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Abstract 14 

Pinus halepensis Mill. is a Mediterranean pioneer forest species with shade intolerance features. The 15 

purpose of this study is to better understand how stand fertility and allelopathic properties of adult trees influence 16 

shade acclimation of saplings. Crown growth and morphological plasticity were studied under different light, 17 

fertilization, and allelopathic conditions in a nursery experiment. We tested whether shade-acclimation capacity 18 

increases with fertilization, and is affected by autotoxicity due to pine leachates. We examined stem diameter, 19 

and crown characteristics (length, width, shape and density) in a factorial experiment with two levels for each 20 

tested factor: light (full and 20 % reduced light), fertilization (low and high rate of NPK fertilizer) and 21 

allelopathy (control and allelopathic leachates uptake). In our study, shading induced a significantly higher 22 

crown length, width and surface. Fertilization strongly increased crown length and vertical expended crown 23 

shape (the ratio crown length/crown width). Leachates uptake reduced crown length and density, highlighting an 24 

autotoxicity phenomenon. We concluded that P. halepensis saplings presented a shade avoiding syndrome and 25 

that the crown shade-acclimation response increased with fertilization but was severely compromised by 26 

autotoxicity. We finally discuss the role of fertilization and allelopathy in early P. halepensis acclimation ability. 27 
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Introduction 29 

 30 

Acclimation to shade is achieved by a remarkable variability in many structural features of plants 31 

including biomass allocation, physiological and morphological changes from leaf to whole plant scale 32 

(Delagrange et al. 2004; Givnish 1988; Kennedy et al. 2007; Messier and Nikinmaa 2000; Portsmuth and 33 

Niinemets 2007; Wang et al. 2006). At crown-level, several morphological changes are involved in the structural 34 

acclimation to the prevailing light environment. Plants exposed to high irradiance are frequently subjected to 35 

photoinhibition particularly under adverse conditions (Long et al. 1994) as in arid or Mediterranean-type 36 

environments. In this situation, plants exhibit a strategy based on the avoidance of excessive irradiance by 37 

structural features that reduce the leaf area directly exposed to the sun (Pearcy et al. 2005; Valladares and Pearcy 38 

1998). This plastic response leads to foliage aggregation, highly branching and “bushy” growth form (Ali and 39 

Kikuzawa 2005; Shukla and Ramakrishnan 1986). By contrast, when plants grow in dense stands, decreased 40 

light availability leads plants to follow two principal strategies: shade tolerance and shade avoidance (Grime 41 

1979; Henry and Aarssen 1997). “Shade-avoidance” means that a plant grown under low irradiance may 42 

maximize future light interception by a strong vertical growth (King 1990). This phenomenon involves a highly 43 

plastic response with accelerated extension growth, strong elongation of internode and petiole, and a 44 

strengthened apical dominance among other processes (Grime 1979; Smith and Whitelam 1997). All these 45 

morphological adjustments correspond to the concept of ‘foraging for light’ (Ballare et al. 1997), and result from 46 

modification of light quality strongly related to decrease of light quantity (Pecot et al. 2005). The proximity of 47 

neighbouring plants is detected by both biogenic volatile organic compounds and light receptors (sensing red and 48 

far-red light ratio and blue light), then shade avoidance responses occurre with the involvement of 49 

phytohormones (Franklin 2008; Kegge and Pierik 2010; Pierik et al. 2004; Stamm and Kumar 2010). 50 

The “shade avoiders” are commonly ruderal herbs and pioneer tree species present in early to intermediate stage 51 

of succession, where the probability of encountering high irradiance with vertical growth is still reasonably high 52 

(Henry and Aarssen 1997; Smith 1982). Hence, emerging seedlings of early successional species show a high 53 

elongation rate and a strong shade avoidance response to weak proximity signals, in order to rapidly overtop 54 

their neighbours and colonize canopy gaps (Gilbert et al. 2001). 55 
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In this study we focus on a Mediterranean pioneer forest species, Pinus halepensis Mill. with intolerant-shade 56 

features (Puértolas et al. 2009; Zavala et al. 2000) allowing high growth rate under high light conditions. P. 57 

halepensis naturally regenerates within disturbed and relative open habitats, such as forest clearings, burned 58 

areas and abandoned agricultural lands (Buhk et al. 2006). In developing forests, P. halepensis predominates as 59 

an early recruit in secondary vegetation succession leading to monospecific dense stands where natural 60 

regeneration is absent or difficult (Prévosto and Ripert 2008). Causes of regeneration failure in these fire-free 61 

stands have been much less widely studied than post-fire regeneration. Light plays an important role in 62 

recruitment and growth beneath tree canopy for shade intolerant species like P. Halepensis (Zavala et al. 2000). 63 

However, P. halepensis growth responses to light availability during regeneration are still not well-defined. 64 

While Thanos (2000) reports a positive influence of light on germination, some authors observe that light 65 

availability does not have any effect on either germination (Broncano et al. 1998) or early seedling development 66 

measured a few days after germination (Fernandez et al. 2008). Broncano et al. (1998) noted similar growth rates 67 

(growth was evaluated through a volume index) under shaded (10 % full sunlight) compared to unshaded 68 

conditions on 8-month old P. halepensis saplings, while saplings reacted to shading by increasing elongation 69 

(stem height per stem basal diameter). In order to clarify the effects of irradiance on early pine aerial 70 

development, we analyzed the response of some crown structural parameters to shade. 71 

In Mediterranean environments, in addition to water availability, soil nutrient content is also a frequent limiting 72 

factor for plant development (Sardans et al. 2005) including P. halepensis (Sardans et al. 2004). Soil nutrient 73 

availability can directly influence growth and biomass allocation, altering structural development of aerial parts 74 

of the plant (Ingestad and Agren 1991). More precisely, nutrient uptake strongly affects shoot length growth and 75 

foliar area production (Niinemets et al. 2002), changing acclimation capacity to shade (Coomes and Grubb 2000; 76 

Kobe 2006). In understory conditions soil nutrients were shown to exert a lower influence on growth, 77 

emphasizing the importance of considering light acclimation combined with nutrient effects (Broncano et al. 78 

