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A unifying Lyapunov-based framework for the event-triggered control
of nonlinear systems

Romain Postoyan, Adolfo Anta, Dragan NeSi¢, Paulo Tabuad

Abstract—We present a prescriptive framework for the
event-triggered control of nonlinear systems. Rather tharclos-
ing the loop periodically, as traditionally done in digital control,
in event-triggered implementations the loop is closed aceding
to a state-dependent criterion. Event-triggered control § espe-
cially well suited for embedded systems and networked condt

time system always decreases at a given rate when control
tasks are executed at discrete time instants. It is shown tha
there does exist a constant minimal time interval between
executions that reinforces the idea that event-triggeosd ¢
trol is expected to generate larger inter-event intervads t

systems since it reduces the amount of resources needed forperiodic rules. This translates into a lower usage of the

control such as communication bandwidth. By modeling the
event-triggered implementations as hybrid systems, we pxade
Lyapunov-based conditions to guarantee the stability of tke
resulting closed-loop system and explain how they can be
utilized to synthesize event-triggering rules. We illustate the
generality of the approach by showing how it encompasses
several existing event-triggering policies and by develapg
new strategies which further reduce the resources needed rfo
control.

|. INTRODUCTION

communication bandwidth and the computational resources.
Noting that the monotonic decrease Wfis not necessary
to guarantee asymptotic stability for the obtained hybrid
systems, a triggering rule is developed in [18] to ensure tha
V appropriately decreases at each transmission instarg. Thi
method was shown to potentially exhibit larger inter-event
intervals compared to [17].

In this paper, we present a prescriptive framework for the
event-triggered control of nonlinear systems. We model the
problem as a hybrid system using the formalism of [7], as in

The implementation of controllers on shared digital pIattG]_ We start by identifying the key features of the strategy
forms offers a number of advantages in terms of cOSfy [17] in terms of a hybrid Lyapunov function and use them

ease of maintenance and flexibility compared to classicg) introduce the main idea of our approach. The proposed
dedicated control structures. However, it also poses aeveframework relies on Lyapunov-based conditions that can
implementation problems, in particular we need to knowe ysed to synthesize event-triggering rules to guarantee
when the control Ioop _has to be close(_:i to ensure sta_b|I|_ty antlymptotic stability properties. Our approach encompasse
performance. In traditional setups, this is done perldt;_ll,ca the strategies in [17], [18] for which we propose new stéapili

independently of the current state of the plant. Althoug th gpalyses and relax some of the required conditions. We

approach is appealing from the analysis and implementgiso develop a family of new triggering rules inspired by
tion point of view, it often leads to unnecessary resourc 8] which allows us to trade performance for longer inter-

usage (e.g. communication bandwidth, computation time

ent times. In the companion paper [15], we show how this

An alternative implementation, known as event-triggeregamework can be applied to distributed networked control
control, consists in closing the loop according to a rulg th%ystems subject to scheduling.

depends on the current state of the plant. A number of works e proofs are omitted for space reasons and can be found

addressed this topic, e.g. [2], [4], [6], [8], [13], [17],9]L In

in [14].

[17], a simple strategy is proposed for nonlinear systems.

The idea is the following. Assuming the continuous-time

closed-loop system is input-to-state stable (ISS) witipees

II. NOTATION AND DEFINITIONS
Let R = (—o00,00), R>¢ = [0,00), Ryg = (0,00),

to measurement errors, a triggering condition is derived t9_  — (0,1,2,...}, Z-y = {1,2,...}. A function 7 :

guarantee that the Lyapunov functidhfor the continuous-
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R>¢ — Ryx( is of classK if it is continuous, zero at zero
and strictly increasing, and it is of clags,, if in addition
it is unbounded. A continuous function : Rio — R>o
is of classKL if for eacht € Rsq, (-, t) is of class

R. Postoyan is with the Centre de Recherche en Automatiqug gnd. for eachs Rso ’Y(Sa') is decreasing to zero
France , | ' ’ ’

Additionally, a functions : R%; — R is of classKLL,
if 3(,-,t) € KL and B(-,t,-) € KL for anyt € Rxq. For
(z,y) € R™™ the notation(z,y) stands for[zT, yT]T.
The distance of a vector to a set4A C R™ is denoted by
2|4 =inf{lz —y| : y € A}.

