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Abstract

The theoretical study of the self-organization of two-disienal and geophysical turbulent
flows is addressed based on statistical mechanics methbdsreview is a self-contained pre-
sentation of classical and recent works on this subjecin filwe statistical mechanics basis of
the theory up to applications to Jupiter’s troposphere aeéo vortices and jets. Emphasize has
been placed on examples with available analytical treatinesrder to favor better understand-
ing of the physics and dynamics.

After a brief presentation of the 2D Euler and quasi-ge@étio equations, the specificity
of two-dimensional and geophysical turbulence is empldsiZhe equilibrium microcanonical
measure is built from the Liouville theorem. Important istédal mechanics concepts (large de-
viations, mean field approach) and thermodynamic concepteMble inequivalence, negative
heat capacity) are briefly explained and described.

On this theoretical basis, we predict the output of the longetevolution of complex
turbulent flows as statistical equilibria. This is appli@dnmake quantitative models of two-
dimensional turbulence, the Great Red Spot and other Jowvidices, ocean jets like the Gulf-
Stream, and ocean vortices. A detailed comparison betwese tstatistical equilibria and real
flow observations is provided.

We also present recent results for non-equilibrium situnesti for the studies of either the
relaxation towards equilibrium or non-equilibrium steastates. In this last case, forces and
dissipation are in a statistical balance; fluxes of conskqueantity characterize the system and
microcanonical or other equilibrium measures no longecriles the system.
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List of figure captions

Figurelpagell Observation of the Jovian atmosphere from Cassini (CeyidENASA/IPL-
Caltech). See figuré2 page71 for more detailed legends.

Figure2 pagell. Observation of the north Atlantic ocean from altimetrye Sgurel9 page
79 for more detailed legends.

Figure 3 pagel2. Example of an experimental realization of a 2D flow in a soapbie,
courtesy of American Physical Society. S&&T] and [107] for further details.

Figured pagel2 Experimental observation of a 2D long lived coherent vode the 14m
diameter Coriolis turntable (photo gamma production).

Figure5 page22. Vertical structure of the 1.5-layer quasi-geostrophiadeipa deep layer
of densityp + Ap and a lighter upper layer of thicknebsand densityp. Because of the inertia
of the lower layer, the dynamics is limited to the upper layer

Figure 6 page33. Snapshot of electron density (analogous to vorticity Jieldsuccessive
time from an initial condition with two vortices to a singlkertje scale coherent structure via tur-
bulent mixing (seel73 174]). The best experimental realization of inviscid 2D Eulguations
is probably so far achieved in those magnetized electranmzexperiments where the electrons
are confined in a Penning trap. The dynamics of both systeeisideed isomorphic, where the
electron density plays the role of vorticity. The major dbagk of this experimental setting
comes from its observation, since any measurement reghigafestruction of the plasma itself.

Figure7 page58. Bifurcation diagram for the statistical equilibria of tBB Euler equations
in a doubly periodic domain with aspect rato in the limit where the normal form treatment
is valid, in theg-a4 parameter plane. The geometry paramgtsrinversely proportional to the
energy and proportional to the difference between the twbdigenvalues of the Laplacian (or
equivalently tod — 1 in the limit of smalld — 1), the parametesy, measures the non-quadratic
contributions to the Casimir functional. The solid line isecond order phase transition be-
tween a dipole (mixed state) and a parallel flow alongytdéection (pure statX = 0). Along
the dashed line, a metastable parallel flow (alongxtt&ection, pure statX = 1) loses its sta-
bility.

Figure 8 page60. Bifurcation diagrams for statistical equilibria of the ZHuler equations
in a doubly periodic domain a) in thggas plane (see figur&@) b) obtained numerically in the
E — a4 plane, in the case of doubly periodic geometry with aspea = 1.1. The colored
insets are streamfunction and the inset curve illustrabes ggreement between numerical and
theoretical results in the low energy limit.

Figure9 page65. The double well shape of the specific free enefrgy) (see equatior8Q)).



The functionf (@) is even and possesses two minimgat +u. At equilibrium, at zeroth order
in R, the physical system will be described by two phases caorefipg to each of these minima.

Figure 10 page66. At zeroth order,p takes the two values-u on two sub-domaing\..
These sub-domains are separated by strong jets. The abtapd sf the structure, or equiva-
lently the position of the jets, is given by the first order lggis.

Figure11 page68. lllustration of the Plateau problem (or minimal area peoh) with soap
films: the spherical bubble minimizes its area for a giverurm (Jean Simeon Chardings
bulles de savonl734)

Figurel2page7l. Observation of the Jovian atmosphere from Cassini (CoyudeNASA/IPL-
Caltech). One of the most striking feature of the Jovian aphere is the self organization of the
flow into alternating eastward and westward jets, produttiegvisible banded structure and the
existence of a huge anticyclonic vortex20,000 kmwide, located around 20 South: the Great
Red Spot (GRS). The GRS has a ring structure: it is a hollowexaurrounded by a jet of typi-
cal velocity~ 100m.s{-1 and width~ 1,000km Remarkably, the GRS has been observed to
be stable and quasi-steady for many centuries despite tlemuading turbulent dynamics. The
explanation of the detailed structure of the GRS velocitidfand of its stability is one of the
main achievement of the equilibrium statistical mechanitsvo dimensional and geophysical
flows (see figurd.3 and sectior).

Figure13 page73. Left: the observed velocity field is from Voyager spacecdaita, from
Dowling and Ingersoll §3] ; the length of each line is proportional to the velocity lzatt point.
Note the strong jet structure of width of ordBr the Rossby deformation radius. Right: the
velocity field for the statistical equilibrium model of the€at Red Spot. The actual values of
the jet maximum velocity, jet width, vortex width and lendthwith the observed ones. The
jet is interpreted as the interface between two phases; @fatiem corresponds to a different
mixing level of the potential vorticity. The jet shape obeysinimal length variational problem
(an isoperimetrical problem) balanced by the effect of thepdlayer shear.

Figurel4 page73. Left panel: typical vortex shapes obtained from the isiopetrical prob-
lem (curvature radius equatioB5)), for two different values of the parameters (arbitrarytg)n
The characteristic properties of Jupiter’s vortex shapesy(elongated, reaching extremal lat-
itude ym where the curvature radius is extremely large) are welladpeed by these results.
Central panel: the Great Red Spot and one of the White Ovadght Ranel: one of the Brown
Barge cyclones of Jupiter’s north atmosphere. Note the pecyliar cigar shape of this vortex,
in agreement with statistical mechanics predictions flaftel).

Figure 15 page75. Phase diagram of the statistical equilibrium states #etise energye
and a parameter related to the asymmetry between positty@egmative potential vorticitys,
with a quadratic topography. The inner solid line corregl®oto a phase transition, between
vortex and straight jet solutions. The dash line correspdadhe limit of validity of the small



deformation radius hypothesis. The dot lines are constaméx aspect ratio lines with values
2,10,20,30,40,50,70,80 respectively. We have repred@mtly solutions for which anticyclonic
potential vorticity dominateR > 0). The opposite situation may be recovered by symmetry.
For a more detailed discussion of this figure, the precisiogl betweerk, B and the results
presented in this review, please s2#]]

Figure16 page76. Snapshot of surface velocity field from a comprehensivearigal sim-
ulation of the southern Ocean8(]. Left: coarse resolution, the effect of mesoscale eddies
(~ 10km) is parameterized. Right: higher resolution, without paegerization of mesoscale
eddies. Note the formation of large scale coherent stredtuthe high resolution simulation:
there is either strong and thin eastward jets or rings of diem- 200km Typical velocity and
width of jets (be it eastward or around the rings) are regpegt~ 1 ms~* and~ 20km The
give a statistical mechanics explanation and model forethieg)s.

Figurel7 page77. Vortex statistical equilibria in the quasi-geostrophiodal. It is a circular
patch of (homogenized) potential vorticity in a backgrowfidthomogenized potential vorticity,
with two different mixing values. The velocity field (righapel) has a very clear ring structure,
similarly to the Gulf-Stream rings and to many other oceartic®s. The width of the jet sur-
rounding the ring has the order of magnitude of the Rosshiysauf deformatiorR.

Figure 18 page78. Altimetry observation of the westward drift of oceanic egd(includ-
ing rings) from p2], figure 4. The red line is the zonal average (along a latittid=e) of the
propagation speeds of all eddies with life time greater ttaweeks. The black line represents
the velocity B:R? wheref3; is the meridional gradient of the Coriolis parameter &nthe first
baroclinic Rossby radius of deformation. This eddy progtiagsspeed is a prediction of statisti-
cal mechanics, when the linear momentum conservation,anartslational invariance, is taken
into account (see sectigh4.2.

Figure 19 page79. Observation of the sea surface height of the north Atlamtean (Gulf
Stream area) from altimetry REF. As explained in secfidin for geophysical flows, the surface
velocity field can be inferred from the see surface heightH)SStrong gradient of SSH are
related to strong jets. The Gulf stream appears as a robsistaga jet (in presence of mean-
ders), flowing along the east coast of north America and tteactiing the coast to enter the
Atlantic ocean, with an extensidn~ 2000km The jet is surrounded by numerous westward
propagating rings of typical diameteks~ 200 km Typical velocities and widths of both the
Gulf Stream and its rings jets are respectiveljn. ! and 50km, corresponding to a Reynolds
numberRe~ 10, Such rings can be understood as local statistical eqgaijiand strong east-
ward jets like the Gulf Stream and obtained as marginallyabis statistical equilibria in simple
academic models (see subsectidnss).

Figure 20 page80. b) and c) represent respectively a snapshot of the stremtidn and
potential vorticity (red: positive values; blue: negatixadues) in the upper layer of a three lay-
ers quasi-geostrophic model in a closed domain, repregeatimid-latitude oceanic basin, in



presence of wind forcing. Both figures are taken from nunaksgnulations 1], see alsoT]. a)
Streamfunction predicted by statistical mechanics, setose5 on page 79or further details.
Even in an out-equilibrium situation like this one, the difpuium statistical mechanics predicts
correctly the overall qualitative structure of the flow.

Figure21 page8l. a) Eastward jet: the interface is zonal, with positive ptige vorticity
g = uon the northern part of the domain. b) Westward jet: the fateris zonal, with negative
potential vorticityq = —u in the northern part of the domain. c) Perturbation of therfiace for
the eastward jet configuration, to determine when this Ewlls a local equilibrium (see sub-
section5.2). Without topography, both (a) and (b) are entropy maximah\positive beta effect
(b) is the global entropy maximum; with negative beta effagis the global entropy maximum.

Figure 22 page86. Phase diagrams of RSM statistical equilibrium states eflilb layer
guasi-geostrophic model, characterized by a lireany relationship, in a rectangular domain
elongated in the direction. S(E, ") is the equilibrium entrop)E is the energy anfl the circula-
tion. Low energy states are the celebrated Fofonoff saiat[B0], presenting a weak westward
flow in the domain bulk. High energy states have a very diffestructure (a dipole). Please
note that at high energy the entropy is non-concave. Thislégad to ensemble inequivalence
(see3.3 page50), which explain why such states were not computed in prevgiudies. The
method to compute explicitly this phase diagram is the sastbeone presented in subsection
3.5page52. See 197] for more details.

Figure 23 page92. First experimental observation of the inverse energyadsand the
associated>/3 spectrum, from179. The 2D turbulent flow is approached here by a thin layer
of mercury and a further ordering from a transverse magtiietid. The flow is forced by an
array of electrodes at the bottom, with an oscillating eledteld. The parameter Rh is the ratio
between inertial to bottom friction terms. At IoRhthe flow has the structure of the forcing (left
panel). At sufficiently higiRhthe prediction of the self similar cascade theory is wellevbsd
(right panel, bottom), and at even higheh, the break up of the self similar theory along with
the organization of the flow into a coherent large scale flogbserved (see right panel above).

Figure25 page98. w — Y scatter-plots (cyan) (see color figure on the .pdf versibmplack
the same after time averaging (averaging windows t < 1/v, the drift due to translational
invariance has been removed)eft: dipole case withd = 1.03. Right: unidirectional case
0 =1.10.

Figure26 page99. Dynamics of the 2D Navier—Stokes equations with stocbdstces in a
doubly periodic domain of aspect ratdg in a non-equilibrium phase transition regime. The two
main plots are the time series and probability density fionst (PDFs) of the modulus of the
Fourier component; = (2—711)2 J dr w(x,y) exp(iy) illustrating random changes between dipoles

(|z1] ~ 0.55) and unidirectional flows#;| ~ 0.55). As discussed in sectidh4.3 the existence
of such a non-equilibrium phase transition can be guesseddquilibrium phase diagrams (see
figure8).



Figure 27 page 100. Bistability in a rotating tank experiment with topograp(shaded
area)[Ll90, 201]. The dynamics in this experiment would be well modeled byDakarotropic
model with topography (the quasi-geostrophic model VRth- ©). The flow is alternatively
close to two very distinct states, with random switches frame state to the other. Left: the
streamfunction of each of these two states. Right: the tienes of the velocity measured at
the location of the black square on the left figure, illushgiclearly the bistable behavior. The
similar theoretical structures for the 2D Euler equationsne hand and the quasi-geostrophic
model on the other hand, suggest that the bistability ingkjeriment can be explained as a non
equilibrium phase transition, as done in sectof.3(see also figur@6).

Figure 28 page100. Kuroshio: sea surface temperature of the pacific oceanoédsipan,
February 18, 2009, infra-red radiometer from satellite KRR, MODIS) (New Generation Sea
Surface Temperature (NGSST), data from JAXA (Japan Aegasgaploration Agency)).

The Kuroshio is a very strong current flowing along the casmith of Japan, before penetrating
into the Pacific ocean. It is similar to the Gulf Stream in thertN Atlantic. In the picture,
The strong meandering color gradient (transition fromoyxelto green) delineates the path of
the strong jet (the Kuroshio extension) flowing eastwardnhftbe coast of Japan into the Pacific
ocean.

South of Japan, the yellowish area is the sign that, at the ghthis picture, the path of the
Kuroshio had detached from the Japan coast and was in a meandte, like in the 1959-
1962 period (see figur29).

Figure29 pagel0Ll Bistability of the paths of the Kuroshio during the 19562%eriod :
paths of the Kuroshio in (left) its small meander state aigh{y its large meander state. The
1000-m (solid) and 4000-m (dotted) contours are also shdfigure from Schmeits and Dijk-
straa [L79, adapted from Taft 1972).

Figure 30 pagel01 Bistability of the paths of the Kuroshio, from Qiu and Miab6[l:
time series of the distance of the Kuroshio jet axes from t@st; averaged other the part of the
coast between 132 degree and 140 degrees East, from a nalns@rialation using a two layer
primitive equation model.

Figure31 pagel06. Evolution ofw(x,y,t) from an initial vorticity perturbatior(x,y,0) =
w1 (Y, 0) cos(x), by the linearized 2D Euler equations close to a shearlflgw) = gy (colors in
the .PDF document).

Figure 32 page107. Evolution of the vorticity perturbatiormo(x,y,t) = w(y,t)exp(ikx),
close to a parallel flowg(x,y) = U (y)ex with U (y) = cos(y), in a doubly periodic domain with
aspect rati@d. The figure shows the modulus of the perturbatiarty,t)| as a function of time
andy. One clearly sees that the vorticity perturbation rapidiywerges to zero close to the
points where the velocity profild (y) has extrema{’(yp) = 0, withy, = 0 andr). Thisdeple-
tion of the perturbation vorticityat the stationary streamlingg is a new generic self-consistent



mechanism, understood mathematically as the regularizafithe critical layer singularities at
the edge of the continuous spectrum (s2&)[

Figure33 pagel27. The space-time series of perturbation velocity companévg . (y,t)|
(@) and|vsy(y,t)| (b), for the initial perturbation profile c¢%/d) in a doubly periodic domain
with aspect ratiadd = 1.1. Both the components relax toward zero, showing the astinsta-
bility of the Euler equations (colors in the .pdf document).

Figure34 pagel28 The time series of perturbation velocity componemgs (y,t)| (a) and
IVsy(Y,t)| (b) at three locationsy = O (vicinity of the stationary streamline) (redy,= /4
(green), andy = 1r/2 (blue), for the initial perturbation profil&(y) = 1 and the aspect ratio
0 = 1.1. We observe the asymptotic formg x(y,t)| ~t=9, with a = 1, and|vs y(y,t)| ~ t=B,
with B = 2, in accordance with the theory for the asymptotic behasfdhne velocity (equations
(113 and (@14). The initial perturbation profile is cd%/d) in a doubly periodic domain with
aspect rati®d = 1.1 (colors in the .pdf document).

Figure35pagel29 The space-time series of tkaveraged perturbation vorticityg (y,t) =

w(Y,t)-Qo (y,0). The initial condition isw (y,t) = Qq (y,0) + £cos(x), in a doubly periodic do-
main with aspect ratid = 1.1 (colors in the .pdf document).
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Figure 1: Observation of the Jovian atmosphere from CaéSmirtesy of NASA/JPL-Caltech). See figut2 page
71for more detailed legends.
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Figure 2: Observation of the north Atlantic ocean from adting. See figurd.9 page79 for more detailed legends.
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Figure 3. Example of an experimental realization of a 2D flonaisoap bubble, courtesy of American Physical
Society. Seel77] and [107] for further details.

Figure 4: Experimental observation of a 2D long lived cohewertex on the 14m diameter Coriolis turntable (photo
gamma production).
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1. Introduction

1.1. Two-dimensional and geostrophic turbulence

For many decades, two-dimensional turbulence has beeryautve subject for theoret-
ical investigations, motivated not only by the conceptmétiiest in understanding atmosphere
and ocean turbulence, but also by the beauty and precisitre dheoretical and mathematical
achievements obtained thereby. For over two decades, itwerdional flows have been studied
experimentally in many different laboratory setups, asristance illustrated in figures 6, 23,
and27 (see also107, 180 and references therein for further details).

Although they both involve a huge range of temporal and apatiales, two-dimensional
and three-dimensional turbulent flows are very differemntature.

The first difference is that whereas in three-dimensiondiulence energy flows forward
(from the largest towards the smallest scales), it flows Wwactt (from the smallest towards the
largest scales) in two-dimensional turbulence. Threeedsional turbulence transfers energy
towards the viscous scale where it is dissipated into heafiaite rate, no matter how small the
viscosity. By contrast, in the absence of any strong digsipanechanism at the largest scales,
the dissipation of energy remains weak in two-dimensionddulence. As a consequence, the
flow dynamics is dominated by large scale coherent strugtumech as vortices or jets. This
review is devoted to the understanding and prediction cfdlstable and quasi-steady structures
in two-dimensional turbulent flows.

The second fundamental difference between 2D and 3D turbelis that the level of fluctu-
ations in two-dimensional turbulence is very small. Thegdast scales of three-dimensional tur-
bulent flows are the place of incessant instabilities, waetke largest scales of two-dimensional
turbulence are often quasi-stationary and evolve over yaleeg time scale, compared for in-
stance to the turnover time of the large scale coherenttates

As explained in this review, the above-mentioned pectiériof two-dimensional turbu-
lent flows are theoretically understood as the consequesfcedgnamical invariants of two-
dimensional perfect flows, which are not invariants of perflree-dimensional flows. These in-
variants, including the enstrophy, make the forward eneaggade impossible in two-dimensional
flows, and explain the existence of an extremely large nurabstable stationary solutions of
the 2D Euler equations, playing a major role in the dynamics.

Atmospheric and oceanic flows are three-dimensional, boihgly dominated by the Cori-
olis force, mainly balanced by pressure gradients (geopisicobalance). The turbulence that
develops in such flows is called geostrophic turbulence. éiodescribing it have the same type
of additional invariants as two-dimensional turbulencs.héas a consequence, energy flows
backward and the main phenomenon is the formation of largke soherent structures (jets,
cyclones and anticyclones) (see figut@sand19). The analogy between two-dimensional tur-
bulence and geophysical turbulence is further emphasigededtheoretical similarity between
the 2D Euler equations — describing 2D flows — and the layeuesiegeostrophic or shallow-
water models — describing the largest scales of geostraphiclence —: both are transport
equations of a scalar quantity by a non-divergent flow, cofirsg an infinity of invariants.
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The formation of large scale coherent structures is a fasioig problem and an essential part
of the dynamics of Earth’s atmosphere and oceans. This is\#tie motivation for setting up a
theory for the formation of the largest scales of geostroplid two-dimensional turbulence.