1998; Kobe 2006; Kranabetter and Simard 2008; Portsmuth 2006).  79 

More recently, allelopathy was found to be implicated in renewal of forest stands (Mallik 2008). P. halepensis is 80 

known to release allelopathic compounds (Fernandez et al. 2006) with autotoxic effects affecting its own 81 

seedlings’ initial growth (Fernandez et al. 2008). Autotoxicity may have important ecological implications such 82 

as the reduction of overcrowding and intraspecific competition for light water and nutrients (Singh et al. 1999). 83 

In our case, autotoxicity processes may be consistent with the pioneer and fast-expensive strategy of P. 84 

halepensis, avoiding long-term establishment at the same place and favouring an escape-strategy. Hence 85 
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allelopathic compounds (mainly phenolic acids) could influence aerial development of P. halepensis and impact 86 

light acclimation of saplings beneath the forest canopy. The allelopathic compounds interfere with seedling 87 

growth by causing plant growth inhibition, and nitrogen (N) immobilization (Inderjit et al. 2004; Inderjit 2006; 88 

Northup et al. 1995). Moreover, allelochemicals can affect development of roots tissue (Schenk 2006), leading to 89 

a decrease in nutrient uptake by the plant (Inderjit and Duke 2003; Yamasaki et al. 1998). P. halepensis leachates 90 

may therefore directly interfere with seedling acclimation capacity through the release of organic compounds 91 

and indirectly through soil nitrogen immobilization and/or decreasing uptake rates. 92 

 93 

The objectives of this study were to better understand how stands fertility and allelopathic properties of adult 94 

trees influence shade acclimation of regenerating subjects. Both morphological and growth parameters (i.e., stem 95 

diameter, crown dimensions, crown shape, and foliar density) were studied under different light, fertilization, 96 

and allelopathic conditions in a nursery experiment. We tested two hypotheses: (1) does shade-acclimation 97 

capacities increase with fertilization and (2) does leachates of P. halepensis have a negative impact on shade 98 

acclimation of P. halepensis saplings, due to allelopathic properties? 99 

 100 

Materials and methods 101 

 102 

Experimental design and treatment application 103 

The experiment was conducted in the administrative plant nursery of “Les Milles” (Departmental Directorate of 104 

Agriculture and Forestry of the Bouches-du-Rhône), in Aix-en-Provence, Southern France. The seeds were 105 

harvested in a Mediterranean pinewood, in the Luberon Massif. In May 2006, the experiment was established 106 

with 1-year-old nursery-grown P. halepensis seedlings of uniform size germinated and grown on an irrigated and 107 

fertilized artificial soil. Seedlings were transplanted one per pot, in 10 l plastic pots filled with a draining 108 

substrate made of 25% calcareous sand, 25% siliceous sand, and 50% mineral soil from Provence Granulat 109 

quarry. This substrate was chosen in order to prevent allelopathic features of an organic substrate. The seedlings 110 

were grown outdoors during one year and regularly drip irrigated to prevent water stress. The factorial 111 

experimental design included three factors: (i) light availability, (ii) nutrient availability and (iii) presence of 112 
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allelopathic compounds. For light availability, half of the pots were in full sunlight (high light, L+), and the other 113 

half under a shade cloth (EMIS france, ref. 1077) so as to reproduce light conditions under a dense pine wood 114 

canopy (Broncano et al. 1998; Maestre and Cortina 2004). Shade cloth was placed 2.5 m above ground to cover 115 

the entire plot area, and four additional net pieces on all plots orientations were placed vertically. Shade cloth 116 

transmittance, R:FR ratio and blue light describe the light conditions under the shading treatment. Transmittance 117 

and light quality, both under the shade and in the sun, were measured with a spectrometer (SpectrcoVio C5210-118 

C5220, Lab. Junior kit-SV2100, Korea Materials & Analysis Corp. K-MAC). We measured the shade cloth light 119 

transmittance of total light spectra, defined as the ratio of photon flux density (PFD) beneath the shade cloth to 120 

the PFD in full sunlight. Transmittance below the shading nets was 23%. Light quality was modified with shade 121 

cloth. Following Gasque and Garcia (2004) the red to far red ratio was measured at 660/730 nm respectively. 122 

R:FR was 1.54 for full light treatment (HL) and 1.11 for low light treatment (LL) similarly to values observed 123 

under Pinus halepensis cover (Gasque and García-Fayos 2004). Following Aphalo and Lehto (1997) photon flux 124 

density of blue light was measured at 450nm. Photon flux density of blue light under the shade cloth was 22% of 125 

the one measured under full light conditions. With regard to fertilization, two rates of fertilizer were supplied 126 

once by week with irrigation; the first composed of 75mg N, 8.2mg P and 20.74mg K (low fertilization, F-) and 127 

the second five times higher (high fertilization F+). Such process and fertilization rates are already used in 128 

greenhouse experiment with Aleppo pine saplings (Diaz et al. 2010).  Finally, the allelopathic factor was tested 129 

through the use of leachates (Fernandez et al. 2008). Monthly, 25 kg of P. halepensis needles were harvested in a 130 

P. halepensis forest (circa 20 years old pine) near Aix-en-Provence, on the Arbois plateau. Needles were 131 

macerated in 250 l of water during 48 hours, in dark conditions (Yu et al. 2003) in order to obtain leachates at 132 

10% fresh weight, corresponding at 5 % dry weight (Fernandez et al. 2006). In this way, 0.5 l of leachates was 133 

brought to half the pots (A+), while water was brought to the other half (A-). 134 

Each treatment results from the combination of the two levels of the three factors (L, F, A). The resulting 8 135 

treatments each contained 20 pots (=replicates) except the treatments with the lowest level of fertilizer with only 136 

10 plants leading to a total of 120 pots for the whole experiment. Treatments were arranged in blocks, four under 137 

the shade cloth and four in full light, in 50 m². Stem diameter, crown dimensions, crown shape and foliar density 138 

were used as response variables to analyse growth and morphological plasticity. 139 

 140 

 141 
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Growth measurements and crown descriptors 142 

Plasticity and crown morphological parameters were estimated on two-years old P. halepensis saplings using an 143 

original and non-destructive method based on digital image analysis, previously tested on P. halepensis  by 144 

Montès et al. (2004). 145 

The sampling procedure consisted in taking photographs of each individual, in March 2007, two years after the 146 

beginning of the experiment. Because of a possible axial asymmetry of saplings, two pictures were taken from 147 

orthogonal viewpoints, using a 3 megapixel digital camera. Using an image analysis software (Adobe® 148 

