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A unifying Lyapunov-based framework for the event-triggered control
of nonlinear systems

Romain Postoyan, Adolfo Anta, Dragan Nešić, Paulo Tabuada

Abstract— We present a prescriptive framework for the
event-triggered control of nonlinear systems. Rather thanclos-
ing the loop periodically, as traditionally done in digital control,
in event-triggered implementations the loop is closed according
to a state-dependent criterion. Event-triggered control is espe-
cially well suited for embedded systems and networked control
systems since it reduces the amount of resources needed for
control such as communication bandwidth. By modeling the
event-triggered implementations as hybrid systems, we provide
Lyapunov-based conditions to guarantee the stability of the
resulting closed-loop system and explain how they can be
utilized to synthesize event-triggering rules. We illustrate the
generality of the approach by showing how it encompasses
several existing event-triggering policies and by developing
new strategies which further reduce the resources needed for
control.

I. I NTRODUCTION

The implementation of controllers on shared digital plat-
forms offers a number of advantages in terms of cost,
ease of maintenance and flexibility compared to classical
dedicated control structures. However, it also poses several
implementation problems, in particular we need to know
when the control loop has to be closed to ensure stability and
performance. In traditional setups, this is done periodically,
independently of the current state of the plant. Although this
approach is appealing from the analysis and implementa-
tion point of view, it often leads to unnecessary resource
usage (e.g. communication bandwidth, computation time).
An alternative implementation, known as event-triggered
control, consists in closing the loop according to a rule that
depends on the current state of the plant. A number of works
addressed this topic, e.g. [2], [4], [6], [8], [13], [17], [18]. In
[17], a simple strategy is proposed for nonlinear systems.
The idea is the following. Assuming the continuous-time
closed-loop system is input-to-state stable (ISS) with respect
to measurement errors, a triggering condition is derived to
guarantee that the Lyapunov functionV for the continuous-
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time system always decreases at a given rate when control
tasks are executed at discrete time instants. It is shown that
there does exist a constant minimal time interval between
executions that reinforces the idea that event-triggered con-
trol is expected to generate larger inter-event intervals than
periodic rules. This translates into a lower usage of the
communication bandwidth and the computational resources.
Noting that the monotonic decrease ofV is not necessary
to guarantee asymptotic stability for the obtained hybrid
systems, a triggering rule is developed in [18] to ensure that
V appropriately decreases at each transmission instant. This
method was shown to potentially exhibit larger inter-event
intervals compared to [17].

In this paper, we present a prescriptive framework for the
event-triggered control of nonlinear systems. We model the
problem as a hybrid system using the formalism of [7], as in
[6]. We start by identifying the key features of the strategy
in [17] in terms of a hybrid Lyapunov function and use them
to introduce the main idea of our approach. The proposed
framework relies on Lyapunov-based conditions that can
be used to synthesize event-triggering rules to guarantee
asymptotic stability properties. Our approach encompasses
the strategies in [17], [18] for which we propose new stability
analyses and relax some of the required conditions. We
also develop a family of new triggering rules inspired by
[18] which allows us to trade performance for longer inter-
event times. In the companion paper [15], we show how this
framework can be applied to distributed networked control
systems subject to scheduling.

The proofs are omitted for space reasons and can be found
in [14].

II. N OTATION AND DEFINITIONS

Let R = (−∞,∞), R≥0 = [0,∞), R>0 = (0,∞),
Z≥0 = {0, 1, 2, . . .}, Z>0 = {1, 2, . . .}. A function γ :
R≥0 → R≥0 is of classK if it is continuous, zero at zero
and strictly increasing, and it is of classK∞ if in addition
it is unbounded. A continuous functionγ : R2

≥0 −→ R≥0

is of classKL if for each t ∈ R≥0, γ(·, t) is of class
K, and, for eachs ∈ R>0, γ(s, ·) is decreasing to zero.
Additionally, a functionβ : R3

≥0 → R≥0 is of classKLL,
if β(·, ·, t) ∈ KL andβ(·, t, ·) ∈ KL for any t ∈ R≥0. For
(x, y) ∈ R

n+m, the notation(x, y) stands for[xT, yT]T.
The distance of a vectorx to a setA ⊂ R

n is denoted by
|x|A = inf{|x− y| : y ∈ A}.

