1n  vectors of 

generalized joint positions, velocities and accelerations, 
( )M q is the  xn n robot inertia matrix, and ( , )N q q  is the 

 x1n vector of centrifugal, Coriolis, gravitational and 

friction forces/torques. The modified Denavit and 
Hartenberg notation allows obtaining a dynamic model that 
is linear in relation to a set of standard dynamic parameters, 

stχ , [4]: 

 idm st stτ IDM q,q,q χ    (2) 

Where  stIDM q,q,q   is the  x sn N
 
jacobian matrix of 

idmτ , with respect to the  x1sN  vector stχ  of the standard 

Dynamic identification of a 6 dof robot without joint position data 

M. Gautier (1), P-O Vandanjon (2) and A. Janot(3) 

(1) Université de Nantes, IRCCyN, 1, rue de la Noë - BP 92 101 - 44321 Nantes Cedex 03, France 
(2)  Laboratoire Central des Ponts et Chaussées, Route de Bouaye BP 4129, 44341Bouguenais, France 

(3) ONERA DCSD, 2 Avenue Edouard Belin 31055 – BP 74025 – Toulouse Cedex 04, France  

T

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

978-1-61284-380-3/11/$26.00 ©2011 IEEE 234



 
 

 

parameters given by
TT T T  ... 1 2 n

st st st st       : 

T

j

j
st j j j j j j j j j j j j j off XX XY XZ YY YZ ZZ MX MY MZ M Ia Fv Fc      (3) 

where:      j j j j j jXX , XY , XZ , YY , YZ , ZZ
 

are the six 

components of the inertia matrix of link j  at the origin of 

frame j .   j j jMX , MY , MZ   are the components of the first 

moment of link j . jM  is the mass of link j , jIa  is a total 

inertia moment for rotor and gears of actuator j . jFv , 

jFc are the viscous and Coulomb friction parameters of joint 

j . 
joff is an offset parameter. 

The base parameters are the minimum number of dynamic 
parameters from which the dynamic model can be 
calculated. They are obtained from the standard inertial 
parameters by regrouping some of them by means of linear 
relations [11].  The minimal inverse dynamic model can be 
written as: 

 idmτ IDM q,q,q χ    (4) 

 IDM q,q,q   is the  xn b matrix of the minimal set of basis 

functions of the rigid body dynamics, (5) 

χ   is the  xb 1  vector of the b  base parameters. 

Because of perturbations due to noise measurement and 
modeling errors, the actual force/torque   differs from idmτ  

by an error, e , such that: 

 idmτ e IDM q,q,q χ e       (6) 

Equation (6) represents the Inverse Dynamic 
Identification Model (IDIM).  We consider the off-line 
identification of the base dynamic parameters χ, given 
measured or estimated off-line data for τ and   q, q, q  , 

collected while the robot is tracking some planned 
trajectories. 

   q, q, q   in (6) are estimated with    ˆ ˆq̂, q, q  , respectively, 

obtained by bandpass filtering the measure of q [7]. The 
actual force/torque, τ is calculated by: 

τ = gτ vτ (7) 
where v  is the  xn 1  control signal vector calculated 

according to the control law and g , is the  xnn  diagonal 

matrix of the drive gains. 
The inverse dynamic identification model (IDIM) (6) is 

sampled at a frequency measurement mf , at different times 

kt , mk 1,...,n , while the robot is tracking a reference 

trajectory  r r rq ,q ,q  , during the time length obsT , of the 

trajectory. 
We obtain an over determined linear system of  

* * obs mn T f
 
equations and b  unknowns such that: 

   fm fm fm
ˆ ˆˆY τ W q,q,q χ ρ    (8) 

In order to window the identification frequency range into 
the model dynamics, a parallel decimation procedure 
lowpass filters in parallel fmY  and each column of  fmW  and 

resamples them at a lower rate, keeping one sample over dn . 

