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Abstract

Satellite Image Time Series (SITS) analysis is an important domain with various applications in land study. In the

coming years, both high temporal and high spatial resolution SITS will be available. In the classical case, these

data are studied by analysing the radiometric evolution of the pixels with time. When dealing with high spatial

resolution images, object-based approaches are generally used in order to exploit the spatial relationships of the data.

However, these approaches require a segmentation step to provide contextual information about the pixels. Even if

the segmentation of single images is widely studied, its generalisation to a series of images remains an open-issue.

This article aims at providing both temporal and spatial analysis of SITS. We propose first segmenting each image of

the series, and then using these segmentations in order to characterise each pixel of the data with a spatial dimension

(i.e. with contextual information). Providing spatially characterised pixels, pixel-based temporal analysis can be

performed. Experiments carried out with this methodology show the relevance of this approach and the significance

of the resulting extracted patterns in the context of the analysis of SITS.

Key words: Multi-temporal Analysis, Satellite Image Time Series, Data Mining, Segmentation, Information

Extraction

1. Introduction

Satellite Image Time Series (SITS) is a major resource for Earth monitoring. Since the last decades, these image

series are either sensed with a high temporal resolution (daily coverage at a kilo-metric spatial resolution) or with a

high spatial resolution (weekly coverage at a metric spatial resolution). However, since a few years, satellites such as

the Taiwanese Formosat-2 are providing both high temporal and high spatial resolution SITS (HSR SITS), but with a

limited coverage of the Earth’s surface and with only four spectral bands. In the coming years, these kinds of data will

become widely available thanks to the ESA’s Sentinel program. The growing availability of such images, periodically

acquired by satellite sensors on the same geographical area, will make it possible to produce and regularly update

accurate land-cover maps of a given investigated site.

In order to efficiently use the huge amounts of data that will be produced by these new sensors, adapted methods

for SITS analysis have to be developed. Such methods should allow the end-user to obtain satisfactory results (e.g.

relevant and accurate temporal evolution behaviour) with minimal time (by automating the tasks which do not require

human expertise), and minimal effort (by reducing the parameters).

In the standard methods, these data are studied by analysing the radiometric evolution of the pixels through the

time series. Due to the high spatial resolution of these future images, the geometrical information of the scene could

also be considered in the classification process by using region-based approaches. In these methods, a segmentation

process is required to extract segments based on radiometric homogeneous hypotheses. Once these segments are

extracted, it is possible to characterise them using spatial/geometrical properties, to enhance the classification process.
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However, the problem of using a segmentation step in a temporal classification remains an open issue, since neither

the mapping between mono-temporal segmentations, nor the temporal segmentation are resolved. A review of the

available literature on SITS analysis shows a lack of existing methods responding to this issue. This article aims at

addressing this issue by characterising a pixel with spatial properties in order to improve the analysis of SITS.

This article is organised as follows. Section 2 gives an overview of existing methods for SITS analysis. Section 3

introduces our method for spatio-temporal analysis of SITS. Section 4 describes the experiments carried out with this

methodology. Section 5 presents the results obtained using the proposed methodology. Conclusions and perspectives

will be found in Section 6.

2. State of the art

SITS allows the analysis, through observations of land phenomena, of a broad range of applications such as the

study of land-cover or even the mapping of damage following a natural disaster. These changes may be of different

types, origins and durations. For a detailed survey of these methods, the reader should refer to [1, 2].

In the literature, we find three main families of methods. Bi-temporal analysis, i.e., the study of transitions, can

locate and study abrupt changes occurring between two observations. Bi-temporal methods include image differenc-

ing [3], image ratioing [4], image composition [5] or change vector analysis (CVA) [6]. A second family of mixed

methods, mainly statistical methods, applies to two or more images. They include methods such as post-classification

comparison [7], linear data transformation (PCA and MAF) [8], image regression or interpolation [9] and frequency

analysis (e.g., Fourier, wavelets) [10]. Then, we find methods designed more for image time series and based on

radiometric trajectory analysis [11–14].

Whatever the type of method used in order to analyse satellite image time series, there is a gap between the

amount of data representing these time series, and the ability of algorithms to analyse them. Firstly, these algorithms

are often dedicated to the study of a change in a scene from bi-temporal representation. Secondly, even if they can

map areas of change, they are not able to characterise them. Thirdly, and this point is even more problematic, the

geometrical/spatial properties of the data are never taken into account, except for the use of the pixel coordinates.