We will consider locally Lipschitz Lyapunov functions
(that are not necessarily differentiable everywhere), therefore
we will use the Clarke derivative which is defined as follows



for V : Rn → R≥0: V ◦(x; v) := lim
h→0+

sup
y→x

V (y+hv)−V (y)
h

,

that corresponds to the usual derivative whenV is contin-
uously differentiable. We define the generalized gradient of
f : Rn → R at x as: ∂f(x) :=

{

ζ ∈ R
n : f◦(x; v) ≥

〈ζ, v〉 ∀v ∈ R
n
}

, that matches the classical notion of
gradient whenf is differentiable.

We will write hybrid systems using the models proposed
in [7], that are of the form:

ẋ = f(x) x ∈ C, x+ = g(x) x ∈ D, (1)

wherex ∈ R
n is the state andC,D ⊂ R

n are respectively
the flow and the jump sets. Hence, any hybrid system
is defined by a tuple(C,D, f, g). The solutions of (1)
are defined on so-called hybrid time-domains. A setE ⊂
R≥0 × Z≥0 is called a compact hybrid time domain if
E = ∪

j∈{0,...,J}
([tj , tj+1], j) for some finite sequence of

times 0 = t0 ≤ t1 ≤ . . . ≤ tJ . E is a hybrid time domain
if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . , J}) is a
compact hybrid time domain. A hybrid signal is a function
defined on a hybrid time domain. A hybrid arc is a function
φ defined on a hybrid time domain domφ, and such that
φ(·, j) is locally absolutely continuous for eachj. A hybrid
arcφ : domφ→ R

n is a solution to (1) if:
(1) For all j ∈ Z≥0 and almost allt ∈ R≥0 such that

(t, j) ∈ domφ we have:φ(t, j) ∈ C, φ̇(t, j) =
f(φ(t, j)).

(2) For (t, j) ∈ domφ such that(t, j + 1) ∈ domφ, we
haveφ(t, j) ∈ D, φ(t, j + 1) = g(φ(t, j)).

Assuming f and g are continuous andC,D are closed,
system (1) possesses solutions that may be non-unique, see
[7]. We are interested in the following stability definition.

Definition 1. The closed setA ⊂ R
n is semiglobally

asymptotically stable (S-GAS) for system (1) if for any∆ ∈
R>0 there existsβ∆ ∈ KLL such that for any solutionφ
to (1) with |φ(0, 0)|A ≤ ∆: |φ(t, j)|A ≤ β∆(|φ(0, 0)|A, t, j)
for all (t, j) ∈ domφ.

Remark 1. It is shown for continuous-time systems in
Proposition 3.4 in [1] that a closed setA is S-GAS if and
only if it is globally asymptotically stable. We note that the
stability bound in Definition 1 does not imply forward com-
pleteness and this is referred to as pre-asymptotic stability
according to [5].

We will show that two successive jumps (that will cor-
respond to data transmissions in our study) are always
separated by a certain uniform amount of time as long as
the solution is not in the stable setA.

Definition 2. For any forward invariant set1 A ⊂ R
n for

system (1), we say thatsolutions to (1) have a semiglobal
dwell time on R

n\A if, for any ∆ ∈ R>0, there exists
τ(∆) ∈ R>0 such that for any solutionφ to (1) with
|φ(0, 0)|A ≤ ∆, j ∈ Z≥0:

(

φ(t, j) /∈ A ∀t ∈ [tj , tj+1]
)

⇒
(

tj+1 − tj ≥ τ(∆)
)

,
(2)

1A set A ⊂ R
n is forward invariant for system (1), if for any solution

φ to (1) with φ(0, 0) ∈ A we haveφ(t, j) ∈ A for all (t, j) ∈ domφ.

where domφ =
⋃

([tj , tj+1], j).