Photoshop® CS2), photographs were then converted in three luminance levels (black for the surface area of the 149 

sapling, grey for the outline and white for background of the image). For each sapling, the mean of the two 150 

orthogonal views provide d a basis for deducing, from the number of pixels of each category, crown length (CL), 151 

crown width (CW), surface area of the crown (CS) and crown outline (CO) (Fig. 1). Total height was not 152 

considered as this dimension was very close to crown length due to branch insertion starting almost at stem base 153 

for all the saplings. These parameters combined with stem diameter measurements (February 2007) were used to 154 

make morphological and architectural trait descriptors: elongation (CL/D), crown shape (CL/CW), and crown 155 

density (CS/CO²) which is an isometric indicator of crown openness. These plant parameters were compared for 156 

each treatment. 157 

 158 

Statistical analysis 159 

Multi-way ANOVA was used to analyze stem diameter, crown length, crown width, elongation, crown shape, 160 

crown surface and crown density as dependent variables, with light, fertilization and allelopathy levels, as the 161 

main factors. In case of significant interactions, one-way ANOVA was used to test differences. Afterwards, a 162 

Tukey test (P<0.05) was used to test differences between mean values of treatments. Normality and 163 

homoscedasticity were tested by Shapiro-Wilks’ and Bartlett’s tests, respectively. Due to violation of ANOVA 164 

assumptions for treatment at low fertilization level with no leachates uptake, the effect of the light factor on 165 

sapling growth variables was determined after a Kruskall–Wallis test. Allometric relationships between crown 166 

length, crown surface and crown density were determined through regressions. Changes in allocation pattern 167 

between treatments were assessed by comparison of the slopes and intercepts of regression lines using ANOVA. 168 

All tests were performed using Statgraphics Centurion XV (StatPoint, Inc., USA) software. 169 
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 170 

Results  171 

 172 

All morphological parameters were significantly influenced by light, in interaction with fertilization and 173 

macerates (ANOVA, P<0.0001; Table 1).  174 

 175 

Effects of shade on aerial development and allometric relations 176 

Crown length, elongation, crown width, vertical expended crown shape, and crown surface increased under low 177 

light (L-) conditions (P < 0.001) (Fig. 2). Conversely, stem diameter and crown density decreased under low 178 

light conditions but the difference was only significant for crown density (P = 0.059 for stem diameter). Under 179 

high light (L+) and low light (L-) conditions crown surface increased with crown length with a strongly 180 

significant dependence (P <0.005; R² = 0.29 and P = 0.001; R² = 0.80 respectively; Fig. 3). The level of 181 

irradiance did not influence the relationship between crown surface and crown length (differences between 182 

regression slopes, P = 0.139). Crown density was significantly higher in L+ than in L- (P <0.001).  183 

Fertilization effects in interaction with light (without allelopathy). 184 

In treatments without allelopathy, there were significant interactions between light and fertilization effects on 185 

crown length, elongation, crown shape, crown surface (P < 0.001). In L+ conditions, no differences between the 186 

two fertilization levels for all parameters were noted whereas under L- conditions, higher fertilization led to 187 

higher values (P < 0.001, Tukey test) (Fig. 4). In contrast, crown density and width were never significantly 188 

affected by fertilization level (P >0.05). With regard to interaction, the increase observed for crown length, 189 

elongation, shape surface and width under shading conditions was much greater when the level of fertilization 190 

was high. High level of fertilization thus enables pines to have a more pronounced growth effect in low light and 191 

hence be more plastic. 192 

 193 

Influences of allelopathic leachates in interaction with fertilization in low light conditions 194 
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There were significant interactions between leachates and fertilization effects on crown length, crown surface 195 

and crown density (P < 0.001). The increase of crown length, elongation shape surface and density due to high 196 

fertilisation was totally cancelled when allelopathic compounds were present (Fig. 5). For the lowest fertilization 197 

level, growth is low and leachates supply did not affect crown length and crown surface, but decreased crown 198 

density (P = 0.007, Tukey test; Fig. 5). With high rate of fertilization, growth is high and leachates did not affect 199 

crown density but decreased crown length, crown surface, and vertical expended crown shape (P < 0.001, Tukey 200 

test). Our results showed negative effects of leachates on aerial development, except on crown width. 201 

 202 

Discussion 203 

 204 

Morphological effects of shade acclimation 205 

Shade acclimation has first been studied with standard level of nutrients (F-) and without leachates (A-). In this 206 

treatment, all morphological parameters of P. halepensis were positively and significantly influenced by shade 207 

except stem diameter, which decreased but not significantly. This negative impact of shade on stem diameter has 208 

been previously observed by Jose et al. (2003) on Pinus palustris Mill. seedlings, a shade intolerant pine species 209 

(Knapp et al. 2008). Moreover, Puertolas et al. (2009) reported similar trend on P. halepensis seedlings. In our 210 

study, the non-significant light influence on diameter is certainly due to the early age of saplings, the short-term 211 

length of the experiment and delayed response of stem increment to the treatment. Crown length (CL), crown 212 

elongation (CL/D), and crown shape (CL/CW) significantly increased in shade treatment. We found greater 213 

crown length in shade than under high light conditions which is consistent with previous studies where shade 214 

intolerant species showed similar or higher height growth in lower light availability during the first seasons 215 

(Chen and Klinka 1998; Groninger et al. 1996; Kennedy et al. 2007). Similar height variations have also been 216 

measured for P. halepensis (Puértolas et al. 2009) and for another early successional species, Pinus sylvestris L., 217 

which responded to shade with an increase in stem height (Dehlin et al. 2004). Enhancement of height growth in 218 

shade for light-demanding species could reflect a strategy of light-seeking by species adapted to the exploitation 219 

of high-resource environments (Walters et al. 1993). This growth strategy is common for shade-intolerant 220 

species to avoid shading by neighbouring vegetation (Ballare 1999; Grime 1979). In addition to the decrease of 221 

light quantity, neighbour plant canopy can also strongly modify light quality with a strong reduction of blue and 222 
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red light absorbed by photosynthetic pigments and an increase of ethylene levels (Kegge and Pierik 2010; Pecot 223 

et al. 2005). The low R:FR, Blue light depression and a stimulated foliar ethylene emissions induce shade 224 

avoidance responses, such as enhanced stem elongation (Franklin 2008; Kegge and Pierik 2010; Pierik et al. 225 