We will consider locally Lipschitz Lyapunov functions
(that are not necessarily differentiable everywhereygtoze
we will use the Clarke derivative which is defined as follows



for V: R" — Rsg: VO(z;0) = lim sup LV - \where domp = U([t;, 1], 4)-
- h~>0+y~>m
that corresponds to the usual derivative whéris contin-

uously differentiable. We define the generalized gradiént o
f:R" > R atz as:df(z) = {¢ € R" : f°(z;v) >
(¢,v) Yo € R"}, that matches the classical notion ofA. System models
gradient whenf is differentiable.

We will write hybrid systems using the models proposed
in [7], that are of the form: ip = fp(zp,u), A3)

. L
t=f@) ved v =g(x) weD, @ wherezp € R™ is the plant statey € R™« the control input

wherez € R" is the state and’, D C R" are respectively for which a stabilizing dynamic state-feedback controiter

the flow and the jump sets. Hence, any hybrid syste@esigned:

is defined by a tuple(C, D, f,g). The solutions of (1)

are defined on so-called hybrid time-domains. A &2tc ic = folzo,xp), u=gelzo,xp), (4)

R>¢ x Z>o is called a compact hybrid time domain if _ o

E — U ([t;.t;41),4) for some finite sequence of Where:zzc _eR”C is the controller state. On digital platforms,

) J€{0,....J} . o _ transmission between the sensors, the controller and the

times0 = 1o < f; < ... < ;. E'ls a hybrid time domain 51 at0rs only occur at some transmission instantg €

if for all (7,J) € E, EN([0,T] x {0,1,....J}) is @ 7 The problem can then be modeled as follows:
compact hybrid time domain. A hybrid signal is a function

IIl. PROBLEM STATEMENT

Consider the following plant:

defined on a hybrid time domain. A hybrid arc is a function ip = fp(zp,a) Vt € [tj—1,t;]
¢ defined on a hybrid time domain dafn and such that e = folze,@p) Vt € [tj—1,t;]
o(-,7) is locally absolutely continuous for eagh A hybrid u = go(ze,ip)
arc ¢ : dom¢ — R™ is a solution to (1) if: #p = fplzp,xc,ip,0) VEE [t t] 3 (5)
(1) For allj € Z>o and almost allt € R> such that &4 = fc(xp,xc,ip,ﬁ) Vit € [tj_1,t]]
(t,j) € dom¢ we have:¢(t,j) € C, ¢(t,j) = ip(th) = ap(ty)
f(8(, 7). a(ty) u(t;)
(2) For (t,7) € dom¢ such that(¢,j + 1) € dome, we
haveo(t,j) € D, ¢(t,5 + 1) = g(o(t,5)). wherezp andu denote the variables respectively generated

Assuming f and ¢ are continuous and’, D are closed, from the most recently transmitted plant state and control

system (1) possesses solutions that may be non-unique, §¥eut. They are usually kept constant between two transmis-

[7]. We are interested in the following stability definition sion instants i.eip(t) = zp(t;—1) and a(t) = u(tj-1)
Definition 1. The closed setd c R" is semiglobally ~for ¢ € [t;-1,;] that corresponds tfp = 0 and fo =

asymptotically stable (S-GAS) for system (1) if for anyA ¢ 0. However, other implementations are possible. At each

R, there exists3a € KLL such that for any solutioy ~transmission instant, the controller receives(t;), updates

to (1) with |$(0,0)|.4 < A: [6(t, )4 < Ba(|6(0,0)|4,t,5) fcp(t;r) = xp(t;), sends the control input(t;) and the

for all (¢,7) € dome. actuators update(tj) = u(t;). We suppose that this process
Remark 1. It is shown for continuous-time systems inCccUrs in a synchronized manner and leave the study of the

Proposition 3.4 in [1] that a closed setl is S-GAS if and effects of the eventual induced delays for future work.