1.2. Turbulence and statistical mechanics

Any turbulence problem involves a huge number of degreeseeidbm coupled via com-
plex nonlinear interactions. The aim of any theory of tuemdle is to understand the statistical
properties of the velocity field. It is thus extremely tempgtand interesting to attack these prob-
lems from a statistical mechanics point of view. Statistinachanics is indeed a very powerful
theory that allows us to reduce the complexity of a systemmtova few thermodynamic param-
eters. As an example, the concept of phase transition alleve describe drastic changes of
the whole system when a few external parameters are cha8tgstical mechanics is the main
theoretical approach that we develop in this review, andhesvghat it succeeds in explaining
many of the phenomena associated with two-dimensionalliembe.

This may seem surprising at first, as it is a common belief gkattstical mechanics is not
successful in handling turbulence problems. The reasothferbelief is that most turbulence
problems are intrinsically far from equilibrium. For instae, the forward energy cascade in
three-dimensional turbulence involves a finite energyipiig®on flux no matter how small the
viscosity (anomalous dissipation). Because of this flug, ftbw cannot be considered close
to some equilibrium distribution. By contrast, two-dimiemal turbulence does not suffer from
this problem (there is no anomalous dissipation of the gNesg that equilibrium statistical me-
chanics, or close to equilibrium statistical mechanicsesaense when small fluxes are present.

The first attempt to use equilibrium statistical mechardess to explain the self-organization
of 2D turbulence comes from Onsager in 19483 (see [76] for a review of Onsager’s con-
tributions to turbulence theory). Onsager worked with tbepvortex model, a model made
of singular point vortices, first used by Lord Kelvin and whiis a special class of solution
of the 2D Euler equations. The equilibrium statistical naadbs of the point-vortex model
has a long and very interesting history, with wonderful pgeof mathematical achievements
[153 103 33, 109, 66, 43, 75, 4]. In order to treat flows with continuous vorticity fields,aher
approach, taking account of the quadratic invariants ongs proposed by Kraichnari13).
This last work has inspired a quadratic-invariant stat@ttheory for quasi-geostrophic flows
over topography: the Salmon—Holloway—Hendershott th¢br2, 171]. Another phenomeno-
logical approach based on a minimal enstrophy principlelaading to similar predictions for
the large scale flow as the Salmon—Holloway—Hendershotiryhigas been independently pro-
posed by Bretherton-Haidvoge2§]. The generalization of Onsager’s ideas to the 2D Euler
equation with continuous vorticity field, taking into aceowll invariants, has been proposed
in the beginning of the 1990463 139, 164, 168, leading to the Robert-Sommeria—Miller
theory (RSM theory). The RSM theory includes the previousdger, Kraichnan, Salmon—
Holloway—Hendershott and Bretherton-Haidvogel theosied determines the particular limits
1 within which those give relevant predictions and genersiliits. The part of this review deal-

1Corresponding to special classes of initial conditions
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ing with equilibrium statistical mechanics mainly fallsthin the framework of the RSM theory
and presents its further developments.

Over the last fifteen years, the RSM equilibrium theory hasnbapplied successfully to a
large class of problems, for both the Euler and quasi-gejpisic equations. We cite and describe
all relevant works and contributions to this subject. Thma af this review is also pedagogical,
and as such we have chosen to emphasize on a class of prohknean be understood using
analytical solutions. We give a comprehensive descriptioly of those works. Nevertheless,
this includes many interesting applications, such as ptiedis of phase transitions in different
contexts, a model for the Great Red Spot and other Joviaitesrtand models of ocean vortices
and jets.

Most turbulent flows are forced, and reach a statisticathady state where forcing is bal-
anced on average by a dissipative mechanism. Such sitsati@nreferred to in statistical
mechanics as Non-Equilibrium Steady States (NESS). Orss @& such problems in two-
dimensional turbulence are the self-similar inertial eass first described by Kraichnakilfl]:
the backward energy cascade and the forward enstrophydeastaese are essential concepts
of two-dimensional turbulence that will be briefly descdbélowever, in the regime where the
flow is dominated by large scale coherent structures, thelésimilar cascades are no longer
relevant and Kraichnan’s theory provides no prediction. Wik explain in this review how
the vicinity to statistical equilibrium can be invoked irder to provide partial responses to the
description of the non-equilibrium situations, for ingtarprediction of non-equilibrium phase
transitions. We will also emphasize why and how such pragtistbased on equilibrium statis-
tical mechanics are necessarily limited in scope, and @xplaw a non-equilibrium theory can
be foreseen based on kinetic theory approaches.

1.3. About this review

The aim of this review is to give a self-contained descriptd statistical mechanics of two-
dimensional and geophysical turbulence, and of its apjtics to real flows. For pedagogical
purposes, we will emphasize analytically solvable casethesphysics can be easily understood.

The typical audience should be graduate students and casesufrom different fields. One
of the difficulty with this review is that knowledge is reqedt from statistical physicsL]L7],
thermodynamics36], geophysical fluid dynamicslp6, 195, 171, 85] and two-dimensional tur-
bulence 113 180, 186]. For each of these subjects, the notions needed will béypeesented,
in a self-contained way, but we refer to classical textbomkeeview papers for more detailed
presentations.

There already exist several presentations of the equilibrétatistical mechanics of two-
dimensional and geostrophic turbulent flo8(, 129, some emphasizing kinetic approaches
of the point-vortex model43], other focusing on the legacy of Onsageé6]| Parts of the intro-
ductory sections of this review (two-dimensional fluid macics and the mean-field equilibrium
statistical mechanics theory) are similar to those foungr@vious reviews or lectures (especially
[180Q). However, the statistical mechanics foundations of tiemty is explained in further de-
tails and none of the applications discussed in this rewiatl, emphasis on analytically solvable
cases, were described in previous books or reviews. Fariost the present review gives i) a
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precise explanation of the statistical mechanics bastseafiteory, ii) a detailed discussion of the
validity of the mean-field approximation, iii) an analytieatment of phase diagrams for small
energy and analytic models for the Great Red Spot as wellrasckan jets and vortices, iv) a
detailed discussion of the irreversible behavior of the 2[leEequations despite its being actu-
ally a time reversible equation. In addition, we present nesults on non-equilibrium studies,
on the different regime description, on non-equilibriumagé transitions and kinetic theories.
Most of these new results have been derived over the last éarsy Other important recent
developments of the theory such as statistical ensemid@ivadence §9, 70] and related phase
transitions [L6] would be natural extensions of this review, but were cozrgd too advanced for
such a first introduction. We however always describe thenmegults and give the appropriate
references to the appropriate papers, for an interesteé@réabe able to understand these more
technical points.

We apologize that this review leaves little room for the diggion of experiments, for the
cascade regimes of two dimensional turbulence or for thetikirtheory of the point-vortex
model. For these we refer the reader 18(, 186], [113 9, 74, 3] and [66, 43] respectively.
Interesting related problems insufficiently covered irs tlaview also include the mathematical
works on the point-vortex modeB8, 109, 75] or on the existence of invariant measures and
their properties for the 2D stochastic Navier-Stokes aqndfil4, 115 134, as well as studies
of the self-organization of quasi-geostrophic jets on a{mane (seedl, 118 188 78, 65] and
references therein).

1.4. Detailed outline

Section2 is a general presentation of the equations and phenomegnoldgo-dimensional
(2D Euler equations) and geophysical turbulence. One dfithplest possible models for geo-
physical flows, namely the 1.5-layer quasi-geostrophic eh¢aiso called Charney—-Hasegawa—
Mima model), is presented in secti@riL

Section2.2 deals with important properties of 2D Euler and quasi-gepsiic equations,
and their physical consequences: the Hamiltonian stredgection2.2.1), the existence of an
infinite number of conserved quantities (sectibi.?).

These conservation laws play a central part in the theorgy Hne for instance responsible
for: i) the existence of multiple stationary solutions o tBD Euler equations and the stability
of some of these states (secti®r8.1), ii) the cascade phenomenology, with energy transferred
upscale, and enstrophy downscale (sec8dh2), iii) the most striking feature of 2D and geo-
physical flows: their self-organization into large scald@®nt structures (sectidh3.3, iv)
the non-trivial predictions of equilibrium statistical of@nics of two dimensional turbulence,
compared to statistical mechanics of three-dimensionaéutence (section2.3.4and2.3.5.
Sections2.3.4and 2.3.5also explain in details the relations between the Kraicheaergy-
enstrophy equilibrium theory and the Robert-Sommeridévitheory, and justify the validity of
a mean field approach.

The self-organization of two-dimensional and geostrofiloiws is the main motivation for a
statistical mechanics approach of the problem. The praSentof the equilibrium theory is the
aim of sectior3. A reader more interested in applications than in the si@ismechanics basis
of the theory can start her reading at the beginning of se@io
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Section3.1 explains how the microcanonical mean field variational fmwebdescribes sta-
tistical equilibria. All equilibrium results presentedexfvards rely on this variational problem.
The ergodicity hypothesis is also discussed in se@idn Section3.1.3explains the practical
and mathematical interest of canonical ensembles, evémeyf are not really relevant from a
physical point of view. SectioB.3 explains the relations between the statistical mecharics o
two dimensional flows and the statistical mechanics of oflystems with long range interac-
tions.

An analytically solvable case of phase transitions in a dopbriodic domain is presented
section3.5. This example chosen for its pedagogical interest, ilaistthe scope and type of
results one can expect from statistical theory of two-disi@mal and geophysical flows. The
concepts of bifurcations, phase transitions, and phasgaties reducing the complexity of tur-
bulent flows to a few parameters are emphasized.

Sectiond is an application of the equilibrium statistical mecharfosory to the explanation
of the stability and formation, and precise modeling of éasgale vortices in geophysical flows,
such as Jupiter’s celebrated Great Red Spot and the uhiguittbeanic mesoscale rings. The
analytical computations are carried out in the limit of a BriRassby radius (the typical length
scale characterizing geostrophic flows) compared to theaifosize, through an analogy with
phase coexistence in classical thermodynamics (for inst#re equilibrium of a gas bubble in
a liquid).

Section4.1 gives an account of the Van der Waals—Cahn—Hilliard modé&tstforder tran-
sitions, which is the relevant theoretical framework foisthroblem. The link between Van
der Waals—Cahn-Hilliard model and the statistical eqgudilof the 1.5-layer quasi-geostrophic
model is clarified in subsectiod.2 This analogy explains the formation of strong jets in
geostrophic turbulence. All the geophysical applicatipnssented in this review come from
this result.

Subsectiort.4deals with the application to mesoscale ocean vorticesir $@ké-organization
into circular rings and their observed westward drift arplaxed as a result of equilibrium sta-
tistical mechanics.

Subsectiort.3 deals with the application to Jovian vortices. The stabdind shapes of the
Red Great Spot, white ovals and brown barges are explainediiiibrium statistical mechan-
ics. A detailed comparison of statistical equilibrium pgotidns with the observed velocity field
is provided. These detailed quantitative results are otleeofnain achievements of the applica-
tion of the statistical equilibrium theory.

Section5 gives another application of the statistical theory, nowhi self-organization of
ocean currents. By considering the same analytical liniit #ieoretical framework as in the
previous section, we investigate the applicability of theikbrium statistical theory to the de-
scription of strong mid-latitude eastward jets, such asGh# Stream or the Kuroshio (north
Pacific Ocean). These jets are found to be marginally stable variations of the Coriolis
parameter (beta effect) or a possible zonal deep curreribanel to be key parameters for the
stability of these flows.
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Section6 deals with non-equilibrium situations: Non-Equilibriunte8dy States (NESS),
where an average balance between forces and dissipatiamsénfluxes of conserved quantity
(sections6.1to 6.5 and relaxation towards equilibrium (sectiérf). Section6.1is a general
discussion about the 2D Navier-Stokes equations and oais®r laws. The two regimes of
two-dimensional turbulence, the inverse energy cascadedmact enstrophy cascade on one
hand, and the regime dominated by large scale coherentwsgamn the other hand, are clearly
delimited in section®$.2 and6.3. Section6.4 delineates what can be learned from equilibrium
statistical mechanics, and what cannot, in a non-equilibrcontext. We also present predic-
tions of non-equilibrium phase transitions using equiilibr phase diagrams and compare these
predictions with direct numerical simulations. SectbBcomments progresses and challenges
for a non-equilibrium theory based on kinetic theory apphoaSection6.6 presents recent re-
sults on the asymptotic behavior of the linearized 2D Eutpragions and relaxation towards
equilibrium of the 2D Euler equations.
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2. Two-dimensional and geostrophic turbulence

In this section, we present the 2D Euler equations and thsi-geastrophic equations, the
simplest model of geophysical flows such as ocean or atmosilosvs. We also describe the
Hamiltonian structure of these equations, the related mycel invariants. The consequences of
these invariants are explained: i) for the inverse energgade, ii) for the existence of multiple
(stable and unstable) steady states for the equations.

2.1. 2D Euler and quasi-geostrophic equations

2.1.1. 2D Euler equations

The incompressible 3D Euler equations describe the momretransport of a perfect and
non-divergent flow. They read

dtu+u-Du:—%DP with O-u=0. D

whereu = (v,w) = v +we; (v is the projection ofu in the plane €.e,)). The densityp is
assumed to be constant. If we assume the flow to be two-dioraisiv = 0 andv = v (r)
with r = (x,y)), then it is easily verified that the vorticity is a scalar gtiy: 0 x v is along

e,. Defining the vorticity ago = (0 x v) . e, the 2D Euler equations take the simple form of a
conservation law for the vorticity. Indeed, taking the aifr(1) gives

Sw+Vv.0w=0;v=ex 0y ; w=AY, (2

where we have expressed the non divergent velocity as theotcar streamfunctiony. We
complement the equatio® = A with boundary conditions: if the flow takes place in a sim-
ply connected domai, then the condition that has no component along the normal to the
interface (impenetrability condition) imposgsto be constant on the interface. This constant
being arbitrary, we impos¢ = 0 on the interface. We may also consider flows on a doubly
periodic domain(0, 21rd) x (0, 2m) of aspect ratiad, in which case(x+ 2md,y) = Y(X,y)
andL»U(X7y+ 2”) = LII(X,y)

The (purely kinetic) energy of the flow reads

I N AR 2_ 1
5[@]—5/@drv _Z/er (Oy) = Z/erww’ 3

where the last equality has been obtained with an integratygparts. This quantity is conserved
by the dynamics €& = 0). As will be seen in sectio.2, the 2D Euler equations have an
infinity of other conserved quantities.

Given the strong analogies between the 2D Euler and quastigghic equations, we fur-
ther present the theoretical properties of both equatiossdétion2.2

In the preceding paragraph, we started from the 3D Eulerteguand assumed that the flow

is two-dimensional. A natural question to raise is whethehswo-dimensional flows actually
exist. Over the last decades, a number of experimentakegi@ins of two-dimensional flows
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have been performed. Two-dimensionality can be achievied srong geometrical constraints,
for instance soap film flows3p, 107] (see figure3, pagel?) or very thin fluid layers over denser
fluids [133, 155 (figure 24 page93). Another way to achieve two-dimensionality is to use a
very strong transverse ordering field: a strong transvemgnetic field in a metal liquid setup
[179 (see figure23, page92), or the Coriolis force on a rapidly rotating fluids (see figdy
pagel?). Another original way to mimic the 2D Euler equatior® is to look at the dynamics
of electrons in a Penning traf4, 173 (see figures, page33).

2.1.2. Large scale geophysical flows: the geostrophic ldan

The quasi-geostrophic equations are the simplest relenadel to describe mid- and high-
latitude atmosphere and ocean flows. The model itself wilptesented in sectioB.1.3 To
understand its physics, we need to introduce four fundastheahcepts of geophysical fluid dy-
namics: beta-plane approximation, hydrostatic balaneestgophic balance and Rossby radius
of deformation. This section gives a basic introductionhese concepts, that is sufficient for
understanding the discussions in the following sectionsnpee precise and detailed presenta-
tion can be found in geophysical fluid dynamics textbodks6][ 195, 171, 85).

To begin with, we write the momentum equations in a rotatiagie Q being the Earth’s ro-
tation vector), with gravityg, in Cartesian coordinates, calliegthe vertical direction (upward)
alongg, e, the meridional direction (northward), aegdthe zonal direction (eastward)

1
dtu+u-Du+ZQ><u:—EDP+g. (4)

Beta-plane approximationOne can show that for mid-latitude oceanic basin of typicatid:
ional extensiorL ~ 5000km, the lowest order effect of Earth’s sphericity appears omfgugh
the projection of Earth’s rotation vector on the local veatiaxis: f = 2Q - e, = fp + By, with
fo = 2QsinBy, wheref is the mean latitude where the flow takes place, @ng 2Q cos6y/re,
wherer, is the Earth’s radiusl@5, 156. At mid latitudes6y ~ 45°, so thatfo ~ 104 s~ and
Bo~ 10t mist.

Hydrostatic balance.Recallingu = (v,w), the momentum equationd)(along the vertical axis
read

OW+u-OW+2(Q xu)-e = —%0ZP+g.

In the ocean or atmosphere context, an estimation of ther @idenagnitude of each term
[195, 156 lead to the conclusion that the dominant terms are theoatrpressure gradients
and gravitation. Neglecting the others gives the hydristatiance:

J,P = —pg. 5)

Geostrophic balanceln the plane(x,y) perpendicular to the gravity direction, the momentum
equations read
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1
0tV+V-Dv+wdzv+er><v:—Eth, ©6)

whereldyP denotes the horizontal pressure gradient.

The Rossby numberis defined by the ratio of the order of magnitude of the adeadirm
v - [Ov over that of the Coriolis ternfie, x v. Introducing typical velocity and length_ for the
flow, € = U /fL. In mid-latitude atmosphere, ~ 10* km (size of cyclones and anticyclones),
U ~10ms3, so thats ~ 0.01. In the oceah ~ 107 km(width of ocean currents)) ~ 1 m.s?,
so thate &~ 0.1. In both cases, this number is smalks 1. In the limit of small Rossby numbers,
the advection term becomes negligible &), @nd at leading order there is a balance between the
Coriolis term and pressure gradients. This is called thetgephic balance:

fezxvg:—%DhP, (7)

wherevy is the geostrophic velocity. Froni), we see that the geostrophic velocity is orthogonal
to horizontal pressure gradients. Taking the curl of thesgephic balance?), and noting that
horizontal variations op and f are much weaker than variations \gf, we see that the two-
dimensional velocity field is at leading order non-divergeritt. vy = 0.

Let us consider the case of a flow with constant density po. Then the combination of the
vertical derivative of ) and of the hydrostatic equilibrium give®, x d,vg = %DhP =0: the
geostrophic flow does not vary with depth. This is the Tajgasudman theorem. However geo-
physical flows have slightly variable densities and displarefore vertical variations. But the
Taylor-Proudman theorem shows that such vertical variat@re strongly constrained and ex-
plain the tendency of geostrophic flows towards two-dimameity. Please sed 95, 156, 171]
for further discussions of the geostrophic balance.

The Rossby radius of deformatioA consequence of the combined effects of geostrophic and
hydrostatic balances is the existence of density and mefigunts, whose typical width is called
the Rossby radius of deformation. This length plays a cendta in geostrophic dynamics.

In order to give a physical understanding of the Rossbhy sadiudeformation, we consider

a situation where a light fluid of density lies above a denser fluid of densip/+ Ap with

Ap < p. We also assume here that the bottom layer is much thickarttieupper one. Then,
because of the inertia of the deep layer, the dynamics wiihbiged to the upper layer of depth

H (see figureb).

We consider an initial condition where the interface hasestslope of amplitudg, and
study the relaxation of the interface slope. This clasgioalblem is called the Rossby adjustment
problem B5, 195].