2004).  This “shade avoidance” strategy involves maximizing light interception through architectural traits that 226 

contribute to a competitive advantage by strong vertical growth (Henry and Aarssen 1997; King 1990; Smith and 227 

Brewer 1994). As demonstrated by our results, the elongation (CL/CW) increase with light quantity decrease for 228 

P. halepensis., which has also been previously mentioned  by Broncano et al. (1998) and for other species (Chen 229 

and Klinka 1998; Kennedy et al. 2007). This finding emphasizes the stronger shade avoidance response (Smith 230 

and Whitelam 1997). In addition to shade cloth effects on light quality, both density of plantation and proximity 231 

of neighbours may play a role by stimulating the shade avoidance signals and stem elongation (Anten et al. 232 

2005; Pierik et al. 2004). 233 

We also found crown width enhancement with decreasing light, which may be considered to be advantageous for 234 

foraging for light patches along horizontal gradients under forest canopies (Chen et al. 1996; Hutchings and 235 

Dekroon 1994). Under limited light conditions, a growth strategy that promotes lateral crown expansion might 236 

be favourable in enabling saplings to minimize self-shading and to improve light interception (Givnish 1988; 237 

Sterck et al. 2003). In our study, saplings have higher ratios of crown length to crown diameter in shade 238 

compared with higher light conditions, indicating that crowns shape were proportionally more vertically 239 

expanded in shade than in higher light. Such results differ from the positive relationship between this ratio and 240 

light availability generally observed in many studies for light-demanding tree species (Beaudet and Messier 241 

1998; Chen et al. 1996; Klinka et al. 1992). These differences can be imputed to the strong interactions between 242 

light intensity and tree height, this last factor being in our case a strong determinant of architectural responses 243 

variability. Although shade avoiding syndrome increases both crown length and crown diameter, the former 244 

increases more than the latter, therefore saplings showed a more vertical expanded crown shape in shade. The 245 

crown surface increased while crown density decreased in shade only indicating a higher crown openness under 246 

shade conditions. Under L+ conditions, crown density was higher, indicating a higher proportion of hidden 247 

biomass within the crown, while in low light, most of the branching becomes apparent which enhances, with the 248 

same biomass allocation, photosynthetic capabilities. Results of crown surface and density analyses showed that 249 

high irradiance leads seedlings of shade-intolerant species to adopt a ‘bushy’ form whereas under shade 250 

conditions the crowns are more slender and vertically extended to prevent self-shading (Henry and Aarssen 251 

1997; Henry and Aarssen 2001; King 1990; Shukla and Ramakrishnan 1986; Steingraeber et al. 1979). 252 
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 253 

Fertilization effects on light acclimation 254 

Fertilization has frequently been described as a factor that can change allocation and aerial development in 255 

interaction with light availability (Coomes and Grubb 2000; Grubb et al. 1996; Kobe 2006; Portsmuth and 256 

Niinemets 2007). It has been suggested that light-dependent growth and plasticity depend on nutrient availability 257 

(Burton and Bazzaz 1995; Lortie and Aarssen 1996; Portsmuth and Niinemets 2007). In our study, for several 258 

parameters involved in crown shade acclimation, fertilization effect differed largely in light and shade 259 

conditions. In L+, nutrient uptake had no effect on morphological parameters, in line with the results of 260 

Portsmuth and Niinemets (2007) on others shade-intolerant species (given nevertheless that they reported results 261 

on growth rate and not morphological parameters). Conversely, under low light conditions, our results showed 262 

that architectural parameters (except crown width and crown density) were strongly influenced by nutrients in 263 

contrast with general conclusions of Portsmuth and Niinemets (2007) based on works of Poorter and Nagel 264 

(2000). The latter have found that nutrient requirement is higher and growth is more responsive to nutrients at 265 

higher irradiance. To explain these results, Poorter and Nagel (2000) noted that higher irradiance implies a 266 

higher rate of photosynthesis per unit leaf mass, but also a higher rate of water uptake due to increased 267 

transpiration and a higher nutrient uptake because growth is stimulated. They showed, in accordance with the 268 

functional equilibrium model, that biomass was more preferentially allocated to plant parts related to limited 269 

resource. Hence, the fraction of biomass allocated to roots increased proportionally with irradiance at non-270 

limited nutrient level. In the same way, under L- conditions, nutrient increase improved primarily the fraction of 271 

biomass invested in the stems, and changed the morphological development of aboveground parts of the plant as 272 

detected in this study for crown descriptors. In our study, the increase observed for crown length, elongation, 273 

shape surface and width in shading conditions versus high light conditions was much greater when nutrient 274 

availability was high. High level of fertilization thus allows pines to have a more pronounced growth effect in 275 

low light and therefore be more plastic. Comparable variations in aerial components of pioneer species have 276 

been observed in P. sylvestris (de la Rosa et al. 1984). Increased aerial growth response to shade under more 277 

fertile conditions implies a competitive advantage over neighbouring plants through pre-emptive capture of light 278 

resources, especially under high-fertilization conditions, where competition from other seedlings is likely to be 279 

intense. 280 

 281 

Interactions with allelopathic phenomenon 282 
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Major allelopathic effects on crown development were conspicuous under shade conditions in interaction with 283 

nutrient availability. At lower rate of fertilization, leachates supply only reduced crown density whereas in high 284 

fertilization, leachates supply reduced crown length, surface and elongation ratio (H/D). Such inhibition of 285 

crown development may be caused by phenolic acids by (1) nitrogen immobilization (Inderjit et al. 2004; Inderjit 286 

2006; Northup et al. 1995), (2) root and vegetative tissue degradation by cytotoxicity, (Schenk 2006) and/or a 287 

complex process of interactions with microorganisms and mycorrhizae. Some authors reported that growth 288 

inhibitor effects caused by leachates supply were eliminated by addition of fertilizers (Einhellig 1999; Inderjit 289 