High Spatial Resolution SITS have given rise to the need for spatially and temporally dedicated methods.

To improve the analysing process by using the spatial relationships of the data, object based methods have been

more recently proposed [15]. In a first step, the images are segmented/partitioned into sets of connected regions.

Then for each region, spatial and/or geometric features (e.g. area, elongation, smoothness) are computed in order to

characterise the regions [16, 17]. Finally, these regions are classified using these features [18].

Object based methods have shown promising results in the context of mono-image analysis. However, it seems

currently difficult to extend these methods to deal with the spatial properties of SITS. Indeed, although several methods

have been proposed in order to map segments from one image to another [19], or to directly build spatio-temporal

segments [20], their scalability to wide sensed areas and their robustness to local disturbance (temporally and spatially)

remains problematic.

This article aims at solving the above-mentioned issues. We therefore propose to classify SITS as the radiometric

evolution of atomic sensed areas (i.e., pixels) with time. Then, in order to take into account the spatial properties of the

data, we propose to characterise each pixel with spatial and geometrical attributes obtained using a pre-segmentation

step. This formulation allows the study of spatial characteristics over time while abstracting from the correspondence

between segments since the data remains the pixel. Moreover, this formulation is aimed at obtaining accurate and

reliable evolution behaviour maps both by preserving the geometrical details in the images and by properly considering

the spatial context information.

This paradigm, using spatially characterised pixels, was previously introduced and studied for multi-level seg-

mentation of a single image in [21] and has shown promising results. We propose, in this article, to extend it to the

analysis of multi-temporal satellite images.

3. Spatio-temporal analysis methodology

In this section, we present the proposed approach, which is composed of five main steps that are applied sequen-

tially:
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Figure 1: Workflow of the proposed approach.

A. Segmentation of the images;

B. Characterisation of the regions;

C. Construction of the vector images;

D. Construction of the time series;

E. Classification of the time series.

These steps are fully described in the remainder of this section. The reader may also refer to Figure 1 for a visual

outline of the workflow of the proposed approach.

Input / Output

Let us briefly define the input (resp. the output) of the proposed method.

Input. The method takes as input a series Simage = 〈I1, . . . , IN 〉 of N ortho-rectified1 images of widthW and height

H . Let B be the number of bands of the images composing the series. Each multivalued (i.e. with multiple bands)

image In (n ∈ [1,N]) can be seen as a function:

In : [[1,W]] × [[1,H]] → Z
B

(x, y) 7→
B
∏

b=1

In
b
(x, y)

(1)

with
∏

be the Cartesian product and [[a, b]] denote the interval on Z, bounded by a, b ∈ Z.

Output. The method gives as output a classification/clustering of the major behaviours of evolution. Such classifica-

tion can be modelled by a label image IC : [[1,W]] × [[1,H]] → [[1,C]], which associates to each sensed area (x, y) a

class value C(x, y) among the C possible ones.

Addendum: Each class from the classification is also modelled by a centroid sequence, which provides another

source of information of the main evolution behaviours.

3.1. Segmentation of images

A segmentation of a multivalued image In is a partition R
n = {Rn

i
}Rn

i=1
of [[1,W]] × [[1,H]]; broadly speaking, the

scene visualised in In is “decomposed” into Rn distinct parts Rn
i
, which are supposed to present specific radiometrical

properties. We will denote Rn
i

as a region of the image In. To any segmented image In, we then associate a region

image

In
R

: [[1,W]] × [[1,H]] → [[1,Rn]]

(x, y) 7→ In
R
(x, y)

(2)

Such region image is a function that associates to each sensed area (x, y) a region label In
R
(x, y) among the Rn possible

ones.

Once the N images have been segmented (producing N region images In
R
, (n ∈ [[1,N]])), it is then possible to

characterise each region of each segmentation by following the next step.

1Note that, the radiometric levels of the images do not have to be comparable from one image to another.
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3.2. Regions characterisation

Numerous features (spectral, geometrical, topological, etc.) can be computed for the regions of a segmentation in

order to characterise them. Each feature can be seen as a function F associating to each region Rn
i

(i ∈ [[1,Rn]]) of a

segmentation S
n a corresponding feature value F(Rn

i
) ∈ R.

F : [[1,R]] → R

Rn
i

7→ F(Rn
i
)

(3)

Once a region is characterised by a feature value, it is then possible to affect this value to all the pixels composing the

region. LetA be the number of features chosen to describe every sensed area (x, y) of every image.