We obtain: 

    ˆ ˆˆY τ W q,q,q χ ρ    (9) 

where:  Y τ  is the (rx1) vector of  measurements, built 

from the actual force/torque τ.  ˆ ˆˆW q,q,q   is the (rxb) 

observation matrix, built from the estimated values  ˆ ˆq̂,q,q   

of   q, q, q  . ρ is the (rx1) vector of errors. r=n*nm/nd   is 

the number of rows in (9). In Y and W, the equations of each 
joint are grouped together such that: 

       
T TT T T T1 n 1 nY Y ... Y ,W W ... W          

(10) 

Yj and Wj represent the nm/nd equations of joint j. The 
ordinary LS (OLS) solution χ̂  minimizes ρ. Using the 

base parameters and tracking “exciting” reference 
trajectories [12], we get a well conditioned matrix W. The 
LS solution χ̂  is given by: 

  1T Tχ̂ W W W Y W Y
    (11) 

Standard deviations 
i̂

 , are estimated under the 

assumptions that W is a deterministic matrix  and ρ, is a 
zero-mean additive independent Gaussian noise, with a 
covariance matrix Cρρ, such that: 

T 2
ρρ ρ r( ) σC E ρρ I   (12) 

E is the expectation operator and Ir, the rxr identity 
matrix.  An unbiased estimation of the standard deviation 

  is: 
22

ρσ (r b )ˆ ˆY Wχ    (13) 

The covariance matrix of the estimation error is given by: 
T 2 T 1

χχ ρ[( )( ) ] σ ( )ˆ ˆ ˆˆ ˆC E χ χ χ χ W W      (14) 

i

2
χ χχσ C ( )ˆ ˆ ˆ i,i  is the ith diagonal coefficient of χχˆ ˆC . The 

relative standard deviation 
riχ%σˆ  is given by: 

ri iχ χ i%σ 100σ χˆ ˆ ˆ , for iχ̂ ≠ 0 (15) 

The OLS can be improved by taking into account 
different standard deviations on joint j  equations errors [7]. 

Each equation of joint j  in (9), (10), is weighted with the 

inverse of the standard deviation of the error calculated from 
OLS solution of  the equations of joint j  , given by: 

    j j j j
j

ˆ ˆˆY τ W IDM q,q,q χ ρ    (16) 

This weighting operation normalises the errors in (9) and 
gives the weighted LS (WLS) estimation of the parameters. 
 

This identification method is illustrated in Fig. 1. 
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Fig. 1. IDIM LS identification scheme. 

III. DIDIM: DIRECT AND INVERSE DYNAMIC 

IDENTIFICATION MODEL TECHNIQUE 

A. Theoretical approach 

DIDIM [1] is a closed loop output error (CLOE) method    
which does not require joint position data. The output, y=τ, 
is the actual joint force/torque τ, and the simulated output 
ys=τddm, is the simulated joint force/torque. τddm, is the 
force/torque input of the Direct Dynamic Model (DDM) 
which can be obtained by writing the IDM equation (1), as 
following: 

( , )  =  - ( , , )ddm ddm ddm ddm ddmM q q τ N q q    (17) 

Where ( , )ddmM q   and ( , , )ddm ddmN q q   depend on an 

estimation of the base parameters χ. 

The signal qddm(t, χ), is the result of the integration of the 
linear implicit differential equation. The optimal solution, 

̂ , minimizes the quadratic criterion,   2

sC Y Y   . 

 Y τ  and  S ddmY τ are vectors obtained by filtering and 

downsampling the vectors of samples of the actual 
force/torque τ, and of the simulated force/torque τddm, 
respectively. 

This non-linear LS problem is solved by the Gauss-
Newton regression. It is based on a Taylor series expansion 

of ys, at a current estimate kχ̂ , of the parameters at iteration 

k: 

    +1 +1
k

k k k k
S S S χ̂

ˆ ˆy ( χ ) y ( χ ) y ( χ ) / χ χ χ o       (18) 

   kS χ̂
y ( χ ) / χ 

 
is the (nxb), jacobian matrix of ys, with 

respect to χ, evaluated at kχ̂ . The input force/torque of the 

DDM, τddm, can be calculated with the analytical expression 
of the inverse dynamic model (4), such as: 

            s ddm idm ddm ddm ddmy χ τ χ τ χ IDM q χ ,q χ ,q χ χ      (19) 