only if it is globally asymptotically stable. We note thaeth  1raditionally, the sequence df, j € Zo, is periodic,

stability bound in Definition 1 does not imply forward com--€-tj — ;-1 =T whereT € R.,. The stability of system

pleteness and this is referred to as pre-asymptotic stgbili (5) iS then guaranteed by selectifigsufficiently small, see

according to [5]. [3], [9], [11] to mention a few. In this study, we abandon
We will show that two successive jumps (that will cor-this paradigm and implicitly define the transmission ip}sﬁan

respond to data transmissions in our study) are alwa)pé' a rule b.aSEd on thg states .Of sy stem (5) Rewntmg the

separated by a certain uniform amount of time as long ob_Iem using the hyb”d formalism in [7], similar to Sectio

the solution is not in the stable st -C in [6], we obtain:
Definition 2. For any forward invariant sét.A ¢ R" for & = f(z,e)

system (1), we say thablutions to (1) have a semiglobal e = g(x,e) (@.€) €C, et =0 (.e) €D, (6)

dwell time on R™\ A if, for any A € R, there exists

7(A) € R.q such that for any solutions to (1) with Wherez = (zp,z¢) € R", e = (esp,eu) € R denotes

rt =

16(0,0)|4 < A, j € Zso: the sampling-induced error wit),, = i’p—l'j—?, ey = U—u.
i The setsC and D are closed and respectively denote the
(¢(t,7) ¢ A V€ [ty,t541]) (2) flow and the jump sets, they are defined according to the

= (i =t 2 7(4)), triggering condition. Typically, the system flows @/ and

1A set A C R™ is forward invariant for system (1), if for any solution eXp_e'jiences a jump o where the triggering .Cond_ition is
é to (1) with $(0,0) € A we haves(t, j) € A for all (t,j) € domé. satisfied. Wheriz, e) € CUD, the system can either jump or



flow, the latter only if flowing keepsz, ¢) in C. Functionsf
andg are defined as (where we can replageby zp+e,,.):
fe(zp,gc(rc,ip) + eu)

fla,e) = (fp(xc,:%p) )

fe(zp,zc,ip,go(rc, ip) + €u)
—frlzp.go(zo, p) + eu)
fe(xp,xc,p,gc(vc, Tp) + €u)
—2;22 (xc,2p)fe(rc,2p)
99¢ (¢, i p)
xfp(xp,xc,Zp,g9c(xc,Tp) + €u)

T Oip

)
and are assumed to be continuous.
Remark 2. Our assumptions allow for triggering rules
that depend both on: and e. However, the specific choice
of triggering rule needs to be done according to the im

From (9), we deduce thata(V (x)) > ~(le|) with o €
(0,1) implies:

L f(xe) < —(1—0)a(V(z)). (11)

In that way, the triggering rule in [17] can be written as
oa(V(x)) < ~(le]), that we rewrite as:

V(z) < a o7 y(le])) = A(le])-

At each transmission instant, is reset to0, so we have
A(et]) = 0 < V(x) and V decreases monotonically
according to (11). The next transmission occurs as soon as
(12) is satisfied. The flow and the jump sets in (10) can be
defined as follows:

(12)

C= {(w,e)
D= {(w,e)

(lel) < V()

3(lel) > V(2) (13)

plementation scenario. In the case of dynamic controllersl,-0 guarantee the existence of a minimum interval of time

a triggering rule depending onro requires continuous b
communication between the sensors and the controller. Thig

is difficult to achieve in practice since sensors do not have,

etween two transmissions whén, ¢) # 0, the following
nditions are used in [17].

i ane
general, access to the state of the controller. We have chose ASSumption 2. For any compact seb’ C R_" ", there
to present the problem in a general setting because it allowiSt L1, L2 € R>o such that for all(z, e) € S

to recover as particular cases the stabilization using dista

controller (as in Sections 1lI-B, V-A for example) and the
cases where only the plant states or the inputs are sampled.

[f(z,e)l < La(jz] + [e])

< (14)
ay'o(le]) < Lole|

(15)

The main problem addressed in this paper is to define The stability analysis of system (10) can be done using

the triggering condition, i.e. the flow and jump sétsand

the following Lyapunov function (assuming is locally

D in (6), in order to minimize the resource usage whildLipschitz): R(x,e) = max{V (x),5(|e])}. Indeed,

ensuring asymptotic stability properties. We now intragluc

the main idea of the framework presented hereafter in Sectio

IV by interpreting the work in [17] using a hybrid Lyapunov
function.