III. PROBLEM STATEMENT

A. System models

Consider the following plant:

ẋP = fP (xP , u), (3)

wherexP ∈ R
nP is the plant state,u ∈ R

nu the control input
for which a stabilizing dynamic state-feedback controlleris
designed:

ẋC = fC(xC , xP ), u = gC(xC , xP ), (4)

wherexC ∈ R
nC is the controller state. On digital platforms,

transmission between the sensors, the controller and the
actuators only occur at some transmission instantstj , j ∈
Z>0. The problem can then be modeled as follows:

ẋP = fP (xP , û) ∀t ∈ [tj−1, tj ]
ẋC = fC(xC , x̂P ) ∀t ∈ [tj−1, tj ]
u = gC(xC , x̂P )
˙̂xP = f̂P (xP , xC , x̂P , û) ∀t ∈ [tj−1, tj ]
˙̂u = f̂C(xP , xC , x̂P , û) ∀t ∈ [tj−1, tj ]

x̂P (t
+
j ) = xP (tj)

û(t+j ) = u(tj)







































(5)

wherex̂P and û denote the variables respectively generated
from the most recently transmitted plant state and control
input. They are usually kept constant between two transmis-
sion instants i.e.̂xP (t) = xP (tj−1) and û(t) = u(tj−1)

for t ∈ [tj−1, tj ] that corresponds tôfP = 0 and f̂C =
0. However, other implementations are possible. At each
transmission instant, the controller receivesxP (tj), updates
x̂P (t

+
j ) = xP (tj), sends the control inputu(tj) and the

actuators updatêu(t+j ) = u(tj). We suppose that this process
occurs in a synchronized manner and leave the study of the
effects of the eventual induced delays for future work.

Traditionally, the sequence oftj , j ∈ Z>0, is periodic,
i.e. tj − tj−1 = T whereT ∈ R>0. The stability of system
(5) is then guaranteed by selectingT sufficiently small, see
[3], [9], [11] to mention a few. In this study, we abandon
this paradigm and implicitly define the transmission instants
by a rule based on the states of system (5). Rewriting the
problem using the hybrid formalism in [7], similar to Section
II.C in [6], we obtain:

ẋ = f(x, e)
ė = g(x, e)

}

(x, e) ∈ C,
x+ = x
e+ = 0

}

(x, e) ∈ D, (6)

wherex = (xP , xC) ∈ R
nx , e = (exP

, eu) ∈ R
ne denotes

the sampling-induced error withexP
= x̂P −xP , eu = û−u.

The setsC andD are closed and respectively denote the
flow and the jump sets, they are defined according to the
triggering condition. Typically, the system flows onC and
experiences a jump onD where the triggering condition is
satisfied. When(x, e) ∈ C∪D, the system can either jump or



flow, the latter only if flowing keeps(x, e) in C. Functionsf
andg are defined as (where we can replacex̂P by xP +exP

):

f(x, e) =

(

fP (xP , gC(xC , x̂P ) + eu)
fC(xC , x̂P )

)

g(x, e) =



















f̂P (xP , xC , x̂P , gC(xC , x̂P ) + eu)
−fP (xP , gC(xC , x̂P ) + eu)

f̂C(xP , xC , x̂P , gC(xC , x̂P ) + eu)

− ∂gC
∂xC

(xC , x̂P )fC(xC , x̂P )

− ∂gC
∂x̂P

(xC , x̂P )

×f̂P (xP , xC , x̂P , gC(xC , x̂P ) + eu)



















(7)
and are assumed to be continuous.

Remark 2. Our assumptions allow for triggering rules
that depend both onx and e. However, the specific choice
of triggering rule needs to be done according to the im-
plementation scenario. In the case of dynamic controllers,
a triggering rule depending onxC requires continuous
communication between the sensors and the controller. This
is difficult to achieve in practice since sensors do not have,in
general, access to the state of the controller. We have chosen
to present the problem in a general setting because it allows
to recover as particular cases the stabilization using a static
controller (as in Sections III-B, V-A for example) and the
cases where only the plant states or the inputs are sampled.