Then the jacobian matrix is given by: 

     

  
k k k

S ddm idm

ˆ ˆ ˆχ χ χ

k k k k
ddm ddm ddm

y

χ χ χ

ˆ ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ ) χ
χ

        
                  





 
 (20) 

Because of the same closed loop control for the actual and 
for the simulated robot (see section B), the simulated 
position, velocity and acceleration have little dependence 
on χ and remains close to the actual ones for any kχ̂ : 

   ddm k ddm k ddm kˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q     (21) 

 Then    k k k
ddm ddm ddm

ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ ) IDM q,q,q     for 

any kχ̂ , and the jacobian matrix (20) can be approximated 

by: 

   
k

S k k k
ddm ddm ddm

χ̂

y
ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ )

χ

 
   

   (22) 

Taking the approximation (22) of the jacobian matrix into 
the Taylor series expansion, it becomes: 

   +1k k k k
ddm ddm ddm

ˆ ˆ ˆy IDM q ( χ ),q ( χ ),q ( χ ) χ o e      (23) 

This is the Inverse Dynamic Identification Model, IDIM, 
(6), where   q, q, q   are estimated with  ddm ddm ddmq ,q ,q  , 

simulated from (17). At each iteration k, the IDIM method is 
applied as described in section 2. The sampling of (23) at a 
sampling rate fm, gives the over-determined linear system: 

   , k
fm fm ddm ddm ddm fm

ˆY τ W q ,q ,q χ ρ     (24) 

The parallel decimation of (24) gives: 

   , k
ddm ddm ddm

ˆY τ W q ,q ,q χ χ ρ    (25) 

The LS solution of  (25) calculates k 1χ̂  , at iteration k+1. 

This process converges in nc steps such that: 

 1nc nc nc 1/ tol     and  1nc 2/ Y tol    (26) 

1tol and 2tol are values ideally chosen to be small numbers to 

get fast convergence with good accuracy. 
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Fig. 2. DIDIM, with the Gauss-Newton regression, identification scheme. 

 
Because this method uses both models DDM and IDIM, it is 
named the DIDIM method: Direct and Inverse Dynamic 
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Identification Models technique. The DIDIM method with 
the Gauss-Newton regression is illustrated  Fig. 2.  

B. Initialization of the algorithm 

A problem is how to choose the initial values 0χ̂ . We can 

use CAD values, or identified values with the IDIM method, 
but we show that there is no need at all of a priori values. 
We propose an algorithm not sensitive to the initial 
conditions, which assumes that the condition 

   ddm k ddm k ddm kˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q    , is satisfied at any 

iteration k , and especially for  k =0. This is a key point to 
assume the convergence of the Gauss-Newton regression. 

This is possible by taking the same control law structure 
for the actual robot and for the simulated one with the same 
performances given by the bandwidth, the stability margin 
or the closed-loop poles. Because the simulated robot 

parameters kχ̂ , change at each iteration k , the gains of the 

simulated control law must be updated according to kχ̂  . 

We have shown that the actual control signal on joint j  must 

be multiplied by 
k
j

ap
j

Ĵ

J
in order to obtain the same 

normalized second order 
2

1

s
 open-loop system and the 

same closed-loop transfer function at each iteration k  [1]. 
This allows to keep 

   ddm k ddm k ddm kˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q    , at each iteration 

k .  

jJ , is the maximum value, with respect to q , of the 

inertia moment around joint jz  axis. This gives the smallest 

damping value and the smallest stability margin of the 
closed-loop second order transfer function, while q  varies. 

ap
jJ is an a priori value of  the unknown actual values 

a
jJ . It can be calculated from a priori CAD values of 

inertial parameters and must be taken at least as 
jj aZZ I . 

k
jĴ  is the estimated value of jJ at iteration k . 