B. Main idea
We first revisit the work in [17] where a static controller

u = go(xp) is assumed to render the closed-loop system

(3) input-to-state stable (ISS) with respect to the sangplin

induced errors (that can be considered as measuremers error

at this stage since, when the controller is static, the sagwyl
induced error can be seen to be only due to the sampling
the measurements, i.e.= e,,). This is equivalent to the
following assumption (see Theorem 1 in [16]) where- zp
(as the controller is static).

Assumption 1. There exists a smooth Lyapunov functio
V:R™ — R and oy ,av,a,7 € K« such that for all
r € R":

ay(le]) < V(z) < av(lz)), (8)
and for all (z,e) € R™=t"e:
aef(@.e) < —a(V(@)) + (). 9)

Property (a): R is positive definite and radially un-
bounded in view of (8) and sincg € K.

« Property (b): R decreases on' according to (11).
Property (c):R does not increase at jumps since = z
ande™ = 0.

o Property (d):it was shown in [17] using Assumption
2 that there does exist a uniform minimal time interval
between two successive transmission instants (as long
as (x,e) # 0) for solutions that start in a compact set
that contains the origin. In other words, solutions to (10)
have a semiglobal dwell time d&"=*"<\{0} according

to Definition 2.

of

We show in Section IV that these four properties guarantee
asymptotic stability properties for system (10) and thatyth
can be used to build up other event-triggering conditions.

"Note that similar ingredients are used to prove the stgbilit

of other types of hybrid systems in [11], [12] for example.

IV. A LYAPUNOV-BASED FRAMEWORK

Before stating the main result of this section, it is impor-
tant to note that auxiliary variables may be introduced to
define the triggering condition. Indeed, it is common in the
hybrid literature to introduce additional variables likeaks

Since zero-order-hold devices are used in [17], we hay§ ensyre or analyse the stability e.g. [5], [L1]. We will see

g(x,e) = —f(x,e) in (7) and the model (6) is here:

f(z,e)
~f(z.e) } (z,e) € C,

xt
et

_ g} (xz,e) € D.
(10)

z
é

in Section V-A that the strategy in [18] can be interpreted
using our framework by making use of an additional variable
which is employed to build up a decreasing threshold on
the known Lyapunov function for the system in the absence



of sampling. We also show in Section V-B that the event-
triggered policy in Section IlI-B can be redesigned to exhib
larger inter-event intervals thanks to the use of an auyilia 2)
variable. Therefore, we denote by a single vector variable
n € R™ the additional variables which may be needed for
describing the system that are neithenor e.

In that way, to define a triggering condition ensuring de-
sired stability properties for the overall system is tartamt
to defining appropriate flow and jump sefsand D for the
following hybrid system:

f(ze) - o

g(x,e) }qEC, et =0 }qu,
h(Ivevn) 77+ = Z(Ivevn)

(16)
whereq = (x,¢e,n) € R"e, h,[ are continuous and’, D are
closed subsets d&"s. We useq = F(q) andgt = G(q) to
denote (16).

The stability of system (16) can be guaranteed by means
of the following theorem. It can be seen as a variation of the
results in [5].

Theorem 1. Consider system (16) and suppaSéD) C
(C U D) and that there exist a locally Lipschitz function )
R : R"™ — R and a continuous functiom : R™ — R™
with n,, < n, such that the following conditions hold.

(i) There existvy, @R € Ko such that for any; € CUD,

QR(K,T,G,’U(?]))D < R(q) < @R(K%@av(ﬁ)m-
(i) There existsar € Ko such that for allg € C:
(iii)

R°(¢; F(q)) < —ar(R(q)).
(iv)

3)

xt

x
e =
77:

For all ¢ € D, R(G(q)) < R(q).

Solutions to (16) have a semiglobal dwell time on
R\ A, whereA = {q : (z,e,v(n)) =0}.

Then the setd is S-GAS.

Theorem 1 provides a Lyapunov-based prescriptive frame-
work for developing event-triggered control strategies fo
nonlinear systems as we show in Section V. Other triggering
rules may be derived by following the guidelines below for
instance. We illustrate each item with the example of Sactio
[1I-B for the sake of clarity.