3.3. Construction of vector images

At this step, each pixel of a multivalued image In can be characterised by two types of information:

- directly sensed values (i.e., B values, denoted Pn
b

with b ∈ [[1,B]] where Pn
b
(x, y) = In

b
(x, y));

- region-associated values (i.e., A values, denoted Fa with a ∈ [[1,A]]).

All of these values are normalised over the image time series. It is then possible to combine these features to build

“enriched” pixels in order to better characterise them. To process, a vector of features is created and associated to

each one of the pixels contained in the image In. Finally, by applying this step to each image of the series, we build

N vector images defined as:

Vn : [[1,W]] × [[1,H]] → [0, 1]B+A

(x, y) 7→
B
∏

b=1

Pn
b
(x, y) ×

A
∏

a=1

Fa(In
R
(x, y))

(4)

3.4. Construction of time series

Let S be the dataset built from the image time series. S is the set of sequences defined as:

S =
{

〈V1(x, y), · · · ,VN (x, y) 〉 | x ∈ [[1,W]] , y ∈ [[1,H]]
}

(5)

In these sequences, each element is (B+A)-dimensional. Since high-dimensional spaces do not often provide the best

solutions, we will study different projections of this (B+A)-dimensional space in the experiment part (e.g., time series

where each pixel is characterised by a 5-tuples composed of three directly sensed values and two region-associated

values).

3.5. Classification of the time series

The extraction of relevant temporal behaviours from satellite image time series can be realised using a clas-

sification algorithm. Once these time series have been built, it becomes possible to classify them into different

clusters/classes of interest. To this end, the proposed methodology makes it possible to use either supervised or

unsupervised classification algorithms.

A classification of a set of sequences S is a partition C = {Ci}Ci=1
of [[1,W]] × [[1,H]]; broadly speaking, as each

temporal sequence is associated to a sensed area (x, y), the whole scene can be “decomposed” into C distinct parts

Ci, which are supposed to represent similar temporal evolution behaviours. We will denote Ci as a cluster/class. The

classification can be modelled by a label image IC : [[1,W]]× [[1,H]]→ [[1,C]], which associates to each sensed area

(x, y) a class value IC(x, y) among the C possible ones

IC : [[1,W]] × [[1,H]] → [[1,C]]

(x, y) 7→ IC(x, y)
(6)
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4. Experiments

4.1. Applicative context: Crop monitoring

The analysis of agronomical areas is important for the monitoring of physical variables, in order to give informa-

tion to the experts about pollution, vegetation health, crop rotation, etc. This monitoring is usually achieved through

remote sensing. Indeed, by using classification processes, satellite image time series actually provide an efficient way

to monitor the evolution of the Earth’s surface. Moreover, when the classes of interest are temporal (e.g., wheat crop,

maize crop), the time dimension of the data has to be taken into account by the classification algorithms. For instance,

the reflectance levels of the maize crop and of the wheat crop are very similar while their temporal behaviours are

quite different (i.e., the wheat crop is ahead of the maize crop).

Thus, the usual strategy for land-cover mapping consists of classifying the temporal radiometric profiles of atomic

sensed areas (x, y). With the arrival of SITS with high spatial resolution (HSR), it becomes necessary to use the spatial

information held in these series, in order to either study the evolution of spatial features, or to help characterising the

different land-cover classes. Our experiments focus on the second point. The underlying idea is that several spatially-

built features can be used in the classification process. For example, some crops are usually cultivated in smaller

parcels than others, while having the same radiometric behaviour (e.g., sunflower crop vs. wheat crop). Another

(non restrictive) example could be the use of the smoothness of the regions, which could help to distinguish between

tree-crop and forest.

4.2. Material: The Satellite Image Time Series used

We detail here the main information concerning the images used for this work. The area of study of this work is

located near the town of Toulouse in the South West of France. We have at our disposal 15 cloud-free Formosat-2

images sensed over the 2007 cultural year. These images cover an area of 64 km2. An image from the series is given

in Figure 2 while the temporal repartition of the sensed images is given in Figure 3.

From these images, we use the multi-spectral product at a spatial resolution of 8 m with the four bands Near-

Infrared, Red, Green and Blue. Before being used in this work, the Formosat-2 products have been ortho-rectified

(guaranteeing that a pixel (x, y) covers the same geographic area throughout the image series). All images also undergo

processes in order to make the radiometric pixel values comparable from one image to another. These processes

consist of converting the digital counts provided by the sensor into a physical magnitude and in restoring their own

contribution to the surface by correcting for atmospheric effects.