The main problem addressed in this paper is to define
the triggering condition, i.e. the flow and jump setsC and
D in (6), in order to minimize the resource usage while
ensuring asymptotic stability properties. We now introduce
the main idea of the framework presented hereafter in Section
IV by interpreting the work in [17] using a hybrid Lyapunov
function.

B. Main idea

We first revisit the work in [17] where a static controller
u = gC(xP ) is assumed to render the closed-loop system
(3) input-to-state stable (ISS) with respect to the sampling-
induced errors (that can be considered as measurement errors
at this stage since, when the controller is static, the sampling-
induced error can be seen to be only due to the sampling of
the measurements, i.e.e = exP

). This is equivalent to the
following assumption (see Theorem 1 in [16]) wherex = xP
(as the controller is static).

Assumption 1. There exists a smooth Lyapunov function
V : Rnx → R and αV , αV , α, γ ∈ K∞ such that for all
x ∈ R

nx :

αV (|x|) ≤ V (x) ≤ αV (|x|), (8)

and for all (x, e) ∈ R
nx+ne :

∂V
∂x
f(x, e) ≤ −α(V (x)) + γ(|e|). (9)

Since zero-order-hold devices are used in [17], we have
g(x, e) = −f(x, e) in (7) and the model (6) is here:

ẋ = f(x, e)
ė = −f(x, e)

}

(x, e) ∈ C,
x+ = x
e+ = 0

}

(x, e) ∈ D.

(10)

From (9), we deduce thatσα(V (x)) ≥ γ(|e|) with σ ∈
(0, 1) implies:

∂V
∂x
f(x, e) ≤ −(1− σ)α(V (x)). (11)

In that way, the triggering rule in [17] can be written as
σα(V (x)) ≤ γ(|e|), that we rewrite as:

V (x) ≤ α−1(σ−1γ(|e|)) =: γ̃(|e|). (12)

At each transmission instant,e is reset to0, so we have
γ̃(|e+|) = 0 ≤ V (x) and V decreases monotonically
according to (11). The next transmission occurs as soon as
(12) is satisfied. The flow and the jump sets in (10) can be
defined as follows:

C =
{

(x, e) : γ̃(|e|) ≤ V (x)
}

D =
{

(x, e) : γ̃(|e|) ≥ V (x)
}

.
(13)

To guarantee the existence of a minimum interval of time
between two transmissions when(x, e) 6= 0, the following
conditions are used in [17].

Assumption 2. For any compact setS ⊂ R
nx+ne , there

existL1, L2 ∈ R≥0 such that for all(x, e) ∈ S:

|f(x, e)| ≤ L1(|x|+ |e|) (14)

α−1
V ◦ γ̃(|e|) ≤ L2|e|. (15)

The stability analysis of system (10) can be done using
the following Lyapunov function (assuming̃γ is locally
Lipschitz):R(x, e) = max{V (x), γ̃(|e|)}. Indeed,

• Property (a): R is positive definite and radially un-
bounded in view of (8) and sincẽγ ∈ K∞.

• Property (b):R decreases onC according to (11).
• Property (c):R does not increase at jumps sincex+ = x

ande+ = 0.
• Property (d): it was shown in [17] using Assumption

2 that there does exist a uniform minimal time interval
between two successive transmission instants (as long
as (x, e) 6= 0) for solutions that start in a compact set
that contains the origin. In other words, solutions to (10)
have a semiglobal dwell time onRnx+ne\{0} according
to Definition 2.

We show in Section IV that these four properties guarantee
asymptotic stability properties for system (10) and that they
can be used to build up other event-triggering conditions.
Note that similar ingredients are used to prove the stability
of other types of hybrid systems in [11], [12] for example.

IV. A L YAPUNOV-BASED FRAMEWORK

Before stating the main result of this section, it is impor-
tant to note that auxiliary variables may be introduced to
define the triggering condition. Indeed, it is common in the
hybrid literature to introduce additional variables like clocks
to ensure or analyse the stability e.g. [5], [11]. We will see
in Section V-A that the strategy in [18] can be interpreted
using our framework by making use of an additional variable
which is employed to build up a decreasing threshold on
the known Lyapunov function for the system in the absence



of sampling. We also show in Section V-B that the event-
triggered policy in Section III-B can be redesigned to exhibit
larger inter-event intervals thanks to the use of an auxiliary
variable. Therefore, we denote by a single vector variable
η ∈ R

nη the additional variables which may be needed for
describing the system that are neitherx nor e.