1) Select a locally Lipschitz functio®® : R™« — R that
satisfies item (i) of Theorem 1. Usuallg,is built using
a known Lyapunov function/ for the continuous-
time system (3)-(4) in the absence of sampling anﬂ‘|
a positive definite radially unbounded functi®¥i(e) :
that has to be designed. Typicallyy is chosen by (i)
investigating the robustness property of the closed-loop. ..
systemi = f(x, e) with respect ta: that is assumed to (i
hold. The sets” and D have not been defined so far
but item (i) of Theorem 1 needs to hold @nu D.
This apparent contradiction is overcome as foIIows.('")
When there is no variablg as it is the case so far, we
typically haveC U D = R"=*"< and we do not need
to know C and D to verify item (i) of Theorem 1.
Section 11I-B: we tookiV(e) = F(le|) where ¥(|e]|)
is defined in (12) that is deduced from the ISS prop- ,
erty stated in Assumption 1. We consideif;) =

item (i) of Theorem 1 oiR™= "<, This corresponds to
Property (a).

Choosear € K, for item (i) of Theorem 1. Obvi-
ously, if R(x,0) = V(z), the decreasing rater will
have to be less than the decreasing rat& ah order

to allow some flow before entering the st

Section IlI-B: we have takear(s) = (1 — o)a(s) <
a(s) for s € R>o, sinces € (0,1).

Define the flow and the jump sets to be closed
and such that items (i)-(iii) of Theorem 1 hold and
G(D) c (C U D). For instance, when items (i)
and (iii) of Theorem 1 are satisfied for afj €
R™, we can directly take the following set§’ =

{¢ : R°(¢:F(q)) < —ar(R(q))} andD = {q :
R°(q; F(q)) = —ar(R(q))} which ensure item (ii) of
Theorem 1 and(D) C (C'U D) =R,

Section 11I-B: the flow and the jump sets in (13)
guarantee that items (ii)-(iii) of Theorem 1 holds in
view of (11) and since™ = z ande™ = 0, that is
equivalent to Properties (b)-(c). We note tiat D =
anJrnC_

Study the existence of dwell times. Among other
techniques, Lemma 1 below can be used for this
purpose. The existence of dwell times notably depends
on the triggering condition and the vector figldthat

is usually assumed to satisfy some Lipschitz properties.
If the existence of a dwell time is guaranteed, the
desired result is obtained. Otherwise, variaphaay be
introduced, then go back to 1) and modify the function
R. The way the variable may be chosen will become
clearer in the light of Section V. The non-existence
of dwell time may also be due to the fact that the
decreasing rate of? along flows,ar in 2), is too
strong, thus choose a different functiap € K., such
thatar(s) < agr(s) for any s € Ry.

Section 1l1I-B: the existence of semiglobal dwell-time
solutions is guaranteed in [17] using Assumption 2,
as stated in Property (d)

The following lemma provides a tool for verifying the
existence of dwell times which is used in the proofs of the
theorems of Section V (that are not provided in this paper).

Lemma 1. Consider system (16) and suppose the follow-
g holds.

G(D) C (C U D) and items (i)-(iii) of Theorem 1 are
satisfied.

For any ¢ € D, G(0,e,n) € AU M where A =
{q : (z,e,v(n)) =0} and M C (C\D) is a forward
invariant set.

There exists a locally Lipschitz functiah: ©(u) —
R>o, whereO(p) ={¢ € CUD : R(¢q) < p andz #
0} for > 0, such that:

(ii-a) There existsz € R>( such that for anygy € D

with G(q) € ©(n): ¥(G(g)) < a.

It may be the case that the ne@/no longer satisfies item (i) of Theorem
1 onR™q, so identify S C R™n such that item (i) of Theorem 1 is satisfied

max{V(z),7(|e])} with ¢ = (x,e), that does satisfy onR"»+"e x S, afterwards make surg’ U D) C R"» " x S.



