Invariant-based approach to symmetry class detection

Abstract : In this paper, the problem of the identification of the symmetry class of a given tensor is asked. Contrary to classical approaches which are based on the spectral properties of the linear operator describing the elasticity, our setting is based on the invariants of the irreducible tensors appearing in the harmonic decomposition of the elasticity tensor [Forte-Vianello, 1996]. To that aim we first introduce a geometrical description of the space of elasticity tensors. This framework is used to derive invariant-based conditions that characterize symmetry classes. For low order symmetry classes, such conditions are given on a triplet of quadratic forms extracted from the harmonic decomposition of the elasticity tensor $C$, meanwhile for higher-order classes conditions are provided in terms of elements of $H^{4}$, the higher irreducible space in the decomposition of $C$. Proceeding in such a way some well known conditions appearing in the Mehrabadi-Cowin theorem for the existence of a symmetry plane are retrieved, and a set of algebraic relations on polynomial invariants characterizing the orthotropic, trigonal, tetragonal, transverse isotropic and cubic symmetry classes are provided. Using a genericity assumption on the elasticity tensor under study, an algorithm to identify the symmetry class of a large set of tensors is finally provided.
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00638020
Contributeur : Boris Kolev <>
Soumis le : jeudi 3 novembre 2011 - 15:42:49
Dernière modification le : jeudi 21 février 2019 - 10:52:50
Document(s) archivé(s) le : samedi 4 février 2012 - 02:26:45

Fichiers

akp2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00638020, version 1
  • ARXIV : 1111.0861

Relations

  • est une version de hal-00827948 - This version contains more details.

Citation

Nicolas Auffray, Boris Kolev, Michel Petitot. Invariant-based approach to symmetry class detection. 32 pages. 2011. 〈hal-00638020〉

Partager

Métriques

Consultations de la notice

762

Téléchargements de fichiers

211