We propose to take a regular inertia matrix 0( , ) ddm
ˆM q  , 

in order to have a good initialization for the numerical 
integration of the DDM. This is named the "regular 
initialization". It can be obtained with: 

0 0̂  , except for, 0 1, jIa j 1,n   (27) 

The inertia of the rotor and gear of actuator j  is generally 

taken into account in the IDM model (1) as: 
τ  

jr j j Ia q   

Then, the initial inertia matrix becomes the identity 
matrix, which is the best regular matrix: 

0( , ) =ddm n
ˆM q I  (28) 

Another point is to choose the state initial condition of the 

state vector,  (0) (0)ddm ddmq ,q , in order to integrate the 

DDM. Because DIDIM doesn't need the joint position 
measurement, the actual values  (0) (0)q ,q , are supposed to 

be unknown and we choose, 

   (0) (0) (0) (0)ddm ddm r rq ,q q ,q  , which is close to
 

 (0) (0)q ,q . Because the closed-loop transient response due 

to different initial conditions differs between the actual and 
the simulated signals during a transient period of 

approximately, 5 d
n/  , the corresponding joint force/torque 

samples are eliminated from the identification data in (24). 

IV. CASE STUDY: MODELING OF THE TX40 ROBOT 

The Stäubli TX-40 robot has a serial structure with six 
rotational joints. The robot kinematics is defined using the 
modified Denavit and Hartenberg notation (Fig. 3). 
 

 
Fig. 3. Link frames of the TX-40 robot 
 

TABLE 1 GEOMETRIC PARAMETERS OF THE TX-40 ROBOT 
j σj αj dj θj rj 
1 0 0 0 θ1 0 
2 0 -π/2 0 θ2 0 
3 0 0 d3 = 0.225m θ3 rl3 = 0.035m 
4 0 π/2 0 θ4 rl4 = 0.225m 
5 0 -π/2 0 θ5 0 
6 0 π/2 0 θ6 0 

 
The geometric parameters defining the robot frames are 

given in Table 1. The parameter j = 0, means that joint j is 
rotational, αj and dj give respectively the angle and distance 
between zj-1 and zj along xj-1, whereas j and rj give 
respectively the angle and distance between xj-1 and xj along 
zj. Since all the joints are rotational then j is the position 
variable of joint j.  

The TX40 robot is characterized by a coupling between 

the joints 5 and 6 such that 5 5

6 6

qr qK5 0

qr qK6 K6

    
    
    

 
  . Where jqr is 

the velocity of the rotor of motor j, jq is the velocity of joint 

j, K5 is the transmission gain ratio of axis 5 and K6 is the 
transmission gain ratio of axis 6. Thus, the duality relation 
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of force/torque gives 5 5

6 6

c r

c r

K5 K6

0 K6

 

 

    
    

       
. Where, τcj is the 

motor's torque of joint j, taking into account the coupling 
effect, τrj is the electro-magnetic torque of the rotor of motor 
j. The coupling between joints 5 and 6, also adds to the 
effect of the inertia of rotor 6 and new viscous and Coulomb 
friction parameters fvm6 and fcm6 to both τc5 and τc6.  

We can write:  
   sign( )

5c 5 6 6 6 6 6 6Ia  q fvm  q fcm  q        

   sign( )
6c 6 6 5 6 5 6 5Ia  q fvm  q fcm  q        

Where τ5, τ6 already contain the terms 
  j j j j j j( Ia q fv q  fc sign( q ))    , for j=5 and 6 respectively, 

  2 2
5 5 5 6 6Ia K Ja K Ja   and 2

6 6 6Ia K Ja  (29) 

Jaj is the moment of inertia of rotor j, fvm6, fcm6 are the 
friction parameters due to the coupling between joints 5 and 
6. The TX40 has Ns=86, standard dynamic parameters given 
by the 14*6 usual standard parameters (3), plus  fvm6 and 
fcm6. For IDIM-LS method, we use the standard inverse 
dynamic model (2). The columns of the matrix 

 stIDM q,q,q   in (2) can be obtained using the recursive 

algorithm of Newton-Euler. We use the software 
SYMORO+ to automatically calculate the customized 
symbolic expressions of the models [13]. The base 
parameters χ and the minimal model (4) are automatically 
calculated using a QR numerical method [11]. The matrices 

( , )ddmM q   and ( , , )ddm ddmN q q   are numerically calculated 

using the IDM model ( ,  idmτ q q, q )   (1), for special values of 

,  q q, q  . 