Without rotation, the only equilibrium is a horizontal irf&ce. If the interface is not hori-
zontal, pressure gradients induce dynamics, for instaredtyg waves, that transport potential
energy and mass in order to restore the horizontal equifitori A typical velocity for this dy-
namics is the velocity of gravity waves Recalling that the top layer has a thicknébssnuch
smaller than the other one, and considering waves with wagghs much longer that (this is
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Figure 5: Vertical structure of the 1.5-layer quasi-gemsic model: a deep layer of densjy+ Ap and a lighter
upper layer of thickneskl and densityp. Because of the inertia of the lower layer, the dynamicsnistéid to the
upper layer.

the classic shallow-water approximation), the velocityhef gravity waves is = /Hg' (m.s™1)
whereg' = gAp/p is called the reduced gravity.

With rotation, we see from@) and (7) that horizontal pressure gradients can be balanced
by the Coriolis force. It is then possible to maintain a siairy non-horizontal slope for the
interface (or front) in this case.

The dynamical processes leading from an unstable front taldesone is called the Rossby
adjustment. Initially, the dynamics is dominated by gnawiaves of typical velocite = /Hd'.
This initial process reduces the front slope until Corifdices become as important as pressure
terms (related to gravity through hydrostatic balancek fpical time of the adjustment process
isT=f"1, wheref is the planetary vorticity (also called Coriolis paramptéFhis time can
be estimated by considering that it is the time scale at whathcity variationsg.u become
of the order of the Coriolis force-fe, x u. These typical time and velocityc are the two
important physical parameters of the adjustment. Thentyjhieal horizontal width of the front
at geostrophic equilibrium can be estimated by a simple d#&io@al analysisR ~ ct, which

finally gives
VaH
f

This length is the Rossby radius of deformation. It depemdthe stratificatiom\p/p, ong,
on the Coriolis parametefr, and on a typical thickness of the fluitl. This is the typical length
at which many fronts form in geophysical flows, resultingiira balance between Coriolis force
and pressure gradients which are related to the stratdicata the hydrostatic balance.

For the sake of simplicity, we have introduced the Rossbiusaof deformation with a sim-
ple dimensional analysis. The Rossby adjustment is a vegyasting physical problem in itself.
Please see8p, 195 for more detailed analysis and discussions of this process

RN

In mid-latitude oceangdp/p ~ 3 103 sog = 0.03m.s 2 andH = 500m, then the Rossby
radius of deformation iR ~ 60 km and tends to a few kilometers closer to the poles. This
length is easily observable on snapshots of oceanic csrrastshown in figure$6 and 19.
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It corresponds for example to the jet width, either when @tsorganized into either rings or
zonal (eastward) flows. In the Earth’s atmosphere 1000km, which is also the typical size of
cyclones responsible for mid-latitude weather featureghé Jovian atmosphefR~ 2000km,
which corresponds to the typical width of the jet around thheaBRed Spot. It is remarkable
that in this latter case, the large scale flow, i.e. the Gremt 8pot itself, has a much bigger
length scale- 20000km

2.1.3. The quasi-geostrophic model

We now present the quasi-geostrophic equations, a mod#idatynamics of mid and high
latitude flows, where the geostrophic balan2el (2 holds at leading order.

On the previous sectio®.1.2 we have seen that for geophysical flows, the Rossby number
€ =U/fLis small, leading to the geostrophic balanggat leading order. In order to capture the
dynamics, the quasi-geostrophic model is obtained thramgisymptotic expansion of the Euler
equations in the limit of small Rossby numizetogether with a BurgeR/L of order one (where
R is the Rossby radius of deformation introduced in the previparagraph, and a typical
length for horizontal variations of the fields). We refer 1®% and [156] for a comprehensive
derivation. Here we give only the resulting model and thesptal interpretation.

We consider in this review the simplest possible model fenrtical structure of the ocean,
that takes into account the stable stratification: an upprealayer where the flow takes place,
and a lower denser layer either at rest or characterized gseibed stationary current (see
figure5). This is called the 1.5 layer quasi-geostrophic model. flHaelynamical system reads

dq+v-0q=0, 8)
with g= Ay — % +Na(y), )
andv =e, x Oy, (10)

with the impenetrability boundary condition, equivalenty being constant on the domain
boundaryd 2.

The complete derivation shows that the streamfunctionignadly is proportional to the
pressure gradient along the interface between the twodagteen relation X0) is actually the
geostrophic balanc&). The dynamicsg) is a non-linear transport equation for a scalar quantity,
the potential vorticityq given by ©). The potential vorticity is a central quantity for geogtnac
flows [85, 195,171, 156). The termAy = wis the relative vorticity. The termy/R? is related to
the interface pressure gradient and thus to the interfaghtheriations through the hydrostatic
balance (see sectidh1.. Ris the Rossby radius of deformation introduced in secBidn2
Physically, an increase of //R? implies a stretching of the upper layer thickness. Since the
potential vorticity is conserved, a stretching of the flumluenn in the upper layer (i.e. an
increase of- Y/ /R?) is associated with a decrease of the relative vortigity Ay, i.e. a tendency
toward an anticyclonic rotation of the fluid columb7[l]. The termngy represents the combined
effects of the planetary vorticity gradient (remember that fo+ By) and of a given stationary

2 The term “relative” refers to the vorticitg in the rotating frame.

23



flow in the deep layer. We assume that this deep flow is knowmaatiected by the dynamics of

the upper layer. Itis described by the streamfunctignwhich induces a permanent deformation
of the interface with respect to its horizontal positionesf. This is why the deep flow acts as
a topography on the active layer. The detailed derivatiorgi

Na = Bey+ Ya /R .

Starting from 8) and @) and assumingy = 0 at boundaries it is possible to prove that
guasi-geostrophic flows conserve the energy:

s=3 [o (vt L] =3 [ & @-now. )

Two contributions are distinguished ihk): a kinetic energy tern% [, dr (Oy)?, as in the Euler
equations, and a (gravitational) available potentialgylmrm% [ dr ﬁ—j.

2.2. Hamiltonian structure, Casimir’s invariants and nmocanonical measures

This subsection deals with theoretical properties of th&R2r and quasi-geostrophic equa-
tions. As already noticed, these properties are very sirh#aause both dynamics are the non-
linear advection of a scalar quantity, the vorticity for 12 Euler case or the potential vorticity
for the quasi-geostrophic case. In the following, we disciiese properties in terms of the
potential vorticityq, but they are also valid for the 2D Euler equation. Indeed2beEuler
equation is included in the 1/2-layer quasi-geostrophigaéiqn, as can be seen by considering
the limit R — +o0, ng = 0, in the expressiordj of the potential vorticity.

2.2.1. The theoretical foundations of equilibrium statit mechanics

Let us consider a canonical Hamiltonian systefq; }1<i<n denote the generalized coor-
dinates,{ pi }1<i<n their conjugate momenta, amdi({qg;, pi}) the Hamiltonian. The variables
{ai, pi }1<i<n belong to a Bl-dimensional spac@ called the phase space. Each pa@iu;, pi })
is called a microstate. The equilibrium statistical medt&of such a canonical Hamiltonian
system is based on the Liouville theorem, which states teahbn-normalized measure

N
p = []dpida;
I
is dynamically invariant. The invariance gfis equivalent to

aq  dpi\
Z (0_Q|+0—p|> =0, (12)

3A real topography(y) would correspond tb(y) = — fong(y)/H wherefq is the reference planetary vorticity at
the latitude under consideration aHds the mean upper layer thickness. Due to the sigfyothe signs oh andng
would be the same in the south hemisphere and opposite irotttrellemisphere. As we will discuss extensively the
Jovian south hemisphere vortices, we have chosen this sigyention forng.
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which is a direct consequence of the Hamiltonian equati®mnsadion

.- 9H

ql_dpiv
__H

pi = 2

Note that the equations of motion can also be written in ad@aibracket form:
qi = {ql ,H } )
pi={pi,H}.

The terms in the sunil@) actually vanish independently:

(13)

o4 Ip

— 4t — = 0
oq  dp
This is called a detailed Liouville theorem.

For any conserved quantiti€s#; (p,q),...,-%n(p,q)} of the Hamiltonian dynamics, the
measures

Vi,

1
He =2 |T| dpidgiF (A1, .., )

whereZg is a normalization constant, are also invariant measuresimpportant question is to
know which of these is relevant for describing the statistitthe physical system.

In the case of an isolated system, the dynamics is Hamiltomial there is no exchange of
energy or other conserved quantities with the environmkiens. therefore natural to consider a
measure that takes into account all these dynamical imtaris constraints. This justifies the

definition of the microcanonical measure (for a given sehefwalues{19(q, p),....13(q, p)} of
the invariants{.#1(q, p),. .., -%n(q, p)}):
1
Hn (19, 10) = === [ dpidai [] 3 (H(p.a)— 1), (14)
Q(Il,...,ln) i Keln

wheren is the number of constraints amj(@,...,lg) is a normalization constarit For small
variations of the constraintfA.%}, ., the volume of the phase space with the constraint
1P < A <10+ DA s given byQ (19,..,19) Mke1.n A

Then the Boltzmann entropy of the Hamiltonian system is

S=kglogQ.

4A more natural definition of the microcanonical measure g as the uniform measure on the submanifold
defined by.# = IE for all k. This would request adding determinants in the formi#®,(@nd imply further technical
difficulties. In most cases, however, in the limit of a largenber of degrees of freedol, these two definitions of
the microcanonical measure become equivalent becausesths®unes have large deviations properties (saddle points
evaluations) wher#\ is the large parameter, and such determinants becomevantléeVe note that in the original
works of Boltzmann and Gibbs, the microcanonical measuezg¢o a measure where only the energy constraint is
considered.
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When the system considered is not isolated, but coupledamitixternal thermal bath of con-
served quantities, other measures need to be used to degaiterly the system by equilibrium
statistical mechanics. Such measures are usually referi@slcanonical or grand-canonical. A
classical statistical mechanics result then proves tleatgtevant functiong are exponential
(Boltzmann factors):

He = 7 []4Paexp(—Fals — ..~ Bl (15)

whereZ. is a normalization constant. When coupled to a thermal a#ystem can receive
from and give energy to the thermal bath, the resulting lza@deading to the Boltzmann factor,
as explained in statistical mechanics textbooks. Flowd@med and stirred by mechanisms
that do not allow for this two-way exchange of energy chanastic of thermal baths. It is then
hard to imagine the coupling of flows described by the Euleguasi-geostrophic dynamics,
with baths of energy, vorticity or potential vorticity. Tin¢he relevant statistical ensemble for
these models is the microcanonical one, and we will work enftilowing only starting from
microcanonical measures. See subsec8dh page49 on the physical interpretation of the
microcanonical ensemble.

In statistical mechanics studies, it is sometimes argual iththe limit of an infinite number
of degrees of freedom, canonical and microcanonical measare equivalent. Then as canon-
ical measures are more easily handled, they are preferrathity works. However, whereas
the equivalence of canonical and microcanonical enseniblsry natural and usually true in
systems with short range interactions, common in condemsgter theory, it is often wrong in
systems like the Euler equations. As a consequence, wewsil she use of canonical measures
in the following (see for instancd §, 59, 37, 22, 44, 15, 69] and references therein).

In statistical mechanics, a macrostMeis a set of microstates verifying some conditions.
The conditions are usually chosen such that they describesoently the macroscopic behav-
ior of the physical systems through a reduced number of bi@sa For instance, in a magnetic
system, a macrostaké could be the ensemble of microstates with a given value dbttaé mag-
netization; in the case of a gas, a macrostate could be tleendts of microstates corresponding
to a given local density (x,p) in the six dimensional spade, p) (1 space), wheré is defined
for instance through some coarse-graining. In our fluid f@mob an interesting macrostate will
be the local probability distributiop (x,0)do to observe vorticity values (X) = o atx with
precision @.

If we identify the macrostat® with the values of the constraints that define it, we can
define the probability of a macrostaéM) dM. If the microstates are distributed according to
the microcanonical measuf@(M) is proportional to the volume of the subsy of phase space
where microstate$q;, pi },;\ realize the statél. The Boltzmann entropy of a macrostéte
is then defined to be proportional to the logarithm of the phesace volume of the sub<y,
of all microstates g, pi } ;- that realize the statel.

In systems with a large number of degrees of freedom, it itoousry to observe that the
probability of some macrostates is concentrated close tacue macrostate. There exist also
cases where the probability of macrostates concentradss tb larger set of macrostates (see
for instance 108]). Such a concentration is a very important informationwhibe macroscopic
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behavior of the system. The aim of statistical physics is tieeidentify the physically relevant
macrostates, and to determine their probability and whaseprobability is concentrated. This
is the program we will follow in the next sections, for the 2DI& equations.

In the preceding discussion, we have explained that theogacionical measure is a natural
invariant measure with given values of the invariants. Apadntant issue is to know if this
measure describes also the statistics of the temporalgegi the Hamiltonian system. This
issue, called ergodicity will be discussed in sectioh.2

The first step to define the microcanonical measure is toifgiehe equivalent of a Liouville
theorem and the invariants. The Euler and quasi-geostragiiations describe a conservative
dynamics. They can be derived from a least action principfd,[96], like canonical Hamilto-
nian systems. It is thus natural to expect Hamiltonian stinec There are however fundamental
differences between infinite dimensional systems like thielsequations and canonical Hamil-
tonian systems:

1. The Euler equation is a dynamical system of infinite dim@nsT he notion of the volume
of an infinite dimensional space is meaningless. Then theocanonical measure can not
be defined straightforwardly.

2. For such infinite dimensional systems, we can not in gérfard a canonical struc-
ture (pair of canonically conjugated variablgs, pi} describing all degrees of freedom).
There exists however a Poisson structure: one can definesadhddrackef.,.}, like in
canonical Hamiltonian system$3) and the dynamics reads

a&q={q,2[q}, (16)

where 7 is the Hamiltonian.

For infinite dimensional Hamiltonian systems like the 2Ddfdquations or quasi-geostrophic
model, the Poisson bracket ih6) is degeneratedb, 144], leading to the existence of an infinite
number of conserved guantities, the Casimir’s function@ileese conservations laws have very
important dynamical consequences, as explained in theseetion. A detailed description of
the Hamiltonian structure of infinite dimensional system$eyond the scope of this review.
We refer to P5, 144 for the description of the Poisson structure for many flyidtems. The
conservation laws and the Liouville theorem are howevesrdid consequences and we discuss
them in the next two sections.

2.2.2. Casimir's conservation laws
Both Euler @) and quasi-geostrophi®) equations conserve an infinite number of function-
als, named Casimirs. They are all functional of the form:

“ld = [ drs(a) a7

wheresis any function sufficiently smooth. Here and in the follogjig is the transported field,
either the potential vorticity9) for the quasi-geostrophic model or the vorticity in theeca$
the Euler equations for whiofp= w. As said in sectior2.2.1, Casimir conserved quantities are
related to the degenerate structure of infinite dimensibtahiltonian systems. They can be
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also understood as the invariants arising from the Noettlikgorem, as a consequence of the
relabeling symmetry of fluid mechanics (see for instarict]).

Let us defineA (o) the area o7 with potential vorticity values lower thaa, andy (o) the
potential vorticity distribution

V(0) = o with A(0) = /9 o X(q<o1 (18)

wherey 4 is the characteristic function of the s&tC 7 (x#(x) = 1 forx € #), and|Z| is the
area of%7. As quasi-geostrophic8] and 2D Euler equation) are transport equations by an
incompressible flow, the argg o) occupied by a given vorticity levet (or equivalentlyA (o))
is a dynamical invariant.

The conservation of the distribution(o) is equivalent to the conservation of all Casimir’s
functionals (7). The domain averaged potential vorticity the enstrophy% and the other
moments of the potential vorticity;,, are Casimirs of a particular interest

%mz%m:émqwm%mzéww (19)

For the 2D Euler equations in a bounded doméiris also the circulatiot = [;,,v- dl.

In any Hamiltonian systems, symmetries are associatedowitservation laws, as a conse-
guence of Noether’s theorem (see ey ] and references therein). Then if the flow dom&in
is invariant under rotations or translations, it will be@sated with angular momentum and mo-
mentum conservation. For domains with symmetries, thesserwation laws have to be taken
into account in a statistical mechanics analysis.

2.2.3. Detailed Liouville theorem and microcanonical maador the dynamics of conservative
flows

In order to discuss the detailed Liouville theorem, anddmicrocanonical measure, in the
following we decompose the potential vorticity field on thgemmodes of the Laplacian an;
whereZ is the domain on which the flow takes place. We could have dposed the field on
any other orthogonal basis. Whereas the Laplacian anddtdasis are simpler for the follow-
ing discussion, finite elements basis are much more natjatify mean field approximation
and to obtain large deviation results for the measures,sasisted in sectio®.3.5

We call{e }i>1 the orthonormal family of eigenfunctions of the Laplaciantbe domairZ,
with Dirichlet boundary conditions (see subsectiht, pagel9):

—Ae = Ag, /@draejzcij. (20)
The eigenvalueg; are arranged in increasing order. For instance for a doutipgic domain

or infinite domain,g (r) are Fourier modes. Any functiog defined on the domain can be
decomposed intg = 5 gk(t)ex(r) with g« = [ dr ge. Then

qmwzfqmam.
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From @), the quasi-geostrophic equations are

400 00
Gi=> > Aikdjok (21)
J=1k=1
where the explicit expression féj will not be needed in the following discussion. Fad), a
detailed Liouville theorem holds:

oG
%4 _o, 22
29 (22)

see 120, [113. Note that while we have discussed here the detailed Lileutieorem in the
context of mode decomposition, more general results ek p07] °.

Vi,

From the detailed Liouville theorem, we can define the mianomical measure. First the
n moment microcanonical measure (which, by including thegnenakes + 1 constraints) is
defined as

b (B30 = e s (10006 -€) [] 6640 -0, @9

where& (11) is the energy] » (19) the vorticity moments and(-) the Dirac delta function.
A precise definition ofum,, goes through the definition of approximate finite dimendionea-
sures: for any observablg depending oK componentq; },;-« of g, we define

f |_|i:1,N dgi 6 (éaN [CI] - E) |_|k:17n o (gN,k [CI] - rk) &
Qnn(E,T1,...,Th) ’

N
< um7n7 & >=

wheredéy and% , are finite dimensional approximations &f(11) and%, (19), andQy is a
normalization factor. Then we defiretimn, gk >=lIMN_e0 < u,ﬂ‘n, @ >. UsuallyQn n has no
finite limit whenN goes to infinity, and the definition @, (E,I',...,[ ) in the formal notation
(23) implies a proper rescaling.

HUmn are ensembles of invariant measures. The microcanonicsume corresponding to the
infinite set of invariantdT; } is then defined as

I«lm(Ev {rl}) - rl]mo Ilm,n (E7 r17 seey rn)7

and is denoted

in(E.{F1}) = mﬂwdw 5(¢d-F) [] s6Ald-r0. @9

5A direct consequence of the detailed Liouville theore?8) (is that any truncation of the 2D Euler or quasi-
geostrophic equations also verifies a Liouville theor&df]. This result is actually much more general: any approx-
imation of the Euler equation obtained by laaprojection on a finite dimensional basis verify a Liouvillebrem,
see [L65]). For truncations preserving the Hamiltonian structurd a finite number of Casimir invariants, s@87).
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2.3. Specificity of 2D and geostrophic turbulence as a camsece of Casimir’s invariants

We discuss in this section the consequences of the coniserlats presented above. These
consequences are important physical properties: i) treasde of an infinite number of station-
ary solutions to the 2D Euler equations, and the stabilitgarhe of these flows (secti@n3.1),

i) the existence of an inverse (or upscale) energy casaadiefea direct (or downscale) cascade
of enstrophy (sectio.3.2), iii) the self organization of the large scale flow (sectiB3.3, iv)
non-trivial results from the equilibrium statistical mectics of two-dimensional flows by con-
trast with three dimensional flows (secti@rB8.4, and v) the validity of a mean-field treatment
of equilibrium statistical mechanics (sectiar8.5.