From the instrument radiometric model, digital numbers are first converted into reflectances (normalised physical

quantities of solar irradiance). The absolute calibration coefficients used in this step come from the monitoring of

Formosat-2 sensors conducted by the French Space Agency (CNES). The inversion of the surface reflectance is then

made by comparing the measured reflectance in simulations at the top of the atmosphere, carried out for atmospheric

and geometric conditions of measurement. The elevation is taken into account by carrying out simulations for various

altitudes, including a weighting of the atmospheric pressure and the amounts of aerosols and water vapour. The state

of the atmosphere at the time of the sensing is in turn characterised using meteorological sources (NCEP for the

pressure and the humidity), using ozone data sources (TOMS or TOAST) and using aerosol data (SeaWiFS, Aeronet).

Otherwise, climatological values are used.

4.3. Settings

The five steps described in Section 3 have been performed as follows.

Segmentation of images. In the literature, the most efficient segmentation algorithms are obtained by combining

several basic/standard ones. Furthermore, the parameters of these basic segmentation algorithms are tuned according

to the characteristics of the image modality (used as input) and the features of the objects to be segmented. To

avoid this parametrisation problem, we have chosen to use the Mean-Shift segmentation algorithm [22] to segment

each image. Indeed, this algorithm is simple to configure and has shown promising results in the context of the

segmentation of remote sensing images [23].

For a given pixel, this algorithm builds a set of neighbouring pixels within a given spatial radius and colour range.

The spatial and colour centre of this set is then computed and the algorithm iterates with this new spatial and colour
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Figure 2: One image from the series (August, 4th 2007).

day of year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3: Sensing distribution of images sensed over 2007. Each spot represents a sensed image.

centre. There are three main parameters: the spatial radius (denoted by hs) used for defining the neighbourhood, the

range radius (denoted by hr) used for defining the interval in the colour space and the minimum size M for the regions

to be kept after segmentation.

Since the level of geometrical information extracted by the segmentation algorithm depends on its parametrisation,

we have run the algorithm using different parameter configurations. Experiments have shown that the best parameter

configuration for the extraction of agricultural areas from these data is (hs = 5, hr = 25,M = 25). Figure 4 illustrates

different segmentation results obtained on an extract of the image presented in Figure 2. One can note that the

parameter configuration (hs = 5, hr = 5,M = 25) provides over-segmented results while the parameter configuration

(hs = 5, hr = 25,M = 25) provides satisfactory results to deal with for the extraction of agricultural areas. We have

used the OTB implementation2 of the Mean-Shift algorithm.

Region characterisation. Several characteristics can be useful for the classification of agronomical scene. For in-

stance, the size of the regions could be used to discriminate small/large fields, while the smoothness could be used

to dissociate forest regions from fields. In this way and without loss of generality, the following region-associated

features have been computed:

2ORFEO Toolbox (OTB) is an open source library of image processing algorithms developed by the French Space Agency (CNES).

http://www.orfeo-toolbox.org
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(a) (b) (c)

Figure 4: Results of the Mean-Shift segmentation algorithm carried out on an extract of the satellite image presented in Figure 2. (a) Extract of one

image of the series. (b) Segmentation result (hs = 5, hr = 5,M = 25). (c) Segmentation result (hs = 5, hr = 25,M = 25). Note that the boundaries

of the regions are depicted in white.

- the mean of the infra-red band of the region (FNIR);

- the mean of the red band of the region (FR);

- the mean of the green band of the region (FG);

- the mean of the blue band of the region (FB);

- the area of the region (FArea);

- the elongation of the region (FElong.);

- the smoothness of the region (FS mooth.).

The elongation is computed as the highest ratio between the width and the length of several bounding boxes

(computed for different directions, i.e., each π/8). The smoothness is computed as the ratio between the perimeter

of the morphologically opened region and the original region. To this end, we use an opening structuring element

invariant to the scale (i.e., with a size depending on the area of the original region). The size of the structuring element

was set to
√

FArea.

Construction of vector images. As it was explained previously, each pixel can be characterised by two types

of information: directly sensed values (denoted as PNIR, PR, PG, PB), and region-associated values (denoted as

FNIR, . . . , FS mooth.). All the values are normalised in [0, 1], attribute by attribute over the series. This allows each

attribute to be of comparable weight for the classification step.