In that way, to define a triggering condition ensuring de-
sired stability properties for the overall system is tantamount
to defining appropriate flow and jump setsC andD for the
following hybrid system:

ẋ = f(x, e)
ė = g(x, e)
η̇ = h(x, e, η)

}

q ∈ C,
x+ = x
e+ = 0
η+ = l(x, e, η)

}

q ∈ D,

(16)
whereq = (x, e, η) ∈ R

nq , h, l are continuous andC,D are
closed subsets ofRnq . We useq̇ = F (q) andq+ = G(q) to
denote (16).

The stability of system (16) can be guaranteed by means
of the following theorem. It can be seen as a variation of the
results in [5].

Theorem 1. Consider system (16) and supposeG(D) ⊂
(C ∪ D) and that there exist a locally Lipschitz function
R : Rnq → R and a continuous functionυ : Rnη → R

nυ

with nυ ≤ nη such that the following conditions hold.
(i) There existαR, αR ∈ K∞ such that for anyq ∈ C∪D,

αR(|(x, e, υ(η))|) ≤ R(q) ≤ αR(|(x, e, υ(η))|).
(ii) There existsαR ∈ K∞ such that for all q ∈ C:

R◦(q;F (q)) ≤ −αR(R(q)).
(iii) For all q ∈ D, R(G(q)) ≤ R(q).
(iv) Solutions to (16) have a semiglobal dwell time on

R
nq\A, whereA =

{

q : (x, e, υ(η)) = 0
}

.
Then the setA is S-GAS.

Theorem 1 provides a Lyapunov-based prescriptive frame-
work for developing event-triggered control strategies for
nonlinear systems as we show in Section V. Other triggering
rules may be derived by following the guidelines below for
instance. We illustrate each item with the example of Section
III-B for the sake of clarity.

1) Select a locally Lipschitz functionR : Rnq → R that
satisfies item (i) of Theorem 1. Usually,R is built using
a known Lyapunov functionV for the continuous-
time system (3)-(4) in the absence of sampling and
a positive definite radially unbounded functionW (e)
that has to be designed. Typically,W is chosen by
investigating the robustness property of the closed-loop
systemẋ = f(x, e) with respect toe that is assumed to
hold. The setsC andD have not been defined so far
but item (i) of Theorem 1 needs to hold onC ∪ D.
This apparent contradiction is overcome as follows.
When there is no variableη, as it is the case so far, we
typically haveC ∪D = R

nx+ne and we do not need
to knowC andD to verify item (i) of Theorem 1.
Section III-B: we tookW (e) = γ̃(|e|) where γ̃(|e|)
is defined in (12) that is deduced from the ISS prop-
erty stated in Assumption 1. We consideredR(q) =
max{V (x), γ̃(|e|)} with q = (x, e), that does satisfy

item (i) of Theorem 1 onRnx+ne . This corresponds to
Property (a).

2) ChooseαR ∈ K∞ for item (ii) of Theorem 1. Obvi-
ously, if R(x, 0) = V (x), the decreasing rateαR will
have to be less than the decreasing rate ofV in order
to allow some flow before entering the setD.
Section III-B: we have takenαR(s) = (1− σ)α(s) ≤
α(s) for s ∈ R≥0, sinceσ ∈ (0, 1).