2006). Similarly to Inderjit et al. (2004), we noted that the main phytotoxic effects occurred at high level of 290 

fertilization. Nitrogen addition could increase microbial populations that could influence qualitative and 291 

quantitative availability of phenolic compounds (Inderjit et al. 2004). These phenolic compounds can form 292 

recalcitrant complexes with proteins and modify nutrient availability (Hättenschwiler and Vitousek 2000) which 293 

could lead to a detrimental influence on sapling growth. It should be noted that many phenolic compounds are 294 

present in P. halepensis leachates (Fernandez et al. 2009). Interactions with ectomycorrhizae may also explain 295 

the absence of effect of leachates supply at low soil fertility. While a high fertilization had been described to be 296 

nefast for P. halepensis ectomycorrhizae, at low fertilization level ectomycorrhizae can develop (Diaz et al. 297 

2010) and may detoxify phenolic compounds like described on different species (Zeng and Mallik 2006). To our 298 

knowledge, no study looked at plant crown architectural response to allelopathy. Crown length inhibition 299 

observed in this study under F+ conditions led to a decrease of elongation and vertical expanded crown shape, 300 

modifying strongly crown morphology and seedlings’ acclimation ability to shade, confirmed by crown surface 301 

decrease. In fact, plastic adjustments of crown morphology due to higher fertilization are cancelled with 302 

leachates supply. Hence, allelopathy, and more precisely autotoxicity, severely affected P. halepensis saplings’ 303 

acclimation to low irradiance during the first years. Autotoxicity in P. halepensis has already been noted in 304 

germination and initial growth (10-days-old seedlings) under laboratory conditions (Fernandez et al. 2008). With 305 

our experiment, we confirmed the autotoxic effects of P. halepensis needles leachates on sapling development. 306 

This study highlights the negative effects of allelopathy on P. halepensis saplings acclimation to shade and 307 

complex interactions with fertility conditions.  By affecting height growth in non-limited soil fertility conditions, 308 

autotoxicity could have an impact on saplings acclimation to limited light beneath the canopy, and potentially on 309 

regeneration of P. halepensis stands.  310 

Monnier Y., Vila B., Montes N., Bousquet-Melou A., Prevosto B. and Fernandez C. (2011) Fertilization and allelopathy 
modify Pinus halepensis saplings crown acclimation to shade, Trees-Structure and Function, 25, 3, 497-507. 
author-produced version of the final draft post-refeering 
the original publication is available at http://www.springerlink.com/content/g25g004p778x3463/ - doi:10.1007/s00468-010-0525-7



  

  12 

Acknowledgments    This study was funded by the CNRS within the framework of the Zone Atelier "Arrière-311 

pays Méditerranéen". We thank the staff of the administrative plant nursery of Les Milles (Departmental 312 

Directorate of Agriculture and Forestry of the Bouches-du-Rhône, France), particularly Patrice Brahic for his 313 

useful comments and all the staff for technical assistance. We would also like to thank Michal Paul for 314 

proofreading the english, Nicolas Faivre and Chrisinte Scoffoni for their comments that improve the manuscript, 315 

and Sylvie Dupouyet, Stéphane Greff, Caroline Lecareux, Céline Pernin and the DFCV team who assisted us 316 

with collection of needles and for leachates confection and watering. 317 

.318 

Monnier Y., Vila B., Montes N., Bousquet-Melou A., Prevosto B. and Fernandez C. (2011) Fertilization and allelopathy 
modify Pinus halepensis saplings crown acclimation to shade, Trees-Structure and Function, 25, 3, 497-507. 
author-produced version of the final draft post-refeering 
the original publication is available at http://www.springerlink.com/content/g25g004p778x3463/ - doi:10.1007/s00468-010-0525-7



  

  13 

References 319 

 320 

Ali M, Kikuzawa K (2005) Plasticity in leaf-area density within the crown of Aucuba japonica growing under 321 

different light levels. J Plant Res 118:307-316 322 

Anten NPR, Casado-Garcia R, Nagashima H (2005) Effects of mechanical stress and plant density on mechanical 323 

characteristics, growth, and lifetime reproduction of tobacco plants. Am Nat 166 (6):650-660  324 

Aphalo PJ, Lehto T (1997) Effects of light quality on growth and n accumulation in birch seedlings. Tree Physiol 325 

17:125-132 326 

Ballare CL (1999) Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. 327 

Trends Plant Sci 4:97-102 328 

Ballare CL, Scopel AL, Sanchez RA (1997) Foraging for light: photosensory ecology and agricultural implications. 329 

Plant, Cell Environ 20:820-825 330 

Beaudet M, Messier C (1998) Growth and morphological responses of yellow birch, sugar maple, and beech 331 

seedlings growing under a natural light gradient. Can J For Res 28:1007-1015 332 

Broncano MJ, Riba M, Retana J (1998) Seed germination and seedling performance of two Mediterranean tree 333 

species, holm oak (Quercus ilex L.) and Aleppo pine (P. halepensis Mill.) : a multifactor experimental 334 

approach. Plant Ecol 138:17-26 335 

Buhk C, Götzenberger L, Wesche K, Gómez PS, Hensen I (2006) Post-fire regeneration in a Mediterranean pine 336 

forest with historically low fire frequency. Acta Oecol 30:288-298 337 

Burton PJ, Bazzaz FA (1995) Ecophysiological responses of tree seedlings invading different patches of old-field 338 

vegetation. J Ecol 83:99-112 339 

Chen HYH, Klinka K (1998) Survival, growth, and allometry of planted Larix occidentalis seedlings in relation to 340 

light availability. For Ecol Manag 106:169-179 341 

Monnier Y., Vila B., Montes N., Bousquet-Melou A., Prevosto B. and Fernandez C. (2011) Fertilization and allelopathy 
modify Pinus halepensis saplings crown acclimation to shade, Trees-Structure and Function, 25, 3, 497-507. 
author-produced version of the final draft post-refeering 
the original publication is available at http://www.springerlink.com/content/g25g004p778x3463/ - doi:10.1007/s00468-010-0525-7



  

  14 

Chen HYH, Klinka K, Kayahara GJ (1996) Effects of light on growth, crown architecture, and specific leaf area for 342 

naturally established Pinus contorta var latifolia and Pseudotsuga menziesii var glauca saplings. Can J For 343 

Res 26:1149-1157 344 

Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: a theoretical framework 345 

and review of experiments. Ecol Monogr 70:171-207 346 

de la Rosa TM, Aphalo PJ, Lehto T (1998) Effects of far-red light on the growth, mycorrhizas and mineral 347 

nutrition of Scots pine seedlings. Plant Soil 201:17-25 348 

Dehlin H, Nilsson MC, Wardle DA, Shevtsova A (2004) Effects of shading and humus fertility on growth, 349 

competition, and ectomycorrhizal colonization of boreal forest tree seedlings. Can J For Res 34:2573-350 