Construction of time series. In order to find the best separation of thematic classes, we tested several combinations

of the nine attributes over the time series. Twelve combinations were selected:

⋆. (PNIR, PR, PG, PB), used as reference;

1. (FNIR, FR, FG, FB);

2. (PNIR, PR, PG, PB, FNIR, FR, FG, FB);

3. (PNIR, PR, PG, PB, FS mooth.);

4. (PNIR, PR, PG, PB, FArea);

5. (PNIR, PR, PG, PB, FElong.);

6. (PNIR, PR, PG, PB, FS mooth., FArea, FElong.);

7. (FNIR, FR, FG, FB, FS mooth.);

8. (FNIR, FR, FG, FB, FArea);

9. (FNIR, FR, FG, FB, FElong.);
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10. (FNIR, FR, FG, FB, FS mooth., FArea, FElong.);

11. All attributes.

Classification of time series. In the machine learning literature, classification problems are usually addressed using

supervised or unsupervised algorithms. Supervised classification algorithms require training examples to learn the

classification model. In our case, as we want to demonstrate the relevance of the proposed data representation, the

choice and the suitability of the examples would create a bias, which would make difficult to identify the benefits

provided by the spatial features. For these reasons, we have chosen to use an unsupervised classification algorithm.

We have then applied the classical K-means clustering algorithm [24] to classify the time series previously constructed.

The distance used to compare the time series of S is the Euclidean distance3.

In agreement with the expert, the K-means algorithm has been used with as many classes (see Appendix A.) as in

the reference map (i.e., 25 seeds), and with 15 iterations. Note that any clustering algorithm dealing with numerical

data could also be used.

4.4. Validation

The obtained results have been compared to a land cover map produced by the method described in [26] using a

comprehensive ground reference data set. Several evaluation indexes have been computed. To assess the accuracy of

the extracted thematic classes, we have computed the mean, for each class, of the F-measures obtained F . To this

end, for each thematic class, the best corresponding clusters (in terms of partitions) were extracted. Then, we have

computed: the percentage of false positives (denoted by f (p)), the percentage of false negatives (denoted by f (n)) and

the percentage of true positives (denoted by t(p)). These measures are used to estimate the precision P and the recall

R of the results obtained by using the proposed method:

P = t(p)

t(p) + f (p)
and R = t(p)

t(p) + f (n)
(7)

For each experiment, we have then computed the geometrical mean P of the precisions obtained and the geometrical

mean R of the recalls obtained. Finally, we have computed the mean F-measure F which is the harmonic mean of the

mean precision and the mean recall:

F = 2 ·
P ·R
P + R

(8)

To assess the relevance of the results, we have also computed the Kappa index [27]. The Kappa index K , which

is a measure of global classification accuracy, is defined as:

K = Pr(a) − Pr(e)

1 − Pr(e)
(9)

where Pr(a) is the relative agreement among the observers, and Pr(e) is the hypothetical probability of chance

agreement. The Kappa index takes value in [0, 1] and decreases as the classification is in disagreement with the

ground-truth map. We have computed this index as follows. The approach consists of considering all point couples

(x1, x2) = ((x1, y1), (x2, y2)) and see the configuration of these two points in each partition (the clustering result and

the ground-truth). There are four possible configurations; for each one, a counter is associated and incremented each

time a configuration appears:

1. x1 and x2 belong to the same partition both in the clustering and in the reference map (counter ss);

2. x1 and x2 belong to the same partition in the clustering but not in the reference map (counter sd);

3. x1 and x2 belong to the same partition in the reference map but not in the clustering (counter ds);

4. x1 and x2 belong to the same partition neither in the reference map nor in the clustering (counter dd).

3Note that other distances (and more relevant temporal ones [25]) could also be used. However, we remind that this article is focused on the

data representation and not on the relevance of the classification algorithm.
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Table 1: Results of the experiments.

Experiment F K

⋆ (PNIR, PR, PG, PB) 51.9 87.7

1 (FNIR, FR, FG, FB) 52.3 87.8

2 (PNIR, PR, PG, PB, FNIR, FR, FG, FB) 51.8 87.8

3 (PNIR, PR, PG, PB, FS mooth.) 52.7 88.0

4 (PNIR, PR, PG, PB, FArea) 51.7 86.6

5 (PNIR, PR, PG, PB, FElong.) 46.0 87.3

6 (PNIR, PR, PG, PB, FS mooth., FArea, FElong.) 48.5 87.1

7 (FNIR, FR, FG, FB, FS mooth.) 53.2 88.0

8 (FNIR, FR, FG, FB, FArea) 51.8 86.6

9 (FNIR, FR, FG, FB, FElong.) 45.7 87.3

10 (FNIR, FR, FG, FB, FS mooth., FArea, FElong.) 47.6 86.9

11 All attributes 51.2 87.2

The best scores are shown in boldface.