(iiii-b) There exist$ > a such that for any solutior to
(16), t; < t with (¢,5) € dome: (¥(4(t, 7)) <
b) = (¢(t,j) € C\D).

with Dy = {q : V(z) > nV(z + e) and 2L f(z,e) >
—oaV(z)} and Dy = {q : n = €} wheree € (0,1) is
arbitrary small. The conditiorf?a%f(x,e) > —gaV(z) has

(iii-c) There exists a continuous non-decreasing fundseen added in the definition @b, to avoid Zeno behaviour

tion A : R~y — R>( such that for allg € ©(u):
2 (q: F(q) < Mw(q))-

since after a jump/(z) = nV(x + e) holds. Indeed, it is
not necessary to jump again sing€¢x) will decrease faster

Then solutions to (16) have a semiglobal dwell time othannV (z + e) for some time according to (9). The lower

R™a\ A.
Remark 3. The triggering condition that satisfies the con
ditions of Theorem 1 respects the practical requirement th

there does exist a uniform minimum time interval betwee
two transmissions according to item (iv) of Theorem 1
The only region of the state space where this may not b

guaranteed is whef, e, v(n)) = 0, but this will only occur
if the system is initialized in the stable set.

V. APPLICATIONS

‘,Y(ac + e) # 0. This condition adds no conservatism as by

bounde on 7 is used to guarantee that the threshold/gn;)
defined bynV (x+e¢) (see (19)) never reaches the origin when

%ettinga sufficiently small, the triggering condition = ¢
ill not be satisfied in practice befokgreachesD;.
eWe recover Theorem 3.2 in [18] and relax some of the
required conditions. Its proof is based on Theorem 1 with
R(q) = max{V(z),nV(xz+e)} andv(n) = 0.

Theorem 2. Consider system (20) and suppose Assump-
tion 1 holds witha(s) = as (& € Rso) and Assumption 2

We already know that the framework allows us to capturl Satisfied. Then the set = {¢: (z,¢) = 0} is S-GAS and
the work in [17], we show in this section that it is also thesolutions to (20) have a semiglobal dwell time R\ A.

case for the strategy in [18]. Afterwards, new triggerinigsu
are proposed.

A. Event-triggered strategy in [18]

As in Section 1lI-B, the controller is staticc(= zp) and
implemented using zero-order-hold devices. It is consider
that Assumption 1 is satisfied withlinear that isa(s) = as
with @ € R~. The triggering rule is defined to guarante
thatV'(z(t,)) always decreases at a certain rate compared
V(z(t;—1)). In that way, the control loop is closed in [18]
as soon as the condition below is violated, for t;_;:

V((t) < —aaV(z(t;—1))(t —t;—1) + V(x(t;-1))

=(—oa(t —t;-1) + 1)V (z(t;-1)),
wheres € (0,1). Since zero-order-hold devices are con
sidered, we haver(t) = z(t;—1) and e(t) = e, (t) =
.%'(tj_l) — :v(t)
t> tj_ll

Vix(t)) <

(17)

(—oalt —tj—1) + V(Z(t) + 2(t) — z(1))
(—oa(t —tj—1) + 1)V (x(t) + e(t)).
(18)

e

Consequently, (17) is equivalent to, for

We note that the conditions of Theorem 2 are more general
than those of Theorem 3.2 in [18] agn (9) is allowed to be
a nonlinear function. In addition, condition (15) in thispea
extends (5) in [18] and allows us to consider more general
types of Lyapunov functions, such as quadratic, which is not
the case in [18].

B. New triggering rules

toln Section V-A, the triggering condition is obtained by
defining a decreasing threshold dn (see (17)). In this
subsection, we propose an alternative that consists inidgfin
a similar threshold for an appropriate functié¥i for the
e—system. We suppose that the dynamic controller (4) has
been designed so that Assumption 1 applies. Thus, by using
the ISS property of the--system, we will be able to show
that whenW remains below a given decreasing threshold,
system (16) satisfies asymptotic stability properties.

We define our threshold variablec R as the solution of
the following differential equation on flows:

whereé is any classc,, function, and at jumps,

(22)

To model (17) using the hybrid formulation (16), we intro-

duce the variablg € R as the solution ofy = —5a on flows
andn™ =1 at jumps. We see thaf(t) = —ca(t—t;—1)+1
fort e [tj_1,t;] (j € Z>o). In that way, we can reformulate
(18) using the following algebraic inequality:

Viz) < nV(z+e). (19)
The problem can then be modeled as follows:
T = f(z,e) xt =z
¢ =—f(xe) p qeC, et =0 3 g€ D, (20)
N = -0 nt =1
whereq = (z, e, ),
C ={q:V(z) <nV(z+e)andny < [¢1]} (21)