3) Define the flow and the jump sets to be closed
and such that items (i)-(iii) of Theorem 1 hold and
G(D) ⊂ (C ∪ D). For instance, when items (i)
and (iii) of Theorem 1 are satisfied for allq ∈
R

nq , we can directly take the following sets:C =
{

q : R◦(q;F (q)) ≤ −αR(R(q))
}

and D =
{

q :
R◦(q;F (q)) ≥ −αR(R(q))

}

which ensure item (ii) of
Theorem 1 andG(D) ⊂ (C ∪D) = R

nq .
Section III-B: the flow and the jump sets in (13)
guarantee that items (ii)-(iii) of Theorem 1 holds in
view of (11) and sincex+ = x and e+ = 0, that is
equivalent to Properties (b)-(c). We note thatC ∪D =
R

nx+ne .
4) Study the existence of dwell times. Among other

techniques, Lemma 1 below can be used for this
purpose. The existence of dwell times notably depends
on the triggering condition and the vector fieldF that
is usually assumed to satisfy some Lipschitz properties.
If the existence of a dwell time is guaranteed, the
desired result is obtained. Otherwise, variableη may be
introduced, then go back to 1) and modify the function2

R. The way the variableη may be chosen will become
clearer in the light of Section V. The non-existence
of dwell time may also be due to the fact that the
decreasing rate ofR along flows,αR in 2), is too
strong, thus choose a different functionα̃R ∈ K∞ such
that α̃R(s) < αR(s) for any s ∈ R>0.
Section III-B: the existence of semiglobal dwell-time
solutions is guaranteed in [17] using Assumption 2,
as stated in Property (d).

The following lemma provides a tool for verifying the
existence of dwell times which is used in the proofs of the
theorems of Section V (that are not provided in this paper).

Lemma 1. Consider system (16) and suppose the follow-
ing holds.

(i) G(D) ⊂ (C ∪D) and items (i)-(iii) of Theorem 1 are
satisfied.

(ii) For any q ∈ D, G(0, e, η) ∈ A ∪ M where A =
{

q : (x, e, υ(η)) = 0
}

andM ⊂ (C\D) is a forward
invariant set.

(iii) There exists a locally Lipschitz functionψ : Θ(µ) →
R≥0, whereΘ(µ) = {q ∈ C ∪D : R(q) ≤ µ and x 6=
0} for µ > 0, such that:

(iii-a) There existsa ∈ R≥0 such that for anyq ∈ D
with G(q) ∈ Θ(µ): ψ(G(q)) ≤ a.

2It may be the case that the newR no longer satisfies item (i) of Theorem
1 onRnq , so identifyS ⊆ R

nη such that item (i) of Theorem 1 is satisfied
on R

nx+ne × S, afterwards make sure(C ∪D) ⊂ R
nx+ne × S.



(iiii-b) There existsb > a such that for any solutionφ to
(16), tj ≤ t with (t, j) ∈ domφ:

(

ψ(φ(t, j)) <
b
)

⇒
(

φ(t, j) ∈ C\D
)

.
(iii-c) There exists a continuous non-decreasing func-

tion λ : R>0 → R≥0 such that for allq ∈ Θ(µ):
ψ◦(q;F (q)) ≤ λ(ψ(q)).

Then solutions to (16) have a semiglobal dwell time on
R

nq\A.

Remark 3. The triggering condition that satisfies the con-
ditions of Theorem 1 respects the practical requirement that
there does exist a uniform minimum time interval between
two transmissions according to item (iv) of Theorem 1.
The only region of the state space where this may not be
guaranteed is when(x, e, υ(η)) = 0, but this will only occur
if the system is initialized in the stable set.

V. A PPLICATIONS

We already know that the framework allows us to capture
the work in [17], we show in this section that it is also the
case for the strategy in [18]. Afterwards, new triggering rules
are proposed.

A. Event-triggered strategy in [18]

As in Section III-B, the controller is static (x = xP ) and
implemented using zero-order-hold devices. It is considered
that Assumption 1 is satisfied withα linear that isα(s) = ᾱs
with ᾱ ∈ R>0. The triggering rule is defined to guarantee
thatV (x(tj)) always decreases at a certain rate compared to
V (x(tj−1)). In that way, the control loop is closed in [18]
as soon as the condition below is violated, fort ≥ tj−1:

V (x(t))≤−σ̄ᾱV (x(tj−1))(t− tj−1) + V (x(tj−1))
= (−σ̄ᾱ(t− tj−1) + 1)V (x(tj−1)),

(17)

where σ̄ ∈ (0, 1). Since zero-order-hold devices are con-
sidered, we havêx(t) = x(tj−1) and e(t) = exP

(t) =
x(tj−1) − x(t). Consequently, (17) is equivalent to, for
t ≥ tj−1:

V (x(t))≤ (−σ̄ᾱ(t− tj−1) + 1)V (x̂(t) + x(t)− x(t))
= (−σ̄ᾱ(t− tj−1) + 1)V (x(t) + e(t)).