Thus, the Kappa index is computed with:

Pr(a) =
ss + dd

ss + sd + ds + dd

(10)

and

Pr(e) =
(ss + sd) · (ss + ds) + (sd + dd) · (ds + dd)

(ss + sd + ds + dd)2
(11)

Note that the Kappa index is an agreement measure between two partitions and thus does not require to “align” the

clusters with the reference classes.

5. Results

This section presents the results of the proposed contextual approach for multi-temporal analysis. These exper-

iments aim at showing a non-restrictive example of the use of our approach in the classification of an agronomical

HSR SITS.

Table 1 summarises the F-measure and the Kappa values obtained for the experiments with several attributes

projections (see Section 4). Experiment ⋆ gives the reference score obtained by a pixel-based classification of the

SITS. From this table, one can first note that these baseline scores are quite high, demonstrating the relevance of the

temporal dimension for land-cover classification. In addition, note that due to the significant number of classes in the

reference map, the Kappa scores are quite high and a small increase of the score can correspond to a major difference

in the classification.

These experiments show that the mean value of the regions, as well as the smoothness of the regions, are relevant

features for the classification of the specific studied area. However, the area feature seems actually not relevant

for this dataset, since each crop class contains different size of fields. A similar observation can be made for the

elongation feature. Nevertheless, these observations are not questioning the genericity of the approach, since these

spatial characteristics (and others) could be used in other applications. In our case, the best result has been obtained

with the use of the radiometric mean of the regions combined with their smoothness.

In order to visually assess the results provided by the proposed method, Figure 5 shows the best clustering result

obtained on sequences from 2007, as well as the corresponding reference land cover map. Finally, Figure 6 focuses on

a restricted area in order to visualise the differences between the pixel-based approach and the proposed pixel-enriched

approach. One can see that, in the details, the land-cover map obtained with the proposed pixel-enriched approach is
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(a)

(b)

Figure 5: Results of the proposed method carried out on the satellite image time series. (a) Land cover reference map. (b) Clustering map obtained

(Experiment 7). Note that this clustering map has been recoloured according to the corresponding land cover reference map.
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(a) (b)

(c) (d)

Figure 6: Zoom on an extract of the results provided by the proposed method carried out on the satellite image time series. (a) Zoom on the

considered ground surface in one image of the series. (b) Zoom on the Land cover reference map. (c) Zoom on the clustering map obtained with

Experiment ⋆. (d) Zoom on the clustering map obtained with Experiment 7.

spatially more consistent and regular than the result obtained with the pixel-based approach. Furthermore, one can

note that the orange and yellow classes, corresponding respectively to corn and wheat crop fields, as well as the dark

green class corresponding to hardwoods, are well separated. More generally, these results demonstrate statistically

and visually the relevance of the proposed pixel-enriched approach compared to the pixel-based analysis.

6. Conclusion

This article has introduced a novel approach for the analysis of satellite image time series. The originality of this

approach lies in its consideration of spatial relationships between pixels in each remotely sensed image. We have

seen that characterising pixels with contextual features computed on segments, allows us to enhance the classification

process. This methodology has been carried out on a SITS; the first results obtained have shown the relevance of this

approach.

We believe this work opens up a number of research directions. Firstly, the choice of spatial features and of their

weighting in the classification process has to be deeply studied. For instance, textural and topological features could

be used. Secondly, we also plan to validate the proposed methodology by using another segmentation strategies.

For instance, it has been proposed in [28] a new segmentation approach enabling to decompose the scene at differ-

ent semantic levels. Such an approach could be extended to SITS to analyse the scene in a multi-temporal/multi-level

fashion. Finally, the higher the spatial and temporal resolution, the more relevant our approach will be. In this way, the

next step of this study could consists of applying this paradigm to a series of images couples Multi-Spectral / Panchro-

matic. The spatial accuracy of Panchromatic images will help to preserve the fine details and structures.
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This hybrid paradigm combines the possibilities offered by the (per-pixel) multi-temporal analysis and the rele-

vance of the (mono-image) region-based frameworks for spatio-temporal analysis. The coming Sentinel-2 satellite

will provide at the same time images with different spatial and radiometric resolutions at a high temporal frequency.

In this context, the methodology proposed in this article provides a first trend to deal with such data.
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Appendix A. Legend of the maps
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