D = D; U D,

U Y(lel) = W (e), (23)

where ¥(s) = a (o7 ty(s)) for s € Rsg, with o €
(0,1) as in (12). We note thalV is positive definite and
radially unbounded. An obvious choice of triggering rule is

W (e) > n. Nevertheless, in the case whéié(e) < V(z),

V decreases according to (11) and therefore we do not need
to close the loop. This suggests considering the following
triggering condition instead:

W(e) > max{na V(l‘)}

(24)

The problem can be modeled as follows:
+
X

& = f(z,e) =z
é—g(x,e)}qu, et =0 }qu, (25)
i = —0(n) nt = Wie)



whereq = (z, e, 1),

Section V-B
A B8 g 0)=01 50,00=1 n0,0) =2

C = {q : max{V(z),n} = W(e) andn > 0} (26)

54.34  18.47 16.88 15.27 13.31

D ={q : max{V(z),n} < W(e) andn > 0}.

The following theorem ensures the stability of system (25).
Its proof is an application of Theorem 1 witR(q) =
max{V(z),y(W(e)),n} andv(n) = 1.

Theorem 3. Consider system (25), suppose the followin
conditions hold.

TABLE |

AVERAGE NUMBER OF EXECUTIONS OVER200INITIAL CONDITIONS

FOR A SIMULATION TIME OF 20S FOR THE EXAMPLE IN[11].

Yhe expense of more executions. Hence the design parameter

n(0,0) represents the tradeoff between performance and

(i) Assumptions 1-2 apply.
(i) Function# is locally Lipschitz.
(i) For any compact sef' C R"=""<, there existL; > 0
such that for all(z,e) € S: |g(z,e)| < Ls(|z| + |e]).

resource usage. Similar conclusions can be drawn for the
decay functiory in (22).

The technique in Section V-B exhibits great potential for
real-time scheduling, since both the initial value for the

Theng = (z,e,n) = 0 is S-GAS and solutions to (25) haveauxiliary variable and the differential equation in (22hdze

a semiglobal dwell time o™\ {0}.
Contrary to Section V-A, we note thatin (9) is allowed

designed according to the available resources. For instanc
functionsd with slow increasing slopes could be chosen in

to be nonlinear. In addition, we do not focus on zero-ordef@se of overload in the network or in the processor executing
hold devices that is why condition (iii) of Theorem 3 isthe controller.

introduced in order to guarantee the existence of dwellgime
We show on an example in Section VI that the inter-even(i
intervals can be enlarged to some extent compared to Secti
V-A by playing with the initial value ofy. [2]

VI. (3]

To illustrate the benefits of the strategy presented in4]
Section V-B, we revisit the example considered in [11]. The
simplified version of the considered nonlinear system is:

(27)

| LLUSTRATIVE EXAMPLE

(5]

T da? — 23 + u,

where d is an unknown possibly time-varying parameter[G]
satisfying |d| < 1. The stabilizing control law consid-
ered in [11] wasu = —2z. We selectV(z) = 322 as
our Lyapunov function that satisfies Assumption 1 With
ay(s) = ay(s) = 152 a(s) = 0.84s and(s) = 2.66s>
for s € R>9. We consider 200 random initial conditions
distributed in the interval—1, 1]. The parameted takes for
each initial condition a random value in the interya)1].
We compare the average number of executions requir
under the technique in [18] as extended in Section V-A,
the event-triggered strategy proposed in Section V-B ard tht1l
periodic strategy in [11] in Table I, for different valuesrfo
the design parametey(0,0). We selects = 103 in (20)
andd(s) = 0.5s with s € R>¢ in (22). It can be observed
that the average number of executions is considerably Iow%?]
under the event-triggered strategies. Moreover we note tha
the policy in Section V-B generates less executions thah [184]
and that it can be adjusted by means of the design parameter
7(0,0). It is however not easy to compare the performancis]
guarantees under the two different policies, since The@em
and Theorem 3 ensure different stability properties.

We can explore deeper the role played by the initighe]
condition of the auxiliary variable(0,0) and its effect on

. . ) iy

performance and number of executions. Simulations have
shown that smaller values @f0,0) imply a faster decay, at [18]

(7]

(8]

El

[12]

3The Yalmip software ([10]) was used to computeand .

%] J. Lofberg.
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