2.3.1. First physical consequence of 2D invariants: migtgtationary flows

Let us consider a dynamical systé&fnx = G (x), wherexis the temporal derivative of with
conserved quantit (x) (F(x) = 0). It can be proved easily that any non-degenerate extkgma
of F (F' (xp) = 0) is a stationary solutiorxE 0) of 4 (G (xp) = 0) and if, in addition, the second
variations ofG are either positive-definite or negative-definite, theis gtationary solution is
stable P5]. This general result seems natural when one considersxdra@es of energy and
angular momentum extrema encountered in classical mexhamhis simple idea, coupled to
convexity estimates, was used for instance by Arnéldt¢ prove the stability of stationary
solutions of the 2D Euler equations. Generalizations afehideas to larger classes of stationary
flows of the 2D Euler equations can be found20%, 70, 35]. Generalizations of these ideas to
many other fluid mechanics equations can be foun®%h [

If we apply this idea to the 2D Euler and quasi-geostrophigaéiqns, as a consequence of
the infinite number of Casimir’s invariant2.@.2), there exists an infinite number of stationary
flows, a large number of them being stable. In any dynamicstesy, fixed points play a major
role. In the case of the 2D Euler equations, moreover theydut to be attractive, as discussed
in section106.

We discuss now the case of the quasi-geostrophic equatiohshe case of the 2D Euler
equations is exactly similar. The conserved quantities secare the so called Energy-Casimir
functionals

7 =6l + % = — [ oray+ [ drs(a). 25)

wheres is an arbitrary function. They are the sum of the enefl) @nd a Casimir invariant
(17). The critical pointsge of this functional (satisfyingd.# = [, dr (e —S (ge)) 89 = O for
any perturbatiordq) verify the equation

Y=5s(q). (26)

As expected from the general argument above, these citbials should be stationary solutions
of the quasi-geostrophic equatio8).( From @), we see that any dynamical invariant verifies
Oy x Og= 0 (we recall thaty, ¢ and the velocity are related by9-10)). Then the dynamical
invariants of the quasi-geostrophic equati8j ére all potential vorticity fields, such that the
isocontour lines foig and for ¢ are the same. A special class of dynamical invariant are the
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potential functional vorticity fields), such that a relatiog = g(y) betweerg andy exist, with
g an arbitrary function. Then solutions t26) are indeed stationary flows.

The case whes is either strictly convex or concave is very interestingdded, thers' is
monotonous and2@) can be invertedq = (s’)_l(w). Moreover if the functionalZ5) is either
strictly convex or concave, then we expect the critical {to exist and to be unique, and we
expect them to be non degenerate (the second variationglee ositive-definite or negative-
definite). Then according to the general argument abovdiisncase we expect the stationary
flows (25) to be dynamically stable.

In the case of fluid dynamics, there are further difficultiethvhe general argument above,
because the potential vorticity fiefyllies in an infinite dimensional space variable. Roughly
speaking, these difficulties are related to continuity prtps of the functionals, which may
depend on the chosen norm for the potential vorticity fielde@en has to defines carefully the
norm for the perturbation and a norm with respect to whichdyreamics is stable. In the case of
the Euler equations, these difficulties have first been dgaktrnold [5], proving that when7
is either strictly convex or strictly concave, the statignflows (25) are indeed stable. Among
Arnold’s results, we learn that a sufficient condition f&rto be strictly convex is convex and
a sufficient condition forZ to be strictly concave isconcave witts’(ge) > ¢ > A1, whereA; is
the smallest eigenvalue of the Laplacian on the dondainvith Dirichlet boundary conditions
(these two condition can be easily worked out). These ebalte found to be valid for weaker
hypothesis and generalized to the quasi-geostrophic naodieh number of other models in fluid
dynamics and plasma physics (see for insta®&e305, 70]).

In the preceding paragraphs, we have applied the propeaatyntndegenerate extremum of
conserved quantities are stable equilibria, to the miration of Energy-Casimir functionals
(25), following Arnold [5]. The same idea and property could be applied to other coeder
functionals or conserved functionals with constrains. Rstance, we may use that the dy-
namics conserve all Casimirg®). Then the extremum of the energyj for fixed values of
the Casimirs 17) (a constrained variational problem) should be a stablélibga®. Such an
extremization is called a Kelvin energy principle as Lordvie was the first to realize this
property [L89. We note that critical points of a Kelvin energy principlike critical points of
Energy-Casimir functional26), are stationary solutions of the quasi-geostrophic (oE2il2r)
equations. On the one hand, the class of stable solutioamebtthrough Kelvin energy princi-
ple is larger than the class obtained from Energy-Casimiatianal problem, and in this sense,
the Kelvin energy principle is less restrictive. On the othand the stability of Kelvin energy
minimizers is expected to be weaker compared to the stalifiEnergy-Casimir minimizer,
as perturbations modifying the value of the Casimirs mayatéiize the flow (for instance we
know no counterparts of the Arnold theorems for Kelvin egargnimizers). We refer to45]
for a recent comprehensive review of these different vianat problems and other related ones,
and for a discussion of the conditions for second variatmfithese variational problems to be
definite positive or definite negative.

6See 196 191, 197 for interesting algorithms that allow to compute energyimra while preserving the Casimir
functionals.
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We conclude that due to the infinite number of their invasarthe 2D Euler and quasi-
geostrophic equations have an infinite number of statioflavys. Moreover an infinite class
of these stationary flows can be proved to be stable. As in gngrdical system, we expect
these stationary flows to play a very important role in theagits. We will see in sectioB.1
that the microcanonical measure of statistical mechasicsinicentrated close to some of these
stationary flows. Moreover, the arguments of this sectiorsome generalizations, can be used
to prove the dynamical stability of classes of statisticpligbria [138, 70].

2.3.2. Second physical consequence of 2D invariants: trezse energy cascade

We saw that the infinite number of steady states of the 2D Earer quasi-geostrophic
equations, and the stability of some of these states, camdberstood as a consequence of the
conservation of Casimir invariants. We now look at anotf@rsequence of these conservation
laws: the direction of the energy fluxes in spectral spac@ssale. The argument developed in
this section is a very classical one for physical systemi mitltiple invariants.

We treat here the case of decaying two-dimensional turbaléior which the potential vor-
ticity q is simply the relative vorticityw), following [151]. A discussion of the direction of
the energy and enstrophy fluxes was originally given by Bfoft79]. The case of statistically
stationary cascadel]l? is treated in sectio.2 Let us consider an infinite 2D domain and
decompose the vorticity into Fourier eigenmodes. The gnspgctrumE (k) is defined such
that E (k) dk is the energy contained in modes with wave numiémsith k < k' < k+ Ak, and
such that the total energy 5= [ dkE (k). We define similarly the enstrophy spectriim(k):
M= [dkl > (K) (seel9for ). Itis easy to show thdt, (k) = 2k%E (K).

A question of interest is to determine whether the energg goeards large scales or small
scales. To answer this, we look at rigorous bounds ok-ttentroidske (andl-centroidslg) for
the energy:

1 1
_ E/dkkE(k) andlg — E/dkk‘lE(k),
and for the enstrophy
1 1 B
ke, = —/dkkl'z(k)dk andlr, — —/dkk Mo (k).
2 2

A transfer of energy toward large scales during the flow dimius equivalent to an increase of
thek- or thel-centroid.

Using Cauchy-Schwartz inequalitiég‘ dk f(K)g(k) < /[ dk f2(k) [ dk &?( )), one can eas-
ily show that
ke <1/ L2 2 ke, > (27)
—V2E’ - 2E

2E 2E
lg > VT Ir, < \/ |E|r2_ : (28)
2 M

The first inequalities ofd7) and 8) imply that the energy cannot be transferred to scales small
than/2E /T, , and enstrophy cannot be transferred to scales largenf2iyT ,.
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Figure 6: Snapshot of electron density (analogous to \iyrtield) at successive time from an initial condition with
two vortices to a single large scale coherent structureuriautent mixing (seel73 174]). The best experimental
realization of inviscid 2D Euler equations is probably sodahieved in those magnetized electron plasma exper-
iments where the electrons are confined in a Penning trap.dyih@mics of both systems are indeed isomorphic,
where the electron density plays the role of vorticity. Thejan drawback of this experimental setting comes from
its observation, since any measurement requires the dastrwof the plasma itself.

The last inequality of47) implies that if the energy goes to larger and larger sc&les+0),
then the enstrophy goes to smaller and smaller scltes{ +): an evolving state presenting
an inverse flux of energy implies a simultaneous direct fluems$trophy. Similarly, the last
inequality of @8) implies than if the enstrophy goes to smaller and smallatesc(r, — 0) ,
then the energy goes to larger and larger scafes«{+): a direct flux of enstrophy implies
an inverse flux of energy. A sufficient and necessary conditiw the existence of a forward
enstrophy flux is then the existence of an inverse energy flux.

2.3.3. Third physical consequence: the phenomenon of krgle self-organization of the flow
The most striking feature of 2D and geostrophic flows, anddpytfe most important phe-
nomenon for applications, is their tendency to organize latge scale coherent structures.
Be it in laboratory experiments (with the formation of lorigeld and robust 2D vortices, see
for instance figureb), in the ocean (with the formation of jets and rings), in togidn atmo-
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sphere (with the Great Red Spot and other vortices), or inemigad simulations, these coherent
structures are yet ubiquitous, and represent the maintgtiadi feature of turbulent 2D flows.
Understanding their formation is thus a major challengeciopipysical fluid dynamics.

In the previous section, we proved that an upscale energyidlakvays accompanied by a
downscale enstrophy flux, and that there is a lower boundhéoehergy centroid. Using heuristic
statistical mechanics arguments, we know that the dynawmiit$end to partition as much as
possible energy and enstrophy among the modes. The coliobirdtthese two arguments and
the preceding are sufficient to conclude that the complexlinear dynamics of the flow will
tend to a transfer of energy toward largest scales and adrapfsenstrophy towards smallest
scales.

We also explained in sectiah3.1why the equations have infinitely many multiple stable
stationary flows. This, together with the energy fluxes talsahe largest scales is already
sufficient to explain qualitatively the self-organizatiofithe flow. On an inertial time scale
(given for instance by the turnover time of the large scalfethe turbulent flow), these large
scale structures can be considered stationary solutiogntrast to the complicated dynamics
of the small scale turbulent flow.

The aim of this review is to present predictive theories Fase large scale structures. We
need to explain the physical mechanism at work and desdrédmretically the dynamical mech-
anisms that will select some states among all the possiatesary flows. This is is where
statistical mechanics will be very useful. The equilibritmeory predicts that turbulent mixiag
will drive the flow toward a stationary state that maximizeBadtzmann-Gibbs entropy formu-
lae, while satisfying all the constraints of the dynamicssgnted in the previous subsections.
This mixing entropy, derived from the Liouville theorem,Iallow us to build theoretically
natural invariant measures for the dynamics. We will alsesater non-equilibrium theories for
forced and dissipated flows.

Statistical mechanics is an extremely powerful tool thiatved to reduce a complicated prob-
lem (the description of a fine-grained turbulent flow, ourmscopic state with a huge number of
degrees of freedom) to the study of a few parameters, whistrites the large scale structures
of the flow, our macroscopic state.

2.3.4. Fourth consequence: about Jeans paradox, why canetva gon-trivial equilibrium
statistical mechanics for 2D flows by contrast with the 3DdEulltraviolet divergence

In this section, for pedagogical reasons, we try to apphilibgum statistical mechanics
ideas to the three-dimensional Euler equations. This vienpls discussion illustrates, with
the example of the 3D Euler equations, that in most of Hamigto field equation a straight
application of equilibrium statistical mechanics failschase of the so called Jeans paradox
[159. The reason is that in the simplest cases, for instance whergy is the only conserved
guantity, at the statistical equilibria each degree ofdme has on average the same energy.
Then because there are infinitely many degrees of freedom fietd, either the total energy is
infinite, or if the energy is kept constant the average enpeagymodes is zero.

Then equilibrium statistical mechanics predicts thatredlénergy flows towards the smallest

"Here mixing does not refers to the effect of molecular viggpbut rather to the stirring by the flow dynamics.
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scales, for the three-dimensional Euler equations, inrdec@e with basic observations. But the
microcanonical measure obtained in the limit of an infinitentber of degrees of freedom is a
trivial one, with no more energy in the largest scales. Thigment proves that, because of
Jeans paradox, three-dimensional turbulence is intaftgia non-equilibrium process.

The main interest of this discussion is to show that, by @stttwo dimensional flows are
different from this point of view and give non-trivial miaczanonical measures. Basically thanks
to the presence of more invariants, the Jeans paradox ideal/@or the energy. Since the discus-
sions of this section involves technical computationsait be skipped at first reading. However,
this discussion is essential for a physically relevantrprietation of the theory.

In section2.2.3 we defined a microcanonical measure for the 2D Euler equatioNe
proceed here similarly. First, we note that for the threaatisional Euler equations, for instance
on a periodic cube, the velocity can be decomposed in Fombelesuy = (Uyk, Uz, Usk). The
3D Euler equations then read

Uik = Z Ajl kp.aUjplig-
p,a;j,l=123

The explicit expression oA is not important for this discussion. The important pointhiat a
detailed Liouville theorem holds:

OUix Ol
k RS 2 =
v ’ Z <0Ui,k + 0Ui,—k> 07

see for instancelPq] for more details. As the kinetic energy = 3 5 lug|? = 3 [dru?is the
only invariant in this case, following discussion in seantih2.3 the microcanonical measure is
defined as

1
= lim p with uf = dvid (&k —E), 29

where &k = ¥ k< ]vkyz andm stand for “microcanonical”.

Let us compute the average Bf = |vk|2/2, the energy of mod& for the measureuX.
We note this averagéEy),x = [ UKEk. In (29), all degrees of freedomg. readily play a
symmetric role. Henceforth we have energy equipartitigi),« = (Ex')mk and (Ex)mx =
E/N (K) whereN (K) is the total number of modes such thiat < K. This equipartition for the
finite-dimensional measuye! leads to an energy spectrua{k) proportional tok? (see section
2.3.2for definition of E(k)). This has been described by Kraichndd]]. Recent applications
to Galerkin truncations of the Euler equations and botttkaen turbulence can be found in
Frischet al[84].

We are now interested in invariant measures for the Euleateaps themselves, not in in-
variant measures for truncated dynamics. We thus take fieKi — co (which then implies
N (K) — +o0), with fixed energy because each trajectory has a finite gneévg obtain

(Edm = Jim (E) e =0.
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Then, at statistical equilibrium, the average energy oheaode is exactly zero. Due to the infi-
nite number of degrees of freedom, the tendency towardadition spreads energy on modes
corresponding to smaller and smaller scales. This phenomassociated with the existence
of an infinite number of degrees of freedom is called the Jpansdox 159. It is a form of
ultraviolet divergence.

We thus conclude that the equilibrium statistical mechswicthe 3D Euler equations ex-
plains the tendency for the energy to flow towards smallersamaller scales. However, because
in the microcanonical distribution, the energy per degifdee@dom is zero, the microcanonical
measure is trivial and thus useless. We see that for 3D &mbal| the statistically stationary flux
of energy towards the smallest scales is intrinsically drfan equilibrium process. The equi-
librium statistical mechanics is of no help to understarebséhfluxes, and the associated energy
spectrum and velocity increment statistics.

Because of the additional Casimir invariants, the situmaisayuite different in 2D turbulence.
All configurations of the microcanonical ensemble desctibe section2.2.3 have the same
energykE and enstrophy ,. Then, for any configurations thge centroid inequality Z8, page32)

holds:lg > , /%—E. Henceforth, this is also true for the average over the rnamonical measure:

(lg)m > \/%

This simple argument shows that for the microcanonical mreashe energy cannot flow to the
smallest scales. The microcanonical measure is thus al-tior two-dimensional conser-
vative flows. It will describe large scale features that cdrive guessed straightforwardly. A
detailed understanding of these equilibrium structurélseésaim of the next sections.

The energy-enstrophy microcanonical measure of two dimeaisflows. In order to illustrate
that statistical mechanics gives non-trivial predictidoisthe 2D Euler case, we now consider
the energy-enstrophy canonical measure

b2 (E.72) = gy [ 36 (6]~ E)3 (o[ —T2)

This is the measure where we take into account only the gtiedmeariants. There is no phys-
ical reason to exclude the other invariants; however theggrenstrophy measure can be inter-
esting because it may be in some cases a good approximatibe obmplete microcanonical
measure. The interest and limitation of the energy-enkirapeasures are further discussed at
the end of this section.

Our real motivation here is more pedagogical: it will be vesgful to introduce mean-field
treatment, and to explain on a simple example the relatidwd®mn microcanonical measures
defined on sectioB.2.3and mixing entropy used in secti@nl and the following. The following
discussion and the computation performed in the followiagagraphs are adapted from the
original presentation inl[9].
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An energy-enstrophy ensemble has been treated and diddastesgth by many authors,
including Kraichnan (se€lfL3)), but in the canonical ensembles (that is using the caabnic
measurel5, page26 rather than the microcanonical one). See al®¥]for a precise discussion
for the energy-enstrophy-circulation ensemble. It has bien proven, through computations
of explicit inequalities, that the statistics of the smakles of the velocity field, in the energy-
enstrophy ensemble, are incompatible with 2D Navier-Stakeariant measured 1]).

The following discussion gives the first derivation of thecrocanonical ensemble, its rela-
tion to the mean field variational problem, and the first obstion of ensemble inequivalence
for the energy-enstrophy ensemble. We come back to discuashfan type results in the end
of this section.

Following the discussion in sectidh2.3 the microcanonical measure is defined throbigh
dimensional approximations:

Umz = lim N, with
’ N—o0 ’

1
Qn (E,T2) i:IIIN

where, w are components ofv on the base of eigenmodes (see20), &y andlpny areN
dimensional approximations of the ener@) énd enstrophy19): 24y = ¥,_1.n @W2/An and
N[ = Tno1n@E. In the following, to simplify the argument, we assume tHaa first
eigenvalue is non degenerafe; # A», which is generically the ca8e

The main technical difficulty is to compute

Hmo = dag S (én [w] —E) & (Do [w] —T2) (30)

On (E, M) :/ [ de (6 (0] —E)3(“n(w] ~T2). (31)
i=1.N

The computation of this result, using representation ofdbka functions as integral in the

complex plane, is given irlB], where it is shown that

exp[NS(E,I2)]
V2E

log2
2
whereCs (N, {A;}) depends only ol and{A;} (i.e. does not depend on the physical parameters
E andrl"2) andC, has no exponentially large contribution (lm. (logC;) /N = 0). The notation
o(N) refers to corrections that are negligible with respediitwhenN becomes large enough.
From (32) we have

Qn (E,gz) ng(N,{)\i})C4({)\i},F2,N) O(N)

N

with S(E,I",) = %Iog(l’z—Z)\lE) + (32)

S(E.T2) = lim <10g(Ox (E.l2)) ~C(N.{A}). (33

8This is always true for simply connected bounded Lipshitndms. An example of geometry for which the first
eigenvalue is degenerate is a doubly periodic domain witk@&satiod = 1.
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whereC can be computed frorf@3, and depends only oN and on the geometric factofs\; }
(the entropy is defined up to an arbitrary constant).

We see that the quantity(E, ") is the Boltzmann entropy rescaled byNLwith an unim-
portant additional constant. It counts the number of mietesQy satisfying the constraints of
the problem, i.e. characterized by eneEyand enstrophy ».

From the entropy, we can compute the temperafiire dS/0E = —A1/ (M2 —2A1E) <0
and chemical potentiat = dS/dlM; = 1/[2(I2 — 2A1E)]. These thermodynamic potentials are
related by = —2A1a. Then some couples of thermodynamic parameter are notnebltdn
the microcanonical ensemble, by contrast with what woulexmected in the thermodynamics
of classical condensed matter systems, which are most dintieeshort range interacting sys-
tems. Moreover the determinant of the Hessiai$ (§2S/dE?.0%S/dr3 — (028/0E0F2)2) is
zero, showing thaSis not strictly concave as one would expect for an entropyhndase of
short range interacting systems. Both of these propertesigns of non-equivalence between
the microcanonical and the canonical ensembles. (seedtarice 16, 69, 59]). This case of
the energy-enstrophy ensemble is actually a case of pagtigalence (sep] for a definition).

From 30) we see that for the finithl dimensional measurgy;, the distribution function for
wh, the amplitude of mode, is

_ Oy, (E— wh/2An, T2 — 6f)

Pun (@) Qn (E,T2) '

whereQy_1.), is defined af)y (equation. 81)), but with the integration ovem, excluded, and
with the constrainty? < max{2A,E,I2}. The distribution function foE, = cq?,/Z/\n, the energy
of the modes,, is obtained by the change of varialfi¢, (En) dEn = Py n (@wh) dewn. Using result
(32) for bothQy 1.5, (thenA; has to be replaced byy) andQp, we obtain

c&PINlog (2 — 2A2E +2(A2 — A1) Ey) /2]

E1) ~
P, E1 (E—-Ey)

for 0<E; <E,

andPy 1 (E1) = O otherwise, wher€ does not depend of; (normalization constant). From
this expression, we see that the most probable ener§y is E. Moreover, the distribution
is exponentially picked close tB; = E, such that in the infinitéN limit (the microcanonical
distribution) we have

Pi(E1) =0(E—Ey).