(18)
To model (17) using the hybrid formulation (16), we intro-
duce the variableη ∈ R as the solution oḟη = −σ̄ᾱ on flows
andη+ = 1 at jumps. We see thatη(t) = −σ̄ᾱ(t− tj−1)+1
for t ∈ [tj−1, tj ] (j ∈ Z>0). In that way, we can reformulate
(18) using the following algebraic inequality:

V (x) ≤ ηV (x+ e). (19)

The problem can then be modeled as follows:

ẋ = f(x, e)
ė = −f(x, e)
η̇ = −σ̄ᾱ







q ∈ C,
x+ = x
e+ = 0
η+ = 1







q ∈ D, (20)

whereq = (x, e, η),

C =
{

q : V (x) ≤ ηV (x+ e) andη ∈ [ε, 1]
}

D = D1 ∪D2,
(21)

with D1 =
{

q : V (x) ≥ ηV (x + e) and ∂V
∂x
f(x, e) ≥

−σ̄ᾱV (x)
}

andD2 =
{

q : η = ε
}

where ε ∈ (0, 1) is
arbitrary small. The condition∂V

∂x
f(x, e) ≥ −σ̄ᾱV (x) has

been added in the definition ofD1 to avoid Zeno behaviour
since after a jumpV (x) = ηV (x + e) holds. Indeed, it is
not necessary to jump again sinceV (x) will decrease faster
than ηV (x + e) for some time according to (9). The lower
boundε on η is used to guarantee that the threshold onV (x)
defined byηV (x+e) (see (19)) never reaches the origin when
V (x + e) 6= 0. This condition adds no conservatism as by
setting ε sufficiently small, the triggering conditionη = ε
will not be satisfied in practice beforeq reachesD1.

We recover Theorem 3.2 in [18] and relax some of the
required conditions. Its proof is based on Theorem 1 with
R(q) = max{V (x), ηV (x+ e)} andυ(η) = 0.

Theorem 2. Consider system (20) and suppose Assump-
tion 1 holds withα(s) = ᾱs (ᾱ ∈ R>0) and Assumption 2
is satisfied. Then the setA = {q : (x, e) = 0} is S-GAS and
solutions to (20) have a semiglobal dwell time onR

nq\A.

We note that the conditions of Theorem 2 are more general
than those of Theorem 3.2 in [18] asγ in (9) is allowed to be
a nonlinear function. In addition, condition (15) in this paper
extends (5) in [18] and allows us to consider more general
types of Lyapunov functions, such as quadratic, which is not
the case in [18].

B. New triggering rules

In Section V-A, the triggering condition is obtained by
defining a decreasing threshold onV (see (17)). In this
subsection, we propose an alternative that consists in defining
a similar threshold for an appropriate functionW for the
e−system. We suppose that the dynamic controller (4) has
been designed so that Assumption 1 applies. Thus, by using
the ISS property of thex-system, we will be able to show
that whenW remains below a given decreasing threshold,
system (16) satisfies asymptotic stability properties.