V. EXPERIMENTAL IDENTIFICATION RESULTS 

The identification of the dynamic parameters has been 
carried out using one trajectory using the controller CS8C of 
the Stäubli robots. 

The joint positions and torques are stored with a sampling 
frequency measurement fm=5KHz. The IDIM-LS off-line 
estimation is carried out with a filtered position q̂ , 

calculated with a 50Hz cut-off frequency forward and 

reverse Butterworth filter, and with the velocities q̂ , and the 

accelerations, q̂ , calculated with a central difference 

algorithm of q̂ .  The parallel decimation of Yfm 
and Wfm, in 

(8), is carried out with a sample rate divided by a factor, 
nd=100, and a lowpass filter cut-off frequency equal to, 
0.8*fm/(2*nd)=20Hz. There are 60 base parameters which 
can be simplified to 23 well identified essential parameters 
with good relative standard deviation. 

The DIDIM method is initialized with all the standard 
parameters equal 0 except Iaj=1, j≠5and Ia5=2, due to the 
coupling effect (29). The simulation Fig.4, is carried out 
with the actual stored reference trajectory and the CS8C 
controller of the TX40, with updating the gains with 

k ap
j jĴ / J , and using the simulink software. A step of 

DIDIM takes 7' on a 2008 PC working station. 
The results are given in Table 2. 
 

TABLE 2: DIDIM ESTIMATION AFTER 1 STEP 
Paramete

r 
1̂  rχ

%σˆ

 

Paramete
r 

1̂  rχ
%σˆ

 
ZZ1R 1.30 0.65 Fv3 2.37 1.2 
Fv1 8.71 0.8 Fc3 6.6 2.0 
Fc1 7.69 2.5 Ia4 0.029 5.0 
XX2R -0.53 3.6 Fv4 1.0 1.2 
XZ2R -0.16 7.2 Fc4 2.47 2.2 
ZZ2R 1.09 0.8 Ia5 0.053 12.0 
MX2R 2.11 0.4 Fv5 2.52 2.3 
Fv2 7 1.1 Fc5 2.77 5.0 
Fc2 7.74 1.7 Fv6 0.72 2.7 
ZZ3R 0.14 3.7 Fc6 0.9 8.0 
MY3R -0.64 1.8 fvm6 0.8 2.4 
Ia3 0.083 7.1 fcm6 1.6 4.4 
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Fig. 4. Simulation of the TX_40 with simulink, red line: CS8C controller, black line: the direct dynamic model. 
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Fig. 5. DIDIM, validation, red line: actual torque, blue line: estimated torque,  , 1 1
e ddm ddm ddm

ˆ ˆY W q ,q ,q     , black line: error 

Considering the test stop (26), it needs only 1 step to 
obtain the optimal solution which is very close to the IDIM 
solution. Hence, the DIDIM method has a very fast 
convergence. A validation is plotted on Fig.5 at the 
decimated frequency 50Hz. It shows that the actual joint 
torques, Y(τ), and the torques estimated with the identified 

model,  , 1 1
e ddm ddm ddm

ˆ ˆY W q ,q ,q     , as defined in (25) are 

very close. Both methods, IDIM-LS and DIDIM, give a 
small relative norm error, ˆY W / Y <3%, which shows 

a good accuracy for the model and for the identified value. 

VI. CONCLUSION 

This paper deals with a new off-line identification technique 
of robot dynamic parameters, called DIDIM for Direct and 
Inverse Dynamic Identification Models technique. This 
method is a closed-loop Output Error approach, considering 
the output is the joint force/torque. The optimal parameters 
are the solution of a non-linear least-squares problem which 
is solved with a Gauss-Newton method. Each step of the 
iterative procedure of the Gauss-Newton regression is 
dramatically simplified to a linear regression which is solved 
with the Inverse Dynamic Identification Model technique 
(IDIM). In this paper we prove that DIDIM is very efficient 
on a 6 dof industrial robot, with a 1 step convergence 
starting with a regular initialization of the parameters. 
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