All the energy condenses to the first mode.
If one disregards large deviations flér— E;, a good approximation for largg of the finite
N distribution is the exponential distribution

exp| N2k (E—El)]

Pua(Er) =~ C % for 0<E; <E
andNY2(E; —E) < 1; (34)
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the distribution forw;, being also exponential. The amplitude of the departurg;drom the
valueE is thus proportional to AN and to(l'2 — 2A1E) / (A2 — A1)
The distribution of the energli, of moden is obtained similarly as

exp[Nlog (I, — 2AE —2(An— A1) E,
Aun (En) ~c xp[Nlog (> \/1E_n ( 1) En)]

for 0<E,<E. (36)

(35)

For infinite N, the microcanonical distribution are thus a delta functiétin zero energy:
Pn (En) — 5 (En) .

Disregarding large deviations, finite¢distributions is also well approximated by an exponential
distribution (a Gaussian distribution this time fa@r) with typical energy departure from O of
order /N for the energy and a variance of ordeérAN for c,. One may also check that for large
n (An > A1, the variance for the enstrophy becomes independemi{@a$ymptotic equipartition
of the enstrophy).

Even if we have described finité effects for finiteN approximations of the microcanonical
measuregul, the only invariant measure for the Euler equation is thétlone p,. From the
preceding discussion we see that all the energy is contedtom the first mode and that the
excess enstrophy, — 2A1E goes to smaller and smaller scales, leading to a zero enexpr@
enstrophy per mode in the infinité limit. This condensation of the energy in the first mode is
the main physical result of this energy-enstrophy ensemblgs is a non trivial prediction of
equilibrium statistical mechanics of two-dimensional fiowy contrast with the triviality of the
results for three-dimensional flows.

The Kraichnan energy-enstrophy theoffhe term of condensation has been proposed by Kraich-
nan from the analysis of the energy-enstrophy canonicamehkes L13. As explained in sec-
tion 2.2.1, canonical measure are not relevant for fluid systems andrttay be useful only
when given equivalent results to microcanonical measufesichnan noticed this and worked
nevertheless with the canonical ensemble, maybe becaudidrieknow how to make micro-
canonical computations, and most probably because atithatthe possibilities of ensemble
inequivalence were nearly unknowvnUnfortunately, as explained above the energy-enstrophy
ensemble is an example of partial ensemble inequivalerueselremarks explain the difficulties
encountered by Kraichnan by analyzing the canonical meaasgl why he wrongly concluded
that a statistical mechanics approach would work only fon¢ated systems. Working in the
microcanonical ensemble actually allows to build invariaeasures of the real Euler equation.
If one is however interested in truncated systems, thercknain’s work remains very useful.

9The first observation of ensemble inequivalence have beele inahe astrophysical context48 92], and then
observed for two dimensional flow&q8 109, 75, 69, 197]. Thorough study of ensemble inequivalence in the broad
class of systems with long range interactions has been ssiglteduring the last decade by many others, see for
instance $9, 44, 38, 17, 37, 16] and references therein.
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More importantly, when looking closely at Kraichnan’s werfsee for instancel[L3 page
565), one sees that in the canonical ensemble, a completrsation of the energy on the
gravest mode occurs only for specific values of the thermauhjoal parameters. For most
values of the thermodynamical parameters, an importahbp#re energy remains on the other
modes. Still Kraichnan argued, probably from numericaleobations available at the time
and from physical insight, that these cases leading to aamadion were the most interesting
ones. The microcanonical treatment we propose here prioaea tomplete condensation occurs
whatever the values of the energy and of the enstrophy, inmilseocanonical ensemble. A
complete condensation is actually observed in many nualesimulations. We thus conclude
that the physical insight of Kraichnan and his concept ofdemsation describes the relevant
physical mechanism, but that a treatment in the microcaabensemble provides a much better
understanding, and overcomes the preceding contradsction

Limitations and interest of the energy-enstrophy approathere is no reason to consider only
the energy and enstrophy invariants, except for being al8elte easily the mathematics. Here
we used this property for instance to illustrate the eqeive¢ of the mean field variational
problems with a direct definition of the microcanonical meas Another class of statistical
equilibria with easily solvable solutions is the one for ahhbnly energy, enstrophy and circula-
tions are taken into accourt97, 147] 1°. Moreover, several studies, among whighg7], have
specifically addressed the importance of higher potentigicity moments, showing that they
may be indeed essential in some case.

From the following studies we will see that taking into acsail invariants, it will be wrong
that the energy is limited to the first modg However the energy-enstrophy measure may be in
some cases a good approximation: for instance in the linstwdll energy, most of the energy
will remain in the first few modes. The notion of condensatigh thus be valid only roughly
speaking.

By contrast, in some cases like for instance for doubly giciclomains with aspect ratio
close to one but not exactly one (see sect0b), the notion of condensation would lead to
completely wrong predictions.

2.3.5. Validity of a mean field approach to the microcanohimaasures

For pedagogical reasons, we have considered in the pres@mt®n the energy-enstrophy
microcanonical ensemble. Itis shown &9 that within this ensemble the correlation coefficient
between vorticity at point and vorticity at point’ is zero. It would be possible to prove with-
out much difficulties that vorticity at pointsandr’ are actually independent variables. Such a
result is extremely important and does apply to a much widatext than the energy-enstrophy
measure, for instance it will remain true for all the micnocaical invariant measures, whatever
the number of invariants. We will explain why vorticity fislédre independent for microcanon-
ical measures below. Let us first analyze an extremely irpoitplication: the possibility to

101197 proves relations between phase transitions on one hamtieasemble equivalence and inequivalence
results on the other hand147 proves specifically the equivalence between entropy mizsition at fixed energy,
circulation and enstrophy on one hand, and macroscopicopist minimization at fixed energy and circulation on
the other hand (see alsbg for equivalence results in a more general context)
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quantify the volume of the phase space through the Boltzr@ibibs entropy formula.

A classical example where degrees of freedom can be coadidetependent is an ensemble
of particles undergoing collisions (for instance hard spbgin the dilute limit (the Boltzmann-
Grad limit). Microscopically, particles travel at a typiceelocity v and collide with each other
after traveling a typical distandecalled the mean free path. Letbe the diffusion cross-section
for these collisions. One has= 1a® where the parameteris of the order of the particle radius.
The mean free path is defined las- 1/ (nazn), wheren is the typical particle density. The
Boltzmann equation applies when the rdtie= a/l is small (the Boltzmann-Grad limitLB4).
Inthe limit™ — 0, any two colliding particles can be considered as indepein@ncorrelated) as
they come from very distant areas. This is the basis of Batemhypothesis of molecular chaos
(Stosszahl Ansatz). It explains why the evolution of thepace distribution functioffi(x, p,t)
may be described by an autonomous equation, the Boltzmaratien &,p refers respectively
to position and momentum, the-space is the six dimensional space of spatial variglded
momentunp).

There is a classical argument by Boltzmann (that one candfaurmny good textbook in
statistical mechanics) to prove that the Boltzmann entadgize distributionf is, up to a multi-
plicative constant, given by the Boltzmann—Gibbs formula:

= —/dxdp flog . 37)

We stress that this formula for the Boltzmann entropy is nGiilebs entropy*!. The essential
point is that this formula is a valid counting of the volumetloé accessible part of the phase
space only when particles can be considered as indepenBentnstance, for particles with
short range interactions studied by Boltzmann, this isvatily in the Boltzmann-Grad limit.

As discussed above, in the energy-enstrophy ensemblégityofteld values are indepen-
dent. As we will explain bellow, the reason is completelyfatiént from the Boltzmann case,
there is here no dilute-gas (Boltzmann-Grad) limit. Howetie consequences will be the same:
if we definep(r,o) asp(r,o)drdo being the probability to have values of the vorticiy
betweeno ando + do in the area elementrdaroundr, then the entropy

+oo
7= —/ dar [ doplnp, (38)
9 —0o0

actually quantifies the volume of the phase space. Let usiexfiie meaning of this last sen-
tence, for instance in the case of the energy-enstrophyrdsiee The probability is normalized
(N[p](r) = [*fo p(o,r) = 1) and we define the average vorticityasr) = ('~ doap(o,r).

11The Gibbs entropp= —k [ p(pi, i) log,(p(pi,d)) dpdg is an ensemble entropy, a weight on the phase space,
whereas the Boltzmann—Gibbs formula for the entropy is &gnal over theu-space. In the case of dilute gases,
the Boltzmann—Gibbs formulae for the entropy is just theasie of theH function of Boltzmann. We avoid this
terminology here since our discussion is not related toca¢ian towards equilibrium, and because the equivalent of
anH theorem has never been proved for the 2D Euler equations.
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Then the equilibrium entropy

S(E,l2)= sup {ijﬁ[p] | &[w] =E, /drdoazp = Fz} (39)
toiNjp)=1} L |7

is exactly the same as the Boltzmann entropy defined frometbeated logarithm of volume of

the phase space defined by equati88).( This variational problem39) means that the equi-

librium entropyS(E, ") is the supremum of the mixing entrop¥ [p] defined above, among all

the normalized probability(o,r) that are characterized by a given value of the en&gnd

enstrophyl .

The definition of the entropy3@-33) and the variational problen89) are so different, that
the fact that they express the same concept seems astgnighiese types of results are indeed
one of the great achievements of statistical mechanics shawn in 19] that starting from 83)
and computindS(E, I"z) gives the same result a32).

The deep reason why vorticity fields are independent for eoenonical measures, and
henceforth why entropy can be expressed 38§) €an be explained rather easily on a heuristic
level. Correlations between variables could appear thrdbg invariants constrains only. For
instance the 2D Euler equation energy can be expressed farthevhere interactions between
vorticity appear explicitly, using the Laplacian Greendtion H (r,r’) (AH (r,r’) = o (r,r’)
with Dirichlet boundary conditions):

&lw] = —%/{:ﬁdr whtw= —%/%/%drdr’w(r)H(r,r’)w(r’). (40)

In the formula abovet (r,r’) appears as the coupling between vorticity at poiahd vorticity
at pointr’. The Green function of the Laplacian in a two-dimensionaksgs logarithmic, which
is not integrable in the whole plane, hence lead to a non-lateraction. Then the vorticity at
pointr is coupled to the vorticity at any other points of the domaind not only close ones.

For people trained in statistical mechanics, it is natunat in systems where degrees of
freedom are coupled to many other, these degrees of freedonrhecconsidered as statistically
independent and a mean-field approach will be valid. Forirs in systems with nearest
neighbor interactions, a mean field approach becomes eaatarfe dimensions, when the
effective number of degrees of freedom to which one degrdieceflom is coupled becomes
infinite. For people not trained in statistical mechanibss tan be understood simply, as one
increases the number of coupling, the interaction felt bg dagree of freedom is no more
sensitive to the fluctuations of the others but just to the@rage value, due to an effect similar
to what happens for the law of large numbers. Then a mean fieddntent becomes exact,
which is equivalent to saying that different degrees ofdae can be considered as statistically
independent.

Because of the non locality of the Green function, the viytigeld is virtually coupled to an
infinite number of degrees of freedom, so that a mean-fieldtisadly exact. This also explains
why the energy computed from the average vorticity field appan the variational problen39).

To formalize the preceding heuristic explanation, in ongeprove that the mean-field ap-
proximation is exact and to prove that the Boltzmann—Gildsmtilae for the entropy3() is
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relevant, we need a rather technical discussion. We wilerplain this in details. This has been
for instance justified by theoretical physicists for therpaiortex model in the 1970s (assumed
to be valid by Joyce and MontgomerdJ3 and then proved to be self-consistent, for instance in
a Cramer Moyal expansions). In the 1980s, rigorous matheahgiroofs have been given also
for the point vortex model (se@’, 109, 33] and references therein). In the modern formulation
of statistical mechanics, the entropy appears as a largataevrate function for an ensemble
of measures, justifying3{) and the variational problen89). The proof of such large deviation
results leading to the microcanonical measures for therEuld quasi-geostrophic equations,
justifying the mean field approach, can be foundlf7] (see also12] and references therein).

We thus conclude that a mean field approach to the microcealomeasures of the Euler
and quasi-geostrophic equations is valid. This justifiesube of the entropy3{) and of vari-
ational problems similar to3Q) but with all invariants of the Euler equations. This is agti@
simplification compared to direct approaches as the onepted in sectio.3.4for the energy-
enstrophy statistical mechanics. The first presentatiaheequilibrium statistical mechanics
of the 2D Euler and quasi-geostrophic equations on this fdates from the the beginning of
the 1990s with the works of Robert, Sommeria and Mille83, 139, 164, 169. We thus call
this theory the Robert-Sommeria-Miller (RSM) theory.

3. Equilibrium statistical mechanics of two dimensional am geophysical flows

In sections2.2.1and2.2.3we have recalled the basis of equilibrium statistical maadsaof
Hamiltonian systems: building invariant measures basdti@hiouville theorem, especially the
microcanonical measure that takes into account all of timauhjcal invariants of the equations.
We have explained in sectio@s3.4how this program can be applied to fluid dynamics equations
and in sectior2.3.5why for the 2D Euler and quasi-geostrophic equations thegoanonical
measure is described by a mean field variational problem.

The aim of this section is to describe this mean field vaneigroblem and the tools used
to actually compute the equilibrium states. We considedithi of small energy, as a simple
example were an analytic treatment is possible in ordelustihte the theory and especially the
notion of phase transition. Phase transition is a key cdnoiefhermodynamics and statistical
physics, where the physical system undergoes drastictafiigdi changes as external parameters
are tuned. In the statistical mechanics of hydrodynamiblpros, the flow undergoes continuous
or discontinuous transitions of the topology of the flow atndines. We discuss applications of
this equilibrium theory to real flows, for instance in the gbegsical context, in sectionsand5
and discussion of out of equilibrium statistical mechaiicsection6.

3.1. Mixing entropy and equilibrium states

3.1.1. Equilibrium entropy and microcanonical equilibmustates

We describe in this section the microcanonical variatigarablem and microcanonical en-
tropy, the Robert-Sommeria-Miller theory, following tleefrst papers163 139 164, 169|.

We explained is sectio.3.5that for the microcanonical measure, the vorticity field at
different locations are statistically independent. Wealem (r,o)drdo the probability for
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the vorticity w to take values betweeam ando + do in the area elementrcaroundr. Then the
Boltzmann-Gibbs entropy

(] = — /9 d2r /_ :oaplogp. (41)

is a quantification of the number of microscopic states {eityt fields) corresponding to a
macroscopic states (probability density. A more precise meaning of this will be given with
the variational problem4@) below. The most probable state, close to which most of therot
states will be concentrated, will thus be the maximizer efehtropy 41) with constraints asso-
ciated with each dynamical invariant.

We now list the constraints. Asis a local probability, it satisfies a local normalization

00

N[p](r)= 7md0 p(o,r)=1 (42)
The conservation of all the Casimir functionals’), or equivalently the known potential vortic-
ity distribution (L8) imposes

Do) (0)= | drp(a.r) = y(o). (43)
The averaged potential vorticity is
+o0
q(r)= [ doop(o,r). (44)

with the average streamfunctiap, defined byg = Ay — Rgz +h(y). As explained in section
2.3.5 because the interactions are long range and the energuiis av&r infinite contributions,
the energy of the mean field will be equal to the initial energy

@@[ﬁ]z—%/@drHJq:E. (45)

Then the entropy of the system is given by the variationablgm

SEy)= sup {Z[p]|&[d=E,Dlp]=y} (MVP). (46)
{pIN[p]=1}
and, thanks to the large deviation propert7] (see sectior2.3.5 an overwhelming number of
potential vorticity fields of the microcanonical ensembii ke close to the maximizep of the
variational problem46).

Here MPV refers to "microcanonical variational problemt'says that the equilibrium en-
tropy S(E, y) is the supremum of the mixing entrop¥[p] among all the normalized probability
density fieldo(o,r) that are characterized by a given value of endt@nd of the global poten-
tial vorticity distributiony(o).

Two routes are now possible. The classical one is to lookhferctitical points of the vari-
ational problem46). For this, we introduce Lagrange multipligBs a (o) and{(r) associated
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with the conservation of energy (45), vorticity distributionD(o) 43), and normalization con-
straintN (42), respectively. Then critical poinis are solutions of

+o0
vop 87—-Bd&— [ doa(o)sDs —/ dr SN =0,
—o 9
where the entropy is given byl{). Solving this equation fop and using the normalization
constraint, we obtain that the critical poirsverifies the Gibbs state equatioh63, 139, 164,
168:
gBou(r)—a(o)

Za (BY(r))
We see thap depends on through the average stream functigpn From @4) and @7) there is a
functional relation between the equilibrium average pidémorticity and the stream functions

p(o,r)= with Zg (u) = /m do exp(ou—a (0)), (47)

G=g(B) with g(u) = +.109Z. (48)
This last equation characterizes the statistical eqiulibr One can prove thatis a monotonously
increasing function, such that the relation between pitevdrticity g and streamfunctioiy is
increasing for positive temperature® £ 0), and decreasing for negative temperatufes: Q).
This equation has to be solved for any values of the Lagraagenpetery3 anda (o). Then
one has to compute the energyand potential vorticity distributioy(o) as a function of3 and
a.

For a given energye and distributiony(o), among all the possible values ff a and
distribution p solving @7-48), the one actually maximizing the entrop§6j is selected. In the
general case, this program is not an easy one, and the aimt of piae following discussion will
be to solve this in simple cases and to describe methods ihaiossibly make this program
simpler.

The second route is to try to work directly with the variatbproblem 46) and to simplify
it. In review we will try to rely as much as possible on vawatil problems only. This route will
prove to be often physically more enlightening, at leastlierspecific examples treated in this
review.

In his original papers, in the beginning of the 1990s, Mi[tEB9, 14(Q justified formally the
mean field variational problem from a formal discretizatafrthe microcanonical measure and
its solution through direct computations using the Hubkstrditonovich transformation. Robert
and Sommeriall63 164, 168 were assuming directly and phenomenologically the mesld-fi
variational problem. Only latter on, did the work of Miche&ldaRobert 138 137] and Boucher,
Ellis and Turkington 12] justify the mean-field variational problem more rigorgushrough
expliciting the relation with large deviation theory.

We note that a similar mean field variational problem als@iless the statistical mechanics
of the violent relaxation of the Vlasov equation, both folf-ggavitating systems and plasma
physics. The mean field variational problem for the Vlasavatipn has first been proposed on a
phenomenological way by Lynden Bell in the end of the 198Q§]| It can be justified following
the same route as for the 2D Euler equations (see for ins{d6&p. There is indeed a deep
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analogy, noticed from the 1950s, between the Vlasov andBhE@er equation: both are non-
linear conservation laws with an infinite number of Casimoingervation laws, leading to similar
properties and analogies, at the level of both dynamics &atidtical mechanics. This analogy
and its consequences from a statistical mechanics poineof vave been used and described
in details for instance ing1]. A larger class of systems have the same properties: sgsiéiin
long range interactions. The analogies between the dysaanid statistical mechanics of these
systems have been systematically studied during the laatlée see for instancg9, 44, 37, 38,
22].

3.1.2. Ergodicity

Section3 describes the statistical equilibria through the variaigroblem 46). The solu-
tion of this variational problem is the most probable staité also, thanks to the large-deviation
property, the state around which an overwhelming majorftgtates do concentrate, for the
microcanonical measure. Besides, the microcanonical uneas the most natural invariant
measure of the 2D Euler equations with the dynamical conssta

Having described a natural invariant measure of the equ&ii® an important theoretical
step. Another important point would be to know if this inari measure is the only one having
the right values for the dynamical invariants. The evolutid one trajectory of the dynamical
system also defines a measure (through time averaging). Knew the invariant measure
were unique, then it would mean that averaging over the rog&ronical measure is equivalent
to averaging over time. When this uniqueness property heldscall the dynamical system
ergodic.