We define our threshold variableη ∈ R as the solution of
the following differential equation on flows:

η̇ = −δ(η), (22)

whereδ is any class-K∞ function, and at jumps,

η+ = γ̃(|e|) =:W (e), (23)

where γ̃(s) = α−1(σ−1γ(s)) for s ∈ R≥0, with σ ∈
(0, 1) as in (12). We note thatW is positive definite and
radially unbounded. An obvious choice of triggering rule is:
W (e) ≥ η. Nevertheless, in the case whereW (e) ≤ V (x),
V decreases according to (11) and therefore we do not need
to close the loop. This suggests considering the following
triggering condition instead:

W (e) ≥ max{η, V (x)}. (24)

The problem can be modeled as follows:

ẋ = f(x, e)
ė = g(x, e)
η̇ = −δ(η)







q ∈ C,
x+ = x
e+ = 0
η+ = W (e)







q ∈ D, (25)



whereq = (x, e, η),

C =
{

q : max{V (x), η} ≥W (e) andη ≥ 0
}

D =
{

q : max{V (x), η} ≤W (e) andη ≥ 0
}

.
(26)

The following theorem ensures the stability of system (25).
Its proof is an application of Theorem 1 withR(q) =
max{V (x), γ̃(W (e)), η} andυ(η) = η.

Theorem 3. Consider system (25), suppose the following
conditions hold.

(i) Assumptions 1-2 apply.
(ii) Function γ̃ is locally Lipschitz.
(iii) For any compact setS ⊂ R

nx+ne , there existL3 ≥ 0
such that for all(x, e) ∈ S: |g(x, e)| ≤ L3(|x|+ |e|).

Thenq = (x, e, η) = 0 is S-GAS and solutions to (25) have
a semiglobal dwell time onRnq\{0}.

Contrary to Section V-A, we note thatα in (9) is allowed
to be nonlinear. In addition, we do not focus on zero-order-
hold devices that is why condition (iii) of Theorem 3 is
introduced in order to guarantee the existence of dwell times.
We show on an example in Section VI that the inter-event
intervals can be enlarged to some extent compared to Section
V-A by playing with the initial value ofη.

VI. I LLUSTRATIVE EXAMPLE

To illustrate the benefits of the strategy presented in
Section V-B, we revisit the example considered in [11]. The
simplified version of the considered nonlinear system is:

ẋ = dx2 − x3 + u, (27)

where d is an unknown possibly time-varying parameter
satisfying |d| < 1. The stabilizing control law consid-
ered in [11] wasu = −2x. We selectV (x) = 1

2x
2 as

our Lyapunov function that satisfies Assumption 1 with3

αV (s) = αV (s) = 1
2s

2, α(s) = 0.84s and γ(s) = 2.66s2

for s ∈ R≥0. We consider 200 random initial conditions
distributed in the interval[−1, 1]. The parameterd takes for
each initial condition a random value in the interval[0, 1].
We compare the average number of executions required
under the technique in [18] as extended in Section V-A,
the event-triggered strategy proposed in Section V-B and the
periodic strategy in [11] in Table I, for different values for
the design parameterη(0, 0). We selectσ̄ = 10−3 in (20)
and δ(s) = 0.5s with s ∈ R≥0 in (22). It can be observed
that the average number of executions is considerably lower
under the event-triggered strategies. Moreover we note that
the policy in Section V-B generates less executions than [18]
and that it can be adjusted by means of the design parameter
η(0, 0). It is however not easy to compare the performance
guarantees under the two different policies, since Theorem2
and Theorem 3 ensure different stability properties.

We can explore deeper the role played by the initial
condition of the auxiliary variableη(0, 0) and its effect on
performance and number of executions. Simulations have
shown that smaller values ofη(0, 0) imply a faster decay, at

3The Yalmip software ([10]) was used to computeα andγ.

[11] [18]
Section V-B

η(0, 0) = 0.1 η(0, 0) = 1 η(0, 0) = 2

54.34 18.47 16.88 15.27 13.31

TABLE I

AVERAGE NUMBER OF EXECUTIONS OVER200 INITIAL CONDITIONS

FOR A SIMULATION TIME OF 20S FOR THE EXAMPLE IN[11].

the expense of more executions. Hence the design parameter
η(0, 0) represents the tradeoff between performance and
resource usage. Similar conclusions can be drawn for the
decay functionδ in (22).

The technique in Section V-B exhibits great potential for
real-time scheduling, since both the initial value for the
auxiliary variable and the differential equation in (22) can be
designed according to the available resources. For instance,
functionsδ with slow increasing slopes could be chosen in
case of overload in the network or in the processor executing
the controller.
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