2586 351 

Delagrange S, Messier C, Lechowicz MJ, Dizengremel P (2004) Physiological, morphological and allocational 352 

plasticity in understory deciduous trees: importance of plant size and light availability. Tree Physiol 353 

24:775-784 354 

Diaz G, Carrillo C, Honrubia M (2010) Mycorrhization, growth and nutrition of Pinus halepensis seedlings 355 

fertilized with different doses and sources of nitrogen. Ann For Sci 67:405 356 

Einhellig FA (1999) An integrated view of phytochemicals amid multiple stresses. In: Inderjit, Dakshini KMM, 357 

Foy CL (eds) Principles and practices in plant ecology: phytochemicals interactions. CRC Press, Boca 358 

Raton, pp 479–494 359 

Fernandez C, Lelong B, vila B, Mévy J-P, Robles C, Greff S, Dupouyet S, Bousquet-Mélou A (2006) Potential 360 

allelopathic effect of P. halepensis in the secondary succession: an experimental approach. 361 

Chemoecology 16:97-105 362 

Fernandez C, Monnier Y, Ormeno E, Baldy V, Greff S, Pasqualini V, Mevy JP, Bousquet-Melou A (2009) 363 

Variations in Allelochemical Composition of Leachates of Different Organs and Maturity Stages of P. 364 

halepensis. J Chem Ecol 35:970-979 365 

Monnier Y., Vila B., Montes N., Bousquet-Melou A., Prevosto B. and Fernandez C. (2011) Fertilization and allelopathy 
modify Pinus halepensis saplings crown acclimation to shade, Trees-Structure and Function, 25, 3, 497-507. 
author-produced version of the final draft post-refeering 
the original publication is available at http://www.springerlink.com/content/g25g004p778x3463/ - doi:10.1007/s00468-010-0525-7



  

  15 

Fernandez C, Voiriot S, Mévy J-P, Vila B, Ormeño E, Dupouyet S, Bousquet-Mélou A (2008) Regeneration failure 366 

of P. halepensis Mill.: The role of autotoxicity and some abiotic environmental parameters. For Ecol 367 

Manag 255:2928-2936 368 

Franklin KA (2008) Shade avoidance. New Phytol 179:930-944 369 

Gasque M, García-Fayos P (2004) Interaction between Stipa tenacissima and P. halepensis: Consequences for 370 

reforestation and the dynamics of grass steppes in semi-arid mediterranean areas. For Ecol Manag 371 

189:251-261 372 

Gilbert IR, Jarvis PG, Smith H (2001) Proximity signal and shade avoidance differences between early and late 373 

successional trees. Nature 411:792-795 374 

Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. Aust J Plant Physiol 15:63-92 375 

Grime JP (1979) Plant strategies and vegetation processes. John Wiley & Sons Ltd, Chichester, New York 376 

Groninger JW, Seiler JR, Peterson JA, Kreh RE (1996) Growth and photosynthetic responses of four Virginia 377 

Piedmont tree species to shade. Tree Physiol 16:773-778 378 

Grubb PJ, Lee WG, Kollmann J, Wilson JB (1996) Interaction of irradiance and soil nutrient supply on growth of 379 

seedlings of ten European tall-shrub species and Fagus sylvatica. J Ecol 84:827-840 380 

Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends 381 

Ecol Evol 15:238-243 382 

Henry HAL, Aarssen LW (1997) On the relationship between shade solerance and shade avoidance strategies in 383 

woodland plants. Oikos 80:575-582 384 

Henry HAL, Aarssen LW (2001) Inter- and intraspecific relationships between shade tolerance and shade 385 

avoidance in temperate trees. Oikos 93:477-487 386 

Hutchings MJ, Dekroon H (1994) Foraging in plants: the role of morphological plasticity in resource acquisition. 387 

Adv Ecol Res 25:159-238 388 

Monnier Y., Vila B., Montes N., Bousquet-Melou A., Prevosto B. and Fernandez C. (2011) Fertilization and allelopathy 
modify Pinus halepensis saplings crown acclimation to shade, Trees-Structure and Function, 25, 3, 497-507. 
author-produced version of the final draft post-refeering 
the original publication is available at http://www.springerlink.com/content/g25g004p778x3463/ - doi:10.1007/s00468-010-0525-7



  

  16 

Inderjit (2006) Experimental complexities in evaluating the allelopathic activities in laboratory bioassays: A case 389 

study. Soil Biol Biochem 38:256-262 390 

Inderjit, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529-539 391 

Inderjit, Rawat DS, Foy CL (2004) Multifaceted approach to determine rice straw phytotoxicity. Can J Bot 392 

82:168-176 393 

Ingestad T, Agren GI (1991) The influence of plant nutrition on biomass allocation. Ecol Appl 1:168-174 394 

Jose S, Merritt S, Ramsey CL (2003) Growth, nutrition, photosynthesis and transpiration responses of longleaf 395 

pine seedlings to light, water and nitrogen. For Ecol Manag 180:335-344 396 

Kegge W, Pierik R (2010) Biogenic volatile organic compounds and plant competition. Trends Plant Sci 15:126-397 

132 398 

Kennedy S, Black K, O'Reilly C, Ni Dhubhain A (2007) The impact of shade on morphology, growth and biomass 399 

allocation in Picea sitchensis, Larix x eurolepis and Thuja plicata. New For 33:139-153 400 

King DA (1990) The adaptive significance of tree height. Am Nat 135:809-828 401 

Klinka K, Wang Q, Kayahara GJ, Carter RE, Blackwell BA (1992) Light-growth response relationships in pacific 402 

silver fir (Abies amabilis) and sub-alpine fir (Abies lasiocarpa). Can J Bot 70:1919-1930 403 

Knapp BO, Wang GG, Walker JL (2008) Relating the survival and growth of planted longleaf pine seedlings to 404 

microsite conditions altered by site preparation treatments. For Ecol Manag 255:3768-3777  405 