Generally speaking, the ergodicity of a dynamical systeia [soperty that is usually ex-
tremely difficult to prove. Such proofs exist only for verymf@xtremely simple systems. Er-
godicity is actually thought to be wrong in general. Foramgte, in Hamiltonian systems with
a finite number of degrees of freedom, there often exist dslan phase space in which trajec-
tories are trapped. The common belief in the statisticalhapics community is that those parts
of phase space where the motion is trapped exist, but ocaupxteemely small relative volume
of the phase space, for generic systems with a large numidegoées of freedom. Apart from a
few systems which were proved to be integrable, this commisdamn has successfully passed
empirical tests of a century of statistical mechanics stsidi

There is no reason to suspect that this general picture éheudlifferent in the case of the
2D Euler equations, in general. It is thus thought that amwlrelming number of initial con-
ditions will have a dynamics consistent with the microcaoalhmeasure predictions. However,
similarly to most other Hamiltonian systems, the 2D Eulanaipns are actually non-ergodic.
The proof is quite simple.

Indeed, it is proved in19] that any Young measure for whieh(r) is a stationary solution of
the 2D Euler equations is either an invariant or a quasiFiamameasure. The class of invariant
measures corresponding to ensemble of trajectories witdngialues of the invariants, is then
much, much larger than the class of statistical equilibriniariant measures with the same
invariants. This proves that nontrivial sets of vorticitglfis are dynamically invariant. In this
restricted sense, this proves that the 2D Euler equati@nsairergodic.
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This theoretical argument proving non-ergodicity is in@dance with previous remarks
about the phenomenology of the 2D Euler or quasi-geosttoppiiations. For instance, it was
observed numerically that initial conditions with loc& vorticity, in large domains, remain
localized (see49] and references thereird9] actually proposes an interesting phenomenolog-
ical modification of the microcanonical measure approaatofme with this localized dynamics
problem). Another example of possible non-ergodicity & dynamics close to stable dynam-
ical equilibria of the equations. When trajectories conselto such equilibria, they can be
trapped (frozen) as was seen in some numerical simulattookssical argument by Isichenko
[99] is that for initial conditions close to parallel flows, “gigcement in certain directions is
uniformly small, implying that decaying Vlasov and 2D fluigtibulence are not ergodic”. Even
if the predicted algebraic laws by Isichenko are most prjbabong, the fact that displacement
in directions normal to the streamlines is uniformly smalprobably right, thus being another
argument for non-ergodicity.

An important point to be noted, is that the Navier-Stokesaéign with stochastic forces can
be proved to be ergodi@$]. This ergodicity refers to invariant measures of the Na@tokes
equations, which are non-equilibrium invariant measurek fluxes of conserved quantity. A
very important point is to understand the limit of weak far@mnd dissipation for such invariant
measures and to study their relations with the invariantsmes of the 2D Euler equations.
Some very interesting results can be foundlihg].

3.1.3. Canonical and Grand Canonical ensembles

The microcanonical equilibrium describes the most prabatate, resulting from the micro-
canonical measure with a given potential vorticity digitibn and energy. From a mathematical
point of view, we have to solve the variational proble#®)( This is a tricky task, one of the
main difficulty being due to the vorticity distribution andiergy constraints. We here define
canonical, grand canonical ensembles, and corresponduntipeium, that will help us a lot in
simplifying the description of the equilibrium states.

Itis customary in statistical mechanics to consider steisensembles where the constraints
coming from the dynamical invariants are relaxed (a phraae will be clarified soon). For
instance, in classical statistical mechanics, the caabeicsemble is obtained by relaxing the
energy constraint, and the grand canonical ensemble byinglthe constraint corresponding to
the number of particles. We follow the same paths here. Weyahd canonical ensemble, any
ensemble where some or all of the constraints related todtenfial vorticity distribution are
relaxed. The meaning of this procedure is discussed iR

Whereas the microcanonical ensemble is built on the assomibtat all microstates with a
given energy are equiprobable (microcanonical distrim)ii the canonical ensemble assumes
a Boltzmann distribution of the microstates (distributimeighted by the Boltzmann factor
exp(—BE))). In section2.3.5 we explained why a mean field description of the microcaraini
measure is valid, and why it leads to the microcanonicalatiarnal problem 46). The same
arguments allow to conclude that, for the canonical distidm, the most probable state and the
Helmholtz free energy can be computed from the canonic@&tianal problem
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F(B,y)= {p‘Niﬂ)f]fl}{ﬁ [pl=-Z[p]+ B &[T |Dlp] =y} (CVP), (49)

Here CVP refers to "canonical variational problem". Theildgnium free energyF (B, y) is
the infimum of the free energy functionaf[p] for any normalized field of probability density
p(o,r) that are characterized by a given global potential voytidistributiony(o).

The canonical equilibrium states= [ doop are the average potential vorticity fields where
the free energy minima are achieved. Compar#ft)) and @9), the canonical variational prob-
lem (49) appears to be similar to the variational problem assatiatith the microcanonical
one, but with the energy constraint relaxed. This expldiesexpression “relaxation”. Thanks
to the Lagrange multiplier rule, the canonical and micreceécal variational problems have the
same critical points47-48), but the stability properties of the two variational prainls may be
different (free energy minima and entropy maxima may besdiffit). We discuss this last point
in more detail in section3.2and3.3.

A similar relaxation, this time of the potential vorticityorstraint, leads to fixed-energy
grand canonical ensembles. This gives a new class of war@tproblems: the minimization of
Casimir functionals

C(Eo.) =i {%{q} = [ ¢rs@ | £l =Es } (EC-VP) (50)

where %5 is a Casimir functionals, ansla convex function. Here EC-VP refers to "energy-
Casimir variational problem". The fixed-energy grand cacanequilibria are the minimizers
of this variational problem. The relation of this last véioaal problem to the microcanonical
one is not obvious at a first sight. The mathematics of suchatiae can be skipped, at first
reading. For a detailed account of the derivationl) from the grand canonical distribution,
we refer to L5]. The convex functiorsis related to the Lagrange parameters associated with the
conservation of the vorticity distribution (the grand caival thermodynamic variable's)

Critical points of £0) are solutions of

v 8q 8%s— BSE =0,

where 3 is the Lagrange parameter associated with the energy aoristrThis yields to the
following relation for the critical points:

a=(s) " (-Bw).
We conclude that if

(¢) " (~u) =g(u), (51)

whereg(u) is defined by equatiordg), then the microcanonical variational probled6) and
canonical onef0) have the same critical points. Moreover, it is provenlif that if (51) holds,
then any stable canonical equilibriufQj is a stable microcanonical equilibrium).

12These relations are given by formulas (12) and (16)16F [
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Notice that the variational problem EC-VBQ) was classically used before this statistical
mechanics theory, and independently of it. It is called thergy-Casimir variational problem,
and was used in classical works on nonlinear stability ofeEstationary flowsj, 95|, also
allowing to prove the nonlinear stability of some of the istatal equilibrium statesl]68 139),
as discussed in sectidh3.1 In addition, a minimum enstrophy principle has been pnasiip
proposed by Bretherton—Haidvogeld to predict the large scale organization of freely evolving
2D and geophysical flows. This approach led to the resoluifathe variational problem5Q)
in the particular cass(q) = —¢? (then the enstrophy of the flow is minimized at fixed energy).
Although there isa priori no clear physical reason to motivate such a choice on a demerzxt,
the results of this subsection show that the Brethertord\aiel theory is a particular case of
the RSM statistical theory, since any solution 8@)is an RSM statistical equilibrium state.

3.2. Physical interpretation of the canonical and grand aaical ensembles

We have just presented canonical and grand canonical eteserabd the relaxed variational
problems. Itis essential to understand their physicatpmégation.

In classical statistical mechanics, two types of integiiehs of canonical ensembles may
be relevant, depending on the physical problem under ceratidn. The first physical interpre-
tation is that the statistics of a system in contact with antiz bath is actually described by the
canonical distribution. The canonical distribution isghthe natural distribution in many cases,
in condensed matter for instance. But when the physica¢ésysan be considered isolated (this
is usually a matter of comparing the characteristic timeefogrgy exchanges with the environ-
ment with the characteristic time for relaxation toward iiguum), then the microcanonical
distribution and ensemble are the relevant ones. In this aban isolated system, the canonical
distribution can still be considered, based on the factrtiiatocanonical and canonical distribu-
tions are usually equivalent in the thermodynamic limieytlyive the same predictions for the
average of macroscopic variables. In this second intexpioet, the canonical distribution and
ensemble appears as a very useful mathematical way to awwid gicky technical difficulties
related to the energy constraint in the microcanonicatitigion.

Let us discuss more specifically the case of fluid dynamicd,tha 2D Euler and quasi-
geostrophic equations. First, there seems to be no way smdauple such flows with a thermal
bath. Also, for the grand canonical ensemble, it is hard tgime what a potential vorticity bath
could be. Then, only the second interpretation of the carmbeinsemble can be a relevant inter-
pretation of the relaxed ensembles: it is a very useful nmathieal trick, nothing more. We are
thus led to follow this second interpretation only. C\A®)and EC-VP §0) are far more simple
variational problems than the microcanonical ones M¥®).(Besides all solutions of CVP and
EC-VP are solutions of MVP for some energies and some pateriticity distributions (see
[15] for a proof). The relaxed ensembles are thus very useful.

There is still a crucial difference between usual sta@gtmechanics and the statistical me-
chanics of two-dimensional and geophysical flows: microocéal and relaxed ensembles are
often non-equivalent. This is reflected by the fact thatehmay exist microcanonical equilibria
that are not equilibria of the relaxed ensemble (the comvisrsot possible, as just stated above).
An affirmative point however, is that such a situation of eniske inequivalence can be detected
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from the analysis of relaxed ensembles only (sk& for a thorough discussion). Therefore, it
is always a good choice to begin with the study of the leassttained ensemble. We show in
section3.5how to use this general idea in specific examples.

3.3. Long range interactions and possible statistical emnsie non-equivalence

We explained in sectio.3.5that the energy of the 2D Euler equations can be expressed in a
form where interactions between vorticity values appeatietly, using the Laplacian’s Green
function

g’[w]:—%/@drwA1w:—%/@/@drdr’w(r)H(r,r’)w(r’). (52)

In formula 62), H (r,r’) appears as the coupling between vorticity at poimind vorticity at
pointr’. The Green function of the Laplacian in a two-dimensionalsgs logarithmic, which is
not integrable over the whole plane. The interaction betweeticity at different points is thus a
long-range interaction. This is the main reason why foistieal equilibria, the vorticity values
at different points can be considered uncorrelated, andmggn-field variational problem4g)
describe the statistical equilibria.

In physics, there is a large set of systems with long-ranggrantions (in the sense of a
non-integrable potential). Self-gravitating stat§,[183], plasma 52, 123, particles in accel-
erators, free-electron lasers, magnetic systems are égsi@mong others of systems with long
range interactions. For the same reasons as the ones ptgesectior?2.3.5 the equilibrium
statistical mechanics of these systems will be describaddsn-field variational problems sim-
ilar to (46) or (49). Moreover, unlike systems with short range interacti@ystems with long
range interactions are not additive (in the limit of a largenter of degrees of freedom, if the
system is divided into two macroscopic sub-parts, the &gy is not approximately equal
to the sum of the energies of the two sub-parts). This noiitiaitlg has drastic physical conse-
guences. For instance, the usual proof for the concavith@&ntropy (in the context of short
range interacting systems) relies on the additivity of thergy. It is then possible to observe
non-concave entropies, and henceforth negative heat itiepagemperature decreases when
energy increases!) for systems with long-range interastias first observed in self-gravitating
systems 128§.

The study of the statistical mechanics of systems with l@rgge interactions has been a
very active branch of statistical mechanics over the pasyéars (see articles in proceedings
and reviews $9, 44, 38, 17, 37], among others). In two-dimensional and geophysical flows,
unusual thermodynamic properties related to long rangwdntions have also been observed
[178 109, 33, 69, 70, 197] and their consequence for the stability theorg][and related phase
transitions 6] has been discussed.

The study of these thermodynamic peculiarities would betarabextension of this review.
Beyond their theoretical interest, these studies give itapb practical outcomes, such as simple
characterization of equivalence between the variatiora@dlpms 46) and @9) from the entropy
curve B9, or actually from the free energy curvédg, 197, classification of all possible phase
transitions 6], which is a very useful guide in any particular study, or ngwofs of flow
stability [70]. A detailed presentation of these results is however beyioa scope of this review.
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3.4. Statistical equilibria in the limit of affine relatiofetween (potential) vorticity and stream-
function

In section3.1we have described the variational problem which descriuéstital equilibria
(46). We have seen that the critical points of this variatiommabtems give a nonlinear relation
between (potential) vorticity and streamfunction (E¢8)j, which we write again using the
relation between streamfunction and potential vortic&y (

a=0y- % =a(BY) (53)

(in order to simplify the discussion of this section we assup= 0, the generalization to the
caseng # 0 would be easy). Equatiorbd) is a nonlinear elliptic partial differential equation
whose general solution is not easily found. Some algoritttms®lve numerically such an equa-
tion (or directly the variational problen#€)) will be described in sectio.6. Explicit analytic
solution can be found only in some specific limit. A first ligrifior which solutions are known is
the limit wheng is an affine functiond(x) = ax+ b), called affineq — y limit, that we describe
in this section. This limit and normal forms due to small dimear effects close phase transi-
tions will also be used in the treatment of the example dsedisn sectior8.5. Another limit
which can be treated analytically is a limit of very strongndimearity which will be the method
used in sectiond and5.

Chavanis and Sommeria first solved statistical equiliboiaan affineg [47]. This work
describe for instance phase transitions related to the iogemetry; for instance in a rect-
angular box a phase transition occurs between monopoledipolds when the aspect ratio is
changed. We refer talff] for a more detailed discussion. Subsequent wotkg,[199, taking a
different perspective by solving directly the variatiopabblems, and describing wider classes
of solutions have shown that the affine limit give examplestafistical ensemble inequivalence
(see sectior3.3) and of bicritical points and second order azeotropy, twasghtransition types
that were not observed before as statistical equilibrigufdsulence problems. Applications to
ocean model flows, like Fofonoff flows have also been disaisseently 197, 199, 147, 146).

All these results show that the affige- ¢ limit is extremely rich from a physical point of view.
The reference cited above contain much more results. Theegffi ¢ limit is also extremely
interesting from a pedagogical point of view.

An essential point is to understand the physical circuntgtarior which the affing —
limit is relevant. Two different and complementary typegustification exist. In sectio2.3.4
studying the energy-enstrophy ensemble, we have seemakitag into account enstrophy only as
a Casimir invariant leads to an affige-  relation. We however stressed that there is no a priori
reason to take into account only quadratic invariants. As fioticed in 7], when 3 is very
small (very large temperatures) the energy constraintdsssdffect than in other situations and
the system has a nearly homogenized potential vorticitySuch states correspond to peculiar

13For a given global distributiopr(o), the macroscopic fielp (47) does not depend on the spatial coordinates
whenf = 0 (infinite temperatures). The corresponding potentidiicity field g, given by equation48), is therefore
fully homogenized.
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values of the energy. In this “strong mixing” lim@& — 0, an asymptotic expansion &ff) can
be performed, by considering8 ¢ as the small parameter. In this limit, statistical equilibx
states are characterized by a affape ¢ relations, whose properties depend on the energy
and the circulation only, even if the infinite number of coastts area priori considered (see
[47, 147] for further discussions). This strong mixing limit is thestitype of justification of the
affineq— g limit.

A second type of justification for the affireg—  limit relies on the general results about
equivalence between variational problems discussed tioae®:1.3(please see alsdp, 197)).
We explained in the last paragraph of sectioh.3that the resolution of the variational problem
(50) in the particular cass(q) = —¢? , leading to affineg —  relation give access to an admis-
sible class of statistical equilibria. We note, that ach@kntial vorticity distribution leading to
affine or close to affine relations may be different in the twses of the strong mixing limit,
or using the mathematical properties of ensemble betwegatiomal problems. However, the
coarse-grained potential vorticity fields will be the saradteey are both described by the same
class of affineq—  relations. The phase diagram structure and phase tramssitidl also be
the same in the two cases

3.5. Example of doubly-periodic flows

As an example of application of the equilibrium theory, weatrthe case of the 2D Euler
equations § = w) on a doubly-periodic domain (torug),y) € 2 = (0,2m9) x (0,2m); where
d is the aspect ratio. We believe this is a very good pedagbgi@anple because of its simplic-
ity. We will easily solve the problem analytically in the diarized limit, and make a nonlinear
bifurcation analysis, leading to an interesting phasesitem diagram.

This problem is also an interesting one from an academictpifiview, as many direct
numerical simulations (DNS) of the Euler or Navier-Stokgsiagions are performed in this
geometry. The reason is that Fourier pseudo-spectral éngesiodic domains allow for much
more efficient simulations than any other methods in bourtitedains. This geometry is also
advantageous because it does not involve the physics at=ib¢d boundary layers that make
the situation more complex. This can also be consideredvebadiek, as it is hardly conceivable
to make experimental realizations of this geometry in the la

Several generic properties of the theory should emergeidgirdhe study of this example.
The first essential point is that the domain geometry alwéggsfa crucial role. The second point
is that the energy constraint is the one that prevents a @eplixing of the potential vorticity,
it is thus also a key parameter. The last thing is that, likeisnal thermodynamics, phase
transitions also play an essential role for fluid dynamigsliagtions. Indeed, they correspond
to specific values of the physical parameters where drabaoges to the system occur. As
such, these points are particularly interesting and anyrétieal study should emphasize phase
transitions.

This study in doubly periodic domains describes phaseitrans between dipoles and par-
allel flows. The existence of these two types of statisticgiiléoria (dipole and parallel flows)
were observed in direct numerical computations and numer@mputations of statistical equi-
libria in [206. The bifurcation theory we present here, predicting thasehdiagram, the type
of phase transitions, and the relevant physical contr@mater (a balance between nonlinearity
a4 and domain geometry) was first presented ir2fl, 143.
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3.5.1. Variational problem
We consider the solutions of the variational problem:

C(E,s) — igf{%s[w] . /j d?r s(w) | €[w] = E } (EC-VP) (54)

whereE is the energy anda convex function of the vorticitg (the second derivative afwith
respect taw are positive). This variational problem is the grand cacanvariational problem
(50) of section3.1.3 in the case of the 2D Euler equations. We recall that anytisalto (54)
is a microcanonical statistical equilibrium, but that alicrocanonical equilibria may not be
solutions to §4), as discussed in secti@?2. We also recall (see equatiobl) page48) that the
relation betweers and the functiorg appearing in the solution of the microcanonical variationa
problem @8), is given by

©=9®) = () " (-BW), (55)

wheref3 is the Lagrange parameter associated with the energy aaistr

3.5.2. Quadratic Casimir functionals

We first study the case of a quadratic Casimir functi@ial)) = w?/2. This leads to a linear
relation betweerw and ¢ (see 65)). As discussed in sectioB.4, a detailed study of micro-
canonical equilibria with lineatw —  relation was carried out im[/] (see also subsectidh4),
and a detailed study of variational problems with quadrticctional in relation with ensem-
ble inequivalence is presented i9[7, 199. We note that in the case of the doubly periodic
geometry, the strong mixing limit coincide with the weak igygimit.

We want to solve the variational problem

Co(E) = inf {cgz[w] = %/%dzr W | &lw) = E} . (56)

It is convenient to decompose the fields on the Laplaciameigeles. Let us calfe }i>1 the
orthonormal family of eigenfunctions of the Laplacian oa tomainZ:

_Ae = Ae, with / dree = 3. (57)
9

The eigenvalues; are arranged in increasing order. For a doubly periodic dorpay) €
(0,27118) x (0,21), & (x,y) are sines and cosines. For instancedfor1: e (x,y) = sin(x/8) /2m/3,
A =1/38%, e (xy) =sin(y) /2m/d andA, = 1. We note that cosines are also eigenmodes, with
the same eigenvalugg andA,. This degeneracy is due to translational invariance. Irfdhe
lowing, we do not take them into account: this amounts to jximo arbitrary phases associated
with the translational invariance in the directionsepfinde.

We decompose the vorticity on the eigenbasis: 3;-; we. The energyd) is then

¢ w] = %ZArloﬁ (58)
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The energy constraint is absorbed imbg, giving w? = 2A1E — zizz()\l/)\i)cqz. The condition
w? > 0 imposes that the vectgli-, w6 be inside a volum¥ defined by

VE = {;ma | 22)\(1(42 < ZE}« (59)

Substituting the expression fmtl2 in (56), the variational problem becomes

. 1oAi—A o
C(E)=AME+ inf = . 60
2(E) =M {m}i>26VE{2i; A Y (60)
Since for alli > 2, Aj — A1 > 0, one concludes that the minimizer &0} verifiesw = 0 for all
i >2:
w= (2AE)Y?e; andCy(E) = A4E. (61)
We thus conclude that the equilibrium for a quadratic Casfomctional with an energy con-
straint is proportional to the first eigenmode of the dom&irmm the relation between vorticity
and streamfunction, we see that the vorticity fieldcorresponds to a parallel flow along the
direction of maximum elongation of the domain
V=—-—C0S(X : 62
omalz oS+ @o)e (62)

This example illustrates general properties of statiséqailibria:

1. The equilibrium structure is most of the times at the lasrgeales of the domain. This
result is in agreement with the widely accepted empirickd thiat the energy piles up to
the largest scales of the domain.

2. The geometry of the domain plays a crucial role for thecstme of the equilibria (in this
case, we observe a transition from flows alongsttiérection towards flows along the
direction, as the aspect ratio crosses through the critadak & = 1).

The degenerate case. A very interesting case is that of the periodic square donsais
(0,2m) x (0,2m). In this case, the first eigenvalue is degenerate, i.eA\; = A, (this degener-
acy is not the degeneracy due to the translational invagiathere are actually four eigenmodes
for the Laplacian corresponding to eigenvaligs= A,). Then, for a quadratic functional, a
whole family of extrema existsw = wie; + wye with wlz + wzz = 2A1E, and with entropy
Co(E) = AE.

This family of flows includes the parallel flows describedvioesly, but also dipole flows.
For instance, the symmetric dipoles of vorticity

(2E)Y/?

w(XYy) = [sin(x+ @) +sin(y+ ¢')] . (63)

We thus conclude that the maximization of a quadratic Cagimctional with energy constraint
does not select the flow topology in a square domain; becdube aegeneracy, it can be the
topology of either parallel flows or dipoles.

54



3.5.3. Weak-energy limit for the maximization of symmeasimir functionals
We now consider the more general case of a Casimir functional

Q(E):igf{%s[w]z/@dzrs(w) y@@[w]:E}, (64)

wheres is a convex function. We suppose tlsds even:s(—w) = s(w). This is the case for
any even initial distribution of the vorticity (an extensiof the following discussion to the more
general case would be easy).

It is clear that the multiplication of by a constant will not change the minimizers 64
Then we can assume, without loss of generality #1é0) = 1.

We consider the weak-energy limit of the variational prablg4). Because the energy is
positive-definite, it is clear that for weak energies,is small. Thens(w) ~ w?/2. Then at
leading order, in the weak-energy limit, the equilibriumustures are given by the minimization
of a quadratic functional. They are thus close to the firstmigodes of the Laplacian of the
domain.

In the previous section, we saw that in a doubly periodic sgdamain, the minimization
of a quadratic functional does not determine the flow topgldge to the degeneracy of the first
Laplacian eigenvalues. An interesting issue is to undedstew this degeneracy is removed by
the next order contribution of a non quadratic functionaé ¥us consider

15 & 4 4
s(co)_éw 7w +o(w). (65)
Parameter a. The parametea, appearing in§5) plays a crucial role. It determines the first
correction to a quadratic entropy. Moreover, it is intinhateelated to the shape of the relation
w=f(Y)=(s) (BY). Indeeds (x) = x— anc+0(x?) and thugs) * (X) = X+ a3+ 0(3).
For instance, wheiay > 0, the curve(s) *(x) bends upward for positive, similarly to an
hyperbolic sine; recalling thg8 < 0, the curvef () is decreasing and similar to the opposite
of an hyperbolic sine. Wheay < 0, (s)*(x) will bend downward, similar to an hyperbolic
tangent. We will refer later on the caag > 0 as the sinh-like case and the cage< 0 as the
tanh-like case.

3.5.4. Normal forms and selection between degeneratesstatae weak energy limit

We now study how the degeneracy between eigenstates fobéydmriodic square is lifted.
We saw in sectior8.5.2that the modification of the domain geometry (aspect ragojaves
the degeneracy. We suggested in the previous section thabtiiributionasw® of the Casimir
functional may also remove the degeneracy. We study howe tineseffects compete, by making
a quasi-linear study of the variational proble6d)in the weak energy limit.

We first evaluate the range of parameters for these two sffedie of the same order. We
have seen that at leading order (maximization of a quad€sdiimir), the vorticity scales like
(AE)¥2. The fourth order terna,w* is thus of orderayA?E2. The leading order correction
due to the geometry irbg) is of order(A;, — A;)E. Therefore, one may omit non-quadratic cor-
rections providec;luAfE2 < (A2 — A1)E (case dominated by the geometry), and one could omit
geometry effect foesA?E? > (A, — A1)E (case dominated by non quadratic contributions to the
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Casimir functional). This suggests that interesting phesmma may occur in the weak-energy
limit when A2, — A; = O(a4E) (we assum@\; of order one, which is the case if the domain area
is of order one).

Given the preceding discussion, it is natural to define a gdgnparameteg by

A2—A1
E

g > 0 is a measure of the degeneracy removal by the domain geoetr A1), scaled
by E, the scale of relative non quadratic corrections in the kerargy limit4. For a doubly
periodic rectangular domaifx,y) € (0,21r6)X (0, 21), with aspect ratiad, we haveA; = 1/52
andA, = 1 (see sectioB.5.2. Theng = (6% —1)/(6°E).

We now maximize the Casimib8) using 66) and consider the limigygE — 0 for fixed
values ofg.

At leading order, the flow is dominated by the degenerateneigeles of the Laplacian. We
thus have

: (66)

w= (wer+ wer) (1+o0(auE)), (67)
The energy constrainbg) can be expressed as

w3 = 2EAX 4 0(a4E) and w? = 2A1E(1— X) 4 0(a4E) (68)
with 0 < X < 1. The expression for the quadratic p&®) of the Casimir functional is
Co(E) =E(A1+9XE+o0(gE)). (69)

Similarly, we compute the fourth-order contribution to thetropy. Let define the structure
coefficients by

Yok = /9 d?r ke k. (70)

Given the symmetric role played Byandy, we havey, o = ya 4 andys 1 = ya.3 = O for the doubly-

periodic square domain. These equalities will be used irfdh@wing for slightly rectangular

domains, which is correct at leading ordeiini— A1 (or 6 — 1). We also defing’ = 3y» > — ya 0.

We note thaty = 3/8r > 0, which can be verified by a direct computation.
Straightforward computations then give

. 0)4
a4/9 d?r 5 —E [(AZya0+2yAZX(1— X)) auE + 0 (auE)] . (71)

From ©4), (65), (69) and (1) we conclude, that at leading order, the minimum of the Caisim
functional @4) is given by

_ _ 2, 2 p2
C(E) =ME—yioAjaaE“+E Or;xag(lh(X), (72)

14As may be noticed, the actual small parameter in the low grexgansion isuE. One could have definaglby
rescalingh, — A1 by a4E rather than byE only. This would however be inconvenient in the followingclission, as
the sign ofay plays an essential role.
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with
h(X) = —gX+ 2yAZa;X(1— X). (73)

Square geometry.In order to understand the effects of the non-quadratic guayt let us first
consider the case of the doubly periodic square domain, evtier geometry parametgr=
0. The functionX(1— X) in h has a single maximum & = 1/2. This solution where both
eigenmode®; ande, coexist equally is called mixed state From 67-68), we see that this
mixed state is the vorticity of a symmetric dipole (see thecdgtion of 63)).

For the square geometgy= 0, there are also two global minimaXd1—X): X=0(«, =0
corresponding t@;, see 67-68)), andX = 1 (w; = 0, corresponding tey). We calle; ande,
pure stateswe recall thae; ande, corresponds to parallel flows (se&2)).

From (73), we see that the maximization of the Casimir functiof@) depends crucially on
the sign ofas. For the square geometgy= 0, for the sinh-like case4 > 0, the non quadratic
contribution selects the dipole (mixed state), whereagHertanh-like casey < 0, the non
quadratic contribution selects the parallel flows (puréesia

Equilibria in the sinhlike case (@ > 0) in a rectangular geometry.In a rectangular doubly
periodic geometng # 0, whenas > 0, the functionh(X) is a concave parabola. It thus has a
single maximum for

_1 g
2 dyAay
Clearly X* < 1/2: the dipole is stretched in the same direction as the daniéie constraint
X* > 0 must be verified (se@8). This is the case only i < g~ with

*

(74)

g =2yAfay. (75)
The discussion follows:

1. Forg > g* the effect of the geometry dominates and only the parallel essociated with
e; (X =0) is observed. The Casimir minima is

Cs(E) = ME — yuoauA7E? + 0 (a4E?) . (76)

2. Forg < g* the effect of the non-quadratic term dominates, we thenrgbsemixed state
corresponding tX = X*. The entropy is

1

2 %\ 2 2

Cs(E) =ME+ —V4,0Ala4+m(g—g )7| E= (77)
The solutionX = 0 is a local maximizer of@4) (unstable state).

We thus conclude that in the sinh-like caag £ 0), there exists a second order phase transition
(i.e. a discontinuity in the second order derivative of tig@ibrium entropy with respect to
the energy ) where the flow bifurcates from a dipole when the quadratic part dominates
(g < 2yA?ay) to a parallel flow when the geometry dominatgs(2yA?ay).
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Equilibria in the tanhlike case (@ < 0) in a rectangular domain..In a rectangular doubly
periodic geometnyg # 0, whena, > 0, h(X) is a convex parabola. SincegX favors the state
e1, the global statistical equilibrium is always the pureett(X = 0). The equilibrium value

of the Casimir functional is
Cs(E) = ME — ygorfayE2. (78)

We now study the metastable and unstable equilibria. Thetitmh(X) has a single mini-
mum for X = X* (see {4)), but because noay < 0, X* > 1/2. Depending on the position of
X* with respect to 1, two cases occur:

1. Forg > —g, thenX* < 1, the mixed state exists as an unstable state. The pureestate
(X =1) is a local maximum (metastable state).

2. Forg < —g*, then the mixed state is no more a critical point. The purtegacorre-
sponding taX = 1 is a local minimum (unstable).

The results for the equilibrium structures are summarizedigure7. There is thus a second
order phase transition along the lige- g* = 2y)\12a4

a, U

stable mixed state

stable|pure state (X=0)

g

stable pure state (X=0)
metastable pure state (X=1)
unstable mixed state

unstable pure state (X=1)

_glj
Figure 7: Bifurcation diagram for the statistical equilébof the 2D Euler equations in a doubly periodic domain
with aspect rati@, in the limit where the normal form treatment is valid, in ey parameter plane. The geometry
parametegis inversely proportional to the energy and proportionahtodifference between the two first eigenvalues
of the Laplacian (or equivalently td — 1 in the limit of smalb — 1), the parameteay, measures the non-quadratic
contributions to the Casimir functional. The solid line isecond order phase transition between a dipole (mixed
state) and a parallel flow along thalirection (pure statX = 0). Along the dashed line, a metastable parallel flow
(along thex direction, pure stat¥ = 1) loses its stability.
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The second order phase transition from the energy poinesf.viln the preceding computations,
we have worked with a rescaled geometry parante(@6), because this is the correct scaling for
studying the phase transition (balance between the effegciastic part of the Casimir functional
and the effect of the geometry). From a physical point of yigwmany situations it is more
natural to think in terms of energy, for a fixed geometry canfigions.

We now consider fixed aspect radboanda, parameters. Using6), from the phase transi-
tion criteria (/5), we deduce that a phase transition occurs for a criticaiggrie* given by

. 4mo?(6%-1)
E* — — (79)
we have useq = 3/877, A; = 62 andA, = 1. The phase transition line is thus a hyperbola in
the E — a4 plane). For energieB < E*, we haveg > g* and equilibria are dipoles, while for
E > E* equilibria are parallel flows.

The computations of last sections are obtained as an expeimspowers ob4E. The result
(79) is thus valid for smalbsE* or equivalently for small values af — 1. The transition lines
for larger values of the paramet@r 1 is discussed in next section.

3.5.5. Larger energy phase diagram

In order to look at the phase diagram for larger energies, $e aicontinuation algo-
rithm to numerically compute solution t&%) corresponding tdfa, (X) = (1/3— 2a4) tanhx +
(2/3+ 2a4)sinhx. Using f = (S) %, one can check tha6) is verified. The results are shown
in figure 8. The inset of FigB a) shows good agreement for transition lines obtained eitlisr w
the continuation algorithm or the low-energy limit thedacat result, ford = 1.01. Figure8 b)
shows the bifurcation diagram fér= 1.1; in such a case the transition line is still very close to
a hyperbola provided energy is small.

In this section, we have computed the phase diagrams fortdhistieal equilibria of the
2D Euler equations in a doubly periodic geometry. This isliastration of the type of results
provided by a statistical mechanics approach: predictiolarge scale flow pattern, of phase
transitions between these, explanation from statisticathmanics ideas the stability of these
flows, and description of the few key parameters that chariaet these flows.

We will come back to the doubly periodic geometry in sectioy and show how predic-
tion of equilibrium phase transitions can be useful alsodfatrof equilibrium situations, when
dissipation and forcing are present.

3.6. Numerical methods to compute statistical equilibria

We have seen previously that it is possible to compute anallyt equilibrium states of
the RSM theory in some limit cases, and to get important hrtsign their physical properties
through these computations. However, one might in practaet to be able to compute these
equilibrium states for more general situations. One catindigish three different numerical
algorithms to find equilibrium states:

1. The use of an iterative algorithm proposed by Turkingtod ®hitaker, that computes
local entropy maxima by linearizing the constraints of thdational problem204, 194].

59



iy

Dipole

Unidirectjonal flow
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Figure 8: Bifurcation diagrams for statistical equilibdfthe 2D Euler equations in a doubly periodic domain a) in
theg-a4 plane (see figuré) b) obtained numerically in the — a4 plane, in the case of doubly periodic geometry with
aspect ratiadd = 1.1. The colored insets are streamfunction and the inset dlmggrates good agreement between
numerical and theoretical results in the low energy limit.

2. The use of relaxation equations that maximize the entpopgtuction of the system while
keeping constant the constraints of the problem (potewtigticity distribution and en-
ergy) [169. This method also drives the system toward a local entrogyimum. Gener-
alization of relaxation equations to large classes of tianal problems, with or without
constrains have been devised, see for instaisifr a recent review.

3. The use of continuation methods to compute the criticaltpof the variational problems
(48). This method is very useful to follow a branch of stationatgtes by changing one
parameter, and to detect bifurcatiod87, 24].

One has to be aware that non-linear optimization, with oheit constraint is not an easy task.
One has to be able to follow several bifurcate branches afisak, and actually be able to track
the good one!

Each of these three methods have its own advantages andattesvbThe advantage of
methods 1 and 2 is that they actually deal with constraine@t@nal problems. For instance
if we speak about the energy constraint only, the controhmpater of methods 1 and 2 will
be the energ¥ of the flow and not the inverse temperature. The associatadbaick is that
they have to be initialized with fields having either the gyeof interest (method 2) or an
energy larger than the energy of interest (method 1, therhasdo be able to compute energy
extrema). Another advantage of methods 1 and 2 is that thesalccompute local extrema.
The associated drawback is that it is not possible to comgadele or local minima, which is
often necessary.

The advantage of method 3 is that it allows to actually follmanches of solution, whereas
methods 1 and 2 lead to jump from one branch to an other inrratieontrolled way. It also
allows to precisely tracks bifurcations, and thus findstel branches of solutions connected to
the initial one. It thus gives a precise and complete vievhefénsemble of critical points. It is
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however more difficult to master.
The main drawback of all of these methods is that there isrr@weinsurance to have caught
the actual extrema.

3.7. Past studies of statistical equilibria and relaxatimmvards equilibrium

Most of theoretical contributions are described along thigew. As far as applications
are concerned, we have described only few examples oft&tatiequilibrium studies. Our
choice was based on their pedagogical interest or on theieist for modeling natural phenom-
ena. There have been however lots of other studies of gtatistquilibria, comparisons with
direct numerical simulations or experiments, see ek0,[129 and references therein. We
give in this section a brief overview of these works. We alszak briefly phenomenological
approaches based on statistical mechanics ideas, disgustixation towards equilibrium, the
closure problem in turbulence.

During the first stage following the appearance of RSM thettrgre have been attempt to
consider its application to classical fluid mechanics potd, like shear layer problem$32,
or von-Karman vortex street487], and to check the prediction of statistical mechanics, elé w
as to describe symmetry breaking phenomena during theggfization of initial conditions
containing negative and positive vortex patches with egtrahgth and area, in various domain
geometries J05. Statistical equilibria computations were mainly donemauically. It was
found that in any of these situation, statistical equilibmipredict that the most probable flow is
a self organized large scale structure, qualitatively w#myjlar to the numerically observed one.
Quantitative agreement has to be discussed on a case byasisdlB2, 187, 105. Similarly,
phase diagrams of statistical equilibrium states in a diskgsymmetric vorticity distribution),
and comparison with numerical simulations are providedb# $5, 53]. In the case of a dou-
bly periodic domain, 20€] found that freely evolving turbulent flow may for some clesof
initial conditions be self-organized into “bar” (paralféws) equilibrium states, different from
the dipole associated with the gravest horizontal mode. dalyéical understanding of this
phenomenon is given ir2f], see also sectio8.5.

Note that they may also exist some class of initial cond#ifor which the final state may
be unsteady (presenting quasi-periodic movements), wikictot described by the statistical
mechanics approachiT6).

Some numerical studies of decaying 2D turbulence have fsgali addressed the tempo-
ral evolution of the microscopic and macroscopic vorticltgtribution R7, 39, or the effect of
boundaries in closed domairts].

The first analytical computations of RSM equilibrium statese been performed in the
framework of the 2D Euler equations, for states charaadrizy a linearg—  relation §7],
which is justified in a strong mixing limit, see secti@y. Generalization to a larger class of
flow models (including quasi-geostrophic equations witioraphy), and relation with possible
inequivalence between ensembles is giverlBi] 199.

As explained in sectio.4, some of the states characterized by a lirary relation had
been previously described in the framework of the energgrephy theory (and all are RSM
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equilibrium states). This includes the original descaptof “Fofonoff flows” as statistical equi-
libria [172], see also4Q] for further discussions and results, argD§ 200 for a comparison
with direct numerical simulations. Generalization to @gombusly stratified quasi-geostrophic
turbulence in doubly periodic domains (with bottom topqimg but without beta effect) is dis-
cussed in135. Generalization to barotropic flows above finite topogsajsidiscussed in1[36)].

Energy enstrophy equilibrium states on a sphere have atso d@mmputed for a two-layers
guasi-geostrophic modeB]], and for a spin-lattice model of fluid vorticityl 5, 126).

Because lineag—  relations were also predicted by a phenomenological mimiraastro-
phy principle Rg], the relation between such states and RSM theory has baemhwdiscussed
in earlier studies on the RSM theory, see e.47, 26]. It is now understood that minimum
enstrophy states are only a particular class of RSM eqiuitits states47, 15, 147).

In some cases, the final state flow organization observedord#ory or numerical exper-
iments is different from the one predicted by the RSM thecdFhis has lead to several phe-
nomenological approaches inspired by the RSM theory. Introbghese approaches, some
additional constraints (different from the dynamical in&ats) are imposed to the system.

In order to describe the self-organization of turbulent flomnbounded domains49] pro-
posed to impose an additional kinetic constraint of entnm@aximization in a prescribed “bub-
ble”.

Another phenomenological approach, assunamgiori the existence of different “mixing
regions” has been proposed to describe the self-orgamiz&tilowing the equilibration of an
unstable baroclinic jet in a two-layer quasi-geostrophaei in a channelq2].