Kobe R (2006) Sapling growth as a function of light and landscape-level variation in soil water and foliar 406 

nitrogen in northern Michigan. Oecologia 147:119-133 407 

Kranabetter JM, Simard SW (2008) Inverse relationship between understory light and foliar nitrogen along 408 

productivity gradients of boreal forests. Can J For Res 38:2487-2496 409 

Liu YH, Sen Zeng R, An M, Mallik AU, Luo SM (2008) Autotoxicity in agriculture and forestry. In: Zeng RS, Mallik 410 

AU, Luo SM (eds) Allelopathy in Sustainable Agriculture and Forestry. Springer, New York, pp 283-301 411 

Monnier Y., Vila B., Montes N., Bousquet-Melou A., Prevosto B. and Fernandez C. (2011) Fertilization and allelopathy 
modify Pinus halepensis saplings crown acclimation to shade, Trees-Structure and Function, 25, 3, 497-507. 
author-produced version of the final draft post-refeering 
the original publication is available at http://www.springerlink.com/content/g25g004p778x3463/ - doi:10.1007/s00468-010-0525-7



  

  17 

Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature.  Annu Rev Plant Physiol 412 

Plant Mol Biol 45:633-662 413 

Lortie CJ, Aarssen LW (1996) The specialization hypothesis for phenotypic plasticity in plants. Int J Plant Sci 414 

157:484-487 415 

Maestre FT, Cortina J (2004) Are Pinus halepensis plantations useful as a restoration tool in semiarid 416 

Mediterranean areas? For Ecol Manag 198:303-317 417 

Mallik AU (2008) Allelopathy in forested ecosystems. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in 418 

Sustainable Agriculture and Forestry. Springer, New York, pp 363-386 419 

Messier C, Nikinmaa E (2000) Effects of light availability and sapling size on the growth, biomass allocation, and 420 

crown morphology of understory sugar maple, yellow birch, and beech. Ecoscience 7:345-356 421 

Montès N, Ballini C, Bonin G, Faures J (2004) A comparative study of aboveground biomass of three 422 

Mediterranean species in a post-fire succession. Acta Oecol 25:1-6 423 

Niinemets U, Cescatti A, Lukjanova A, Tobias M, Truus L (2002) Modification of light-acclimation of Pinus 424 

sylvestris shoot architecture by site fertility. Agric For Meteorol 111:121-140 425 

Northup RR, Yu Z, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 426 

377:227-229 427 

Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing 428 

function and trade-offs with a three-dimensional simulation model. New Phytol 166:791-800 429 

Pecot SD, Horsley SB, Battaglia MA, Mitchell RJ (2005) The influence of canopy, sky condition, and solar angle 430 

on light quality in a longleaf pine woodland. Can J For Res 35:1356-1366 431 

Pierik R, Whitelam GC, Voesenek L, de Kroon H, Visser EJW (2004) Canopy studies on ethylene-insensitive 432 

tobacco identify ethylene as a novel element in blue light and plant-plant signalling. Plant J 38:310-319 433 

Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of 434 

light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:1191-1191 435 

Monnier Y., Vila B., Montes N., Bousquet-Melou A., Prevosto B. and Fernandez C. (2011) Fertilization and allelopathy 
modify Pinus halepensis saplings crown acclimation to shade, Trees-Structure and Function, 25, 3, 497-507. 
author-produced version of the final draft post-refeering 
the original publication is available at http://www.springerlink.com/content/g25g004p778x3463/ - doi:10.1007/s00468-010-0525-7



  

  18 

Portsmuth A, Niinemets U (2007) Structural and physiological plasticity in response to light and nutrients in five 436 

temperate deciduous woody species of contrasting shade tolerance. Funct Ecol 21:61-77 437 

Portsmuth A, Niinemets Ü (2006) Interacting controls by light availability and nutrient supply on biomass 438 

allocation and growth of Betula pendula and B. pubescens seedlings. For Ecol Manag 227:122-134 439 

Prévosto B, Ripert C (2008) Regeneration of P. halepensis stands after partial cutting in southern France: 440 

Impacts of different ground vegetation, soil and logging slash treatments. For Ecol Manag 256:2058-441 

2064 442 

Puértolas J, Benito L, Peñuelas J (2009) Effects of nursery shading on seedling quality and post-planting 443 

performance in two Mediterranean species with contrasting shade tolerance. New For 38:295-308 444 

Sardans J, Roda F, Penuelas J (2004) Phosphorus limitation and competitive capacities of P. halepensis and 445 

Quercus ilex subsp rotundifolia on different soils. Plant Ecol 174:305-317 446 

Sardans J, Rodà F, Peñuelas J (2005) Effects of water and a nutrient pulse supply on Rosmarinus officinalis 447 

growth, nutrient content and flowering in the field. Environ Exp Bot 53:1-11 448 

Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725-739 449 

Shukla RP, Ramakrishnan PS (1986) Architecture and growth strategies of tropical trees in relation to 450 

successional status. J Ecol 74:33-46 451 

Singh HP, Batish DR, Kohli RK (1999) Autotoxicity: Concept, organisms, and ecological significance. Crit Rev 452 

Plant Sci 18:757-772 453 

Smith H (1982) Light quality, photoperception, and plant strategy. Annu Rev Plant Physiol Plant Mol Biol 454 

33:481-518 455 

Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple responses mediated by multiple 456 

phytochromes. Plant Cell Environ 20:840-844 457 

Smith WK, Brewer CA (1994) The adaptive importance of shoot and crown architecture in conifer trees. Am Nat 458 

143:528-532 459 

Monnier Y., Vila B., Montes N., Bousquet-Melou A., Prevosto B. and Fernandez C. (2011) Fertilization and allelopathy 
modify Pinus halepensis saplings crown acclimation to shade, Trees-Structure and Function, 25, 3, 497-507. 
author-produced version of the final draft post-refeering 
the original publication is available at http://www.springerlink.com/content/g25g004p778x3463/ - doi:10.1007/s00468-010-0525-7



  

  19 

Stamm P, Kumar PP (2010) The phytohormone signal network regulating elongation growth during shade 460 

avoidance. Journal of Experimental Botany 61:2889-2903 461 

Steingraeber DA, Kascht LJ, Franck DH (1979) Variation of shoot morphology and bifurcation ratio in sugar 462 

maple (Acer saccharum) saplings. Am J Bot 66:441-445 463 

Sterck F, Martinéz-Ramos M, Dyer-Leal G, Rodríguez-Velazquez J, Poorter L (2003) The consequences of crown 464 

traits for the growth and survival of tree saplings in a Mexican lowland rainforest. Funct Ecol 17:194-200 465 

Thanos CA (2000) Ecophysiology of seed germination in P. halepensis and P. brutia. In: G. Ne, L. T (eds) Ecology, 466 

Biogeography and Management of P. halepensis and P. Brutia Forest Ecosystems in the Mediterranean 467 

Basin. Backhuys Publishers, Leiden, pp 37-50 468 

Valladares F, Pearcy RW (1998) The functional ecology of shoot architecture in sun and shade plants of 469 

Heteromeles arbutifolia M. Roem., a Californian chaparral shrub. Oecologia 114:1-10 470 

Walters MB, Kruger EL, Reich PB (1993) Growth, biomass distribution and CO2 exchange of northern hardwood 471 

seedlings in high and low light: relationships with successional status and shade tolerance. Oecologia 472 

94:7-16 473 

Wang GG, Bauerle WL, Mudder BT (2006) Effects of light acclimation on the photosynthesis, growth, and 474 

biomass allocation in American chestnut (Castanea dentata) seedlings. For Ecol Manag 226:173-180 475 

Yamasaki SH, Fyles JW, Egger KN, Titus BD (1998) The effect of Kalmia angustifolia on the growth, nutrition, 476 

and ectomycorrhizal symbiont community of black spruce. For Ecol Manag 105:197-207 477 

Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber 478 

(Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. 479 

Biochem Syst Ecol 31:129 480 

Zavala MA, Espelta JM, Retana J (2000) Constraints and trade-offs in Mediterranean plant communities: The 481 

case of holm oak-Aleppo pine forests. Bot Rev 66:119-149 482 

Zeng R, Mallik A (2006) Selected ectomycorrhizal fungi of black spruce (Picea mariana) can detoxify phenolic 483 

compounds of Kalmia angustifolia. J Chem Ecol 32:1473-1489 484 

Monnier Y., Vila B., Montes N., Bousquet-Melou A., Prevosto B. and Fernandez C. (2011) Fertilization and allelopathy 
modify Pinus halepensis saplings crown acclimation to shade, Trees-Structure and Function, 25, 3, 497-507. 
author-produced version of the final draft post-refeering 
the original publication is available at http://www.springerlink.com/content/g25g004p778x3463/ - doi:10.1007/s00468-010-0525-7



  

  20 

Zhang Q, Yu X (2001) Allelopathy in replant problem in forest soil. Allelopath J 8:51-64 485 

Monnier Y., Vila B., Montes N., Bousquet-Melou A., Prevosto B. and Fernandez C. (2011) Fertilization and allelopathy 
modify Pinus halepensis saplings crown acclimation to shade, Trees-Structure and Function, 25, 3, 497-507. 
author-produced version of the final draft post-refeering 
the original publication is available at http://www.springerlink.com/content/g25g004p778x3463/ - doi:10.1007/s00468-010-0525-7



  

  21 

 486 

Tables and Figures caption 487 

 488 

Table 1 ANOVA results for stem diameter (D), crown length (CL), crown elongation (CL/D), crown shape 489 

(CL/CW), crown width (CW), crown surface (CS) and crown density (CD) as a function of light (L), fertilization (F) 490 

and allelopathy (A) and their interactions. Significant effects (α = 0.05) are in bold 491 

 492 

Fig 1 Schematic representation of a sapling, and the measured variables: stem diameter (D), crown length (CL), 493 

crown width (CW), crown surface (CS), crown outline (CO) 494 

 495 

Fig 2 Means and standard errors for crown length (CL), crown elongation (CL/D), crown width (CW), crown 496 

shape (CL/CW), crown surface (S) and crown density (CD) in high light (L+) and low light (L-) are presented only 497 

for the low ferrtilization (F-) and without allelopathy (A-) . Contrasting letters refer to significant differences 498 

(post hoc Tukey test  P< 0.05) 499 

 500 

Fig 3 Relationship between crown surface (CS) and crown length (CL) as a function of light level. The responses 501 

of surface to height have been compared in high light (L+) and low light (L-) treatment 502 

 503 

Fig 4 Interactions, means and standard errors for light and fertilization effects on crown length (CL), crown 504 

elongation (CL/D), crown width (CW), crown shape (CL/CW), crown surface (S) and crown density (CD) in 505 

treatments without allelopathy (A-). Contrasting letters refer to significant differences (Tukey test  P< 0.05)  506 

 507 
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Fig 5 Interactions, means and standard errors for allelopathic and fertilization effects on crown length (CL), 508 

crown elongation (CL/D), crown width (CW), crown shape (CL/CW), crown surface (S) and crown density (CD) in 509 

low light treatments (L-). Contrasting letters refer to significant differences (Tukey test  P< 0.05)  510 
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 511 

Table 1 512 

 513 

 514 

 515 

 516 

 517 

  518 

 519 

 520 

  
Stem 

diameter (D)  
Crown length 

(CL) 
Crown width 

(CW) 
Elongation 

(CL/D) 

Crown 
shape 

(CL/CW) 
Crown 

surface (CS) 

Crown 
Density 

(CS/CO²) 

Source F P F P F P F P F P F P F P 

 Light (L) 10.00 0.002 148.98 0 .000 104.36 0 .000 178.82 0 .000 13.25 0.000 106.81 0 .000 233.84 0 .000 

Fertiliser (F) 0.71 ns 23.57 0 .000 2.72 ns 14.22 0.001 36.33 0 .000 0.56 ns 5.89 0.039 

 Allelopathy (A) 9.96 0.002 2.36 ns 4.89 0.029 0.07 ns 0.41 ns 0.36 ns 8.58 0.008 

Interactions              

 LxF 0.57 ns 0.15 ns 10.79 0.001 0.01 ns 5.58 0.020 7.54 0.007 0.40 ns 

LxA 1.89 ns 22.16 0 .000 2.81 ns 12.5 0.001 35.02 0 .000 6.45 0.013 2.47 ns 

 FxA 4.83 0.030 0.73 ns 1.91 ns 3.12 ns 1.07 ns 4.69 0.032 1.50 ns 

LxFxA 15.18 0.000 47.7 0 .000 0.79 ns 18.01 0 .000 35.13 0 .000 18.71 0 .000 12.17 0.006 
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