It has been observed experimentally and numerically thabime cases, two slightly dif-
ferent initial conditions can lead to very different finahtgts, one being predicted by the RSM
theory, the other being a quasi-stationary state in whighrs¢vortex are organized into a long-
lived crystal configuration, which persists during the tiofehe experiments, see e.gl74],
and [L10] for an application to mesoscale vortices in cyclones. Anameenological “regional
entropy maximization” approach, assuming a priori the texise of several vortex, has been
proposed to describe these vortex crystag 100.

The idea of an application of equilibrium statistical meala to the description of Jovian
vortices was mentioned in the early development of the thgsare for instancelBl, 140, 138§)).
The fact that the ring shape of the Great Red Spot velocity isglelated to the small value of the
Rossby deformation radius in a Quasi-Geostrophic moddbées understood iiB1]. The first
theoretical modeling and quantitative predictions aregiin [25, 21] in the framework of 15
layer quasi-geostrophic equation. In particular, anedytresult were obtained by considering
the limit of small Rossby radius of deformation (and theworsgty non-linearq—  relations),
see R5] and sectiod. At the same time, the conditions for the appearance of tbe@pthe
south hemisphere rather than on the south one, have beesshiscin 193. The small Rossby
radius of deformation theory has been further developeldroteanic context to describe rings
and jets, see02 198 and sectiongl and5.

Another attempt to apply equilibrium statistical mechartic oceanic flows had been per-
formed by B0, 61] in the framework of the Heton model 0®§] for the self-organization phe-
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nomena following deep convection events, by numericalljnmoting statistical equilibrium
states of a two-layer quasi-geostrophic model.

In the atmospheric context, the equilibrium statisticadity has been applied b{§Q to
predict final state organization of the stratospheric padatex.

In the ocean context, there has been many attempts to prepbsgid-scale parameteri-
zations inspired by the equilibrium statistical mechal¥icas first advocated by Holloway in
the framework of the energy-enstrophy approach (see €4.8p] for a review and further
references) , and further developed @@ to take into account higher order invariants.

The parameterization olLDg] is actually a direct application to the oceans of the rdiaxa
equations proposed by Robert and Sommeria in the case ofitbedfjuations]69. The relax-
ation equations are obtained through an interesting sydiermpproach based on a maximum
entropy production principle (MEPP) in order to obtain eprss, preserving the invariant struc-
ture of the initial equation but converging towards the Bloium states. At a phenomenological
level, they can be considered as a turbulent closure fordahenpeterization of small scale mix-
ing. It has been shown empirically that they do not descriteeactual turbulent fluxeslfl.
This is however a drawback shared by most of existing pamimations, and the essential fact
that they preserve the mathematical properties (consenvitws, and so on) make relaxation
equation better model candidates than most of other paesizetions. The relaxation equa-
tions were further developed in a number of works, see fdairte [L66, 167, 48, 14, 46] and
references therein.

Other closures based on statistical mechanics ideas haregreposed by the group of
Majda, sometime at a phenomenological |es, [88], sometimes at a more fundamental level
for specific problems13Q].

4. Statistical equilibria and jet solutions, application to ocean rings and to the Great Red
Spot of Jupiter

In section3.5, we have described analytically the equilibrium flows witm@mal form
study close to a linear relation between potential vostieitd stream function (or equivalently
in the limit of a quadratic Energy-Casimir functional). Wavie pointed out that more general
solutions are very difficult to find analytically, and may vég numerical computations, for
instance using continuation algorithms.

There are however other limits where an analytical desoripgbecomes possible. This is
for instance the case in the limit of large energi&81]. This is a very interesting, nontrivial
and subtle limit; we do not describe it this review. The seconeresting limit applies to the
guasi-geostrophic model with 1.5 layers. It is the limit ad9’by deformation radiu’ much
smaller than the size of the dom#in(R < L), where the nonlinearity of the vorticity-stream

15We emphasize that such parameterization are phenomecal@giproaches, contrary to the equilibrium statis-
tical mechanics.

16The study of equilibria of the quasi-geostrophic model igst itep before studying equilibria of the shallow
water model, for which taking the limR < L give similar results.
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function relation becomes essential. This limit case asd@jitplications to the description of
coherent structures in geostrophic turbulence is the stibfehis section.

In the limit R« L, the variational problems of the statistical theory ard@gwus to the Van-
Der-Waals Cahn Hilliard model that describes phase séparahd phase coexistence in usual
thermodynamics. The Van-Der-Waals Cahn Hilliard modekdbss for instance the equilib-
rium of a bubble of a gas phase in a liquid phase, or the eqaildf soap films in air. For these
classical problems, the essential concepts are the fregyeper unit area, the related spherical
shape of the bubbles, the Laplace equation relating theigaaficurvature of the bubble with
the difference in pressure inside and outside the bubbéegsetiord.1), or properties of mini-
mal surfaces (the Plateau problem). We will present an ggddetween those concepts and the
structures of quasi-geostrophic statistical equilibriilows.

For these flows, the limiR <« L leads to interfaces separating phases of different free ene
gies. In our case, each phase is characterized by a diffeakré of average potential vorticity,
and corresponds to sub-domains in which the potentialoityriis homogenized. The interfaces
correspond to strong localized jets of typical widgh This limit is relevant for applications
showing such strong jet structures.

From a geophysical point of view, this linfR< L is relevant for describing some of Jupiter’s
features, like for instance the Great Red Spot of Jupiteligiat @nticyclone) (her® ~ 500—
2000kmand the length of the spot is~ 20,000km) (see sectiod.3).

This limit is also relevant to ocean applications, whigiis the internal Rossby deformation
radius R ~ 50km at mid-latitude). We will apply the results of statisticakamanics to the
description of robust (over months or years) vortices sichaean rings, which are observed
around mid-latitude jets such as the Kuroshio or the Guié&tr, and more generally in any
eddying regions (mostly localized near western boundarseats) as the Aghulas current, the
confluence region in the Argentinian basin or the Antarcfic@npolar circulation (see section
4.4). The lengthL can be considered as the diameters of those ringsZ00km).

We will also apply statistical mechanics ideas in the liRi L to the description of the
large scale organization of oceanic currents (in inerggion, dominated by turbulence), such
as the eastward jets like the Gulf Stream or the Kuroshionsite (the analogue of the Gulf
Stream in the Pacific ocean). In that case the lehgtbuld be thought as the ocean basin scale
L ~ 5,000km (see sectio).

4.1. The Van der Waals—Cahn Hilliard model of first order ghaansitions

We first describe the Van der Waals—Cahn Hilliard model. We @i the following subsec-
tions a heuristic description based on physical argume®tsne comments and references on
the mathematics of the problem are provided in sectidrd

This classical model of thermodynamics and statisticalsfisydescribes the coexistence
of phase in usual thermodynamics. It involves the mininnradf a free energy with a linear
constraint:

F=min{.7[g] | &[] = -B}

with .# = [, dr Rz(%“’)er f(p)| and o [@] = [,dr @ (80)
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Figure 9: The double well shape of the specific free endrgp) (see equation8()). The functionf (¢) is even and
possesses two minima @t= +u. At equilibrium, at zeroth order iR, the physical system will be described by two
phases corresponding to each of these minima.

whereg is the non-dimensional order parameter (for instance thedimensionality local den-
sity), andf (@) is the non-dimensional free energy per unit volume. We ctarghe limitR < L
whereL is a typical size of the domain. We assume that the specificenergyf has a double
well shape (see figur@), characteristic of a phase coexistence related to a fidstr ghase tran-
sition. For a simpler discussion, we also assunte be even; this does not affect the properties
of the solutions discussed bellow.

4.1.1. First order phase transition and phase separation

At equilibrium, in the limit of smallR, the functionf (¢) plays the dominant role. In order
to minimize the free energy, the system will tend to reach afries two minima (see figurs).
These two minima correspond to the value of the order paemnir the two coexisting phases,
the two phases have thus the same free energy.

The constraintZ (see equation80) is related to the total mass (due to the translatiorpon
to makef even, it can take both positive and negative values). Withiwel constrainte?, the
two uniform solutiongp = u or @ = —u would clearly minimize%: the system would have only
one phase. Because of the constraifitthe system has to split into sub-domains: part of it with
phasep = u and part of it with phase = —u. In a two dimensional space, the area occupied
by each of the phases are denofedandA _ respectively. They are fixed by the constraint
by the relationsiA, —uA_ = —Band byA, + A_ =1 (where 1 is the total area). A sketch of
a situation with two sub-domains each occupied by one oftlepthases is provided in figure
10.

Up to now, we have neglected the teRﬁ(D(p)2 in the functional 80). In classical thermo-
dynamics, this term is related to non-local contributiomshie free energy (proportional to the
gradient rather than to only point-wise contributions). ristaver the microscopic interactions
fix a length scalk above which such non-local interactions become negligiblsually for a
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Figure 10: At zeroth orderp takes the two valuesu on two sub-domaing... These sub-domains are separated
by strong jets. The actual shape of the structure, or eantigl the position of the jets, is given by the first order
analysis.

macroscopic system such non-local interactions becomaiidg in the thermodynamic limit.
Indeed as will soon become cleatr, this term gives finite veluminterface effects.

We know from observations of the associated physical phenanfcoarsening, phase sep-
arations, and so on) that the system has a tendency to foger land larger sub-domains. We
thus assume that such sub-domains are delimited by inés;fadgth typical radius of curvature
much larger thaiR!”. Actually the termR2 (Cg)? is negligible except on an interface of widgh
separating the sub-domains. The scale separatiorR allows to consider independently what
happens in the transverse direction to the interface onreehand and in the along interface
direction on the other hand. As described in next sectidns,explains the interface structure
and interface shape respectively.

4.1.2. The interface structure
At the interface, the value ap changes rapidly, on a scale of orderwith R< r. What
happens in the direction along the interface can thus bexcigl at leading order. To minimize
the free energy80), the interface structure({) needs thus to minimize a one dimensional
variational problem along the normal to the interface cowt{
}. (81)

Fint = min{/dZ [R; <g—?>2+ f(®)

Dimensionally,F; is a free energy divided by a length. It is the free energy per unit length of
the interface.

We see that the two terms i81) are of the same order only if the interface has a typical
width of orderR. We rescale the length by, { = Rt. The Euler-Lagrange equation @1

1"This can indeed be proved mathematically, see sedtibrd
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gives

d?p _df

drz ~ do’
This equation is a very classical one. For instance makingraogy with mechanics, ip
would be a particle positiort, would be the time, equatioi82) would describe the conservative
motion of the particle in a potenti® = — f. From the shape of (see figure) we see that the
potential has two bumps (two unstable fixed points) and detay « for large distances. In
order to connect the two different phases in the bulk, on satehof the interface, we are looking
for solutions with boundary conditiong — =u for T — +oo. It exists a unique trajectory with
such limit conditions: in the particle analogy, it is thejéicory connecting the two unstable
fixed points (homoclinic orbit).

This analysis shows that the interface width scales RkeMoreover, after rescaling the

length, one clearly sees that the free energy per length@djiis proportional toR: Fn; = eR
wheree > 0 could be computed as a function b{see e.g.25, 199).

(82)

4.1.3. The interface shape: an isoperimetrical problem

In order to determine the interface shape, we come back tivdbenergy variational preb
lem (80). In the previous section, we have determined the trans\@racture of the interface,
by maximizing the one dimensional variational proble®d)( We have discussed the quantity
Fnt = Re a free energy per unit length, which is the unit length dbation of the interface to
the free energy. The total free energy is thus

Z =eRL, (83)

where we have implicitly neglected contributions of relatorderR/r, wherer is the curvature
radius of the interface.

In order to minimize the free energyd), we thus have to minimize the length We
must also take into account that the areas occupied by thplasesA, andA _ are fixed, as
discussed in sectiof.1.1 We thus look for the curve with the minimal length, that bdsia
surface with ared

min{eRL/Area=A, }. (84)

This type of problem is called an isoperimetrical problemthiree dimensions, the minimization
of the area for a fixed volume leads to spherical bubbles oeptairface if the boundaries does
not come into play. When boundaries are involved, the iaterfshape is more complex (it is a
minimal surface -or Plateau- problem). This can be illustieby nice soap films experiments,
as may be seen in very simple experiments or in many scienseums. Here, for our two
dimensional problem, it leads to circle or straight linesya now prove.

It is a classical exercice of variational calculus to prdwat the first variations of the length
of a curve is proportional to the inverse of its curvatureiuad. The solution of the problem
(84) then leads to

—=a, (85)
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Figure 11: lllustration of the Plateau problem (or minimata problem) with soap films: the spherical bubble
minimizes its area for a given volume (Jean Simeon Chatdisbulles de savori734)

whereaq is a Lagrange parameter associated with the conservatithe @frea. This proves that
r is constant along the interface: solutions are eitherasrok straight lines. The lav8%) is the
equivalent of the Laplace law in classical thermodynamielgting the radius of curvature of
the interface to the difference of pressure inside and deiisi the bubbl€.

We have thus shown that the minimization of the \R@r-Waals Cahn Hilliard functional,
aimed at describing statistical equilibria for first ordéape transitions, predicts phase separa-
tion (formation of sub-domains with each of the two phasesesponding to the two minima of
the free energy). It predicts the interface structure aatlith shape is described by an isoperi-
metrical problem: the minimization of the length for a fixettksed area. Thus equilibrium
structures are either bubbles (circles) or straight lihethe following sections, we see how this
applies to the description of statistical equilibria folagizgeostrophic flows, describing vortices
and jets.

4.1.4. The mathematics of the Van-Der-Waals Cahn Hilliaabjem

The mathematical study of the Van-Der-Waals Cahn Hilliandctional 80) was a mathe-
matical challenge during the 1980s. It's solution has feéd from the analysis in the framework
of spaces of functions with bounded variations, and on te$dm semi-local analysis. One of
the main contributions to this problem was achieved by Madic 1987 L41]. This functional

18Indeed, at next order, the Lagrange paramatéads to a slight imbalance between the two phase free energy
which is related to a pressure difference for the two phaBeis.thus gives the relation between pressure imbalance,
radius of curvature and free energy per unit length (or wriiage in the 3D case).
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analysis study proves the assumptions of the heuristieptaon given in the previous subsec
tions: @ takes the two values-u in sub-domains separated by transition area of width sgalin
with R.

As a complement to these mathematical works, a more presyseotic expansion based
on the heuristic description above, generalizable at d&ioinR, with mathematical justification
of the existence of the solutions for the interface equasioall order inR, is provided in [L3].
Higher order effects are also discussed in this work.

4.2. Quasi-geostrophic statistical equilibria and firstler phase transitions

The first discussion of the analogy between statisticalliégiai in the limit R< L and phase
coexistence in usual thermodynamics, in relation with tha-er-Waals Cahn Hilliard model
is given in [L3, 25]. This analogy has been recently put on a more precise maitieahground,
by proving that the variational problems of the RSM statatimechanics and the variational
problem are indeed relatedlq]. More precisely, any solution to the variational problem:

F=min{.7[g] | & [¢] = -B}
with # = [, dr [FO2° | - (86)
— [ dr |52+ £ (@) ~Reh| and o/ [¢] = [, dr @
where y = R%@ (¢ is the stream function defined by equatidi)( on page23), is a RSM
equilibria of the quasi-geostrophic equatior&dn page 2B
It is easy to prove that any critical point t8@) is a critical point to the grand canonical

Energy-Casimir functionaBQ), and is a critical point of the entropy maximization. Calesing
the problem §6), using a part integration and the relatige: R°A¢@ — ¢+ Rhyields

59:/& (f'(¢)—9—q) 3¢ and 5%:/& 50.

Critical points of 86) are therefore solutions @&.% — ad.«7 = 0, for all d ¢, whereq is the
Lagrange multiplier associated with the constraifnt These critical points satisfy

We conclude that this equation is the samed&, (on paged5, provided thatf’ (%) =g(BY)+
0.

The proof that any solution t#B6) is a RSM equilibria involves more complicated mathe-
matical considerations; we assume this in the following i@fier the interested readers tH]
for more details.

In the case of an initial distributioy (43) with only two values of the potential vorticity:
y(o)=|2|(ad(01)+ (1—a)d(02)), only two Lagrange multipliersr; and a, are needed, as-
sociated withoy and g, respectively, in order to computg equation 48), on page45)). In that
case, the functiog is exactly tanh function. There exists in practice a mucdeaclass of ini-
tial conditions for which the functiog would be an increasing function with a single inflexion
point, similar to a tanh function, especially when one cdess the limit of small Rossby radius
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of deformation. The works2pb, 198 give physical arguments to explain why it is the case for
Jupiter’s troposphere or oceanic rings and jets.

Wheng is a tanhlike function, the specific free energyhas a double well shape, provided
that the inverse temperatufeis negative, with sufficiently large values.

4.2.1. Topography and anisotropy

The topography termq = Rh(y) in (86) is the main difference between the Van-Der-Waals
Cahn Hilliard functional 80) and the quasi-geostrophic variational probleéd)( We recall that
this term is due to the beta plane approximation and a pkestrnotion in a lower layer of fluid
(see sectior2.1.3. This topographic term provides an anisotropy in the freergy. Its effect
will be the subject of most of the theoretical discussiorhimfollowing sections.

Since we suppose that this term scales viRfhthe topography term will not change the
overall structure at leading order: there will still be phagparations in sub-domains, separated
by an interface of typical widthR, as discussed in sectighl We now discuss the dynamical
meaning of this overall structure for the quasi-geostrophodel.

4.2.2. Potential vorticity mixing and phase separation

In the case of the quasi-geostrophic equations, the ordamederg is proportional to the
stream functiony: ¢ = R%@. At equilibrium, there is also a functional relation betwebe
stream functiony and the coarse-grained potential vorticity{48). Then the sub-domains of
constantp are domains where the (coarse grained) potential voriiggyalso constant. It means
that the level of mixing of the different fine grained potahtvorticity levels are constant in
those sub-domains. We thus conclude that the coarse gnaatendtial vorticity is homogenized
in sub-domains that corresponds to different phases (Wfféreint values of potential vorticity),
the equilibrium being controlled by an equality for the asated mixing free energy.

4.2.3. Strong jets and interfaces

In section4.1.3 we have described the interface structure. The order pesp varies on
a scale of ordeR mostly in the normal to the interface direction, reachingstant values far
from the interface. Recalling thatis proportional ta), and thatv = e, A Oy (10), we conclude
that:

1. The velocity field is nearly zero far from the interface detances much larger than the
Rossby deformation radilg). Non zero velocities are limited to the interface areas.

2. The velocity is mainly directed along the interface.

These two properties characterize strong jets. In the Rwdt L, the velocity field is thus mainly
composed of strong jets of widi whose path is determined from an isoperimetrical vangtio
problem.

4.3. Application to Jupiter's Great Red Spot and other Jovizatures

Most of Jupiter's volume is gas. The visible features on #timosphere, cyclones, anti-
cyclones and jets, are concentrated on a thin outer shelkrdposphere, where the dynamics
is described by similar equations to the ones describingetmeh atmospheregp, 97]. The
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Figure 12: Observation of the Jovian atmosphere from Cie@Sourtesy of NASA/JPLCaltech). One of the most
striking feature of the Jovian atmosphere is the self omgitn of the flow into alternating eastward and westward
jets, producing the visible banded structure and the existef a huge anticyclonic vortex20,000kmwide, located
around 20 South: the Great Red Spot (GRS). The GRS has a rimjuse: it is a hollow vortex surrounded by a
jet of typical velocity~ 100m.s{~1} and width~ 1,000km Remarkably, the GRS has been observed to be stable
and quasi-steady for many centuries despite the surrogrtdibulent dynamics. The explanation of the detailed
structure of the GRS velocity field and of its stability is asfethe main achievement of the equilibrium statistical
mechanics of two dimensional and geophysical flows (seedit@iand sectiord).

inner part of the atmosphere is a conducting fluid, and theuwayes is described by Magneto-
hydrodynamics (MHD) equations.

The most simple model describing the troposphere is the IgtiAsi-geostrophic model,
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described in sectio.1.3 This simple model is a good one for localized mid latitudeaiyics.
Many classical work have used it to model Jupiter’s featutasng into account the effect of
a prescribed steady flow in a deep layer acting like an earivdabpographyh(y) (see section
2.1.3. We emphasize that there is no real bottom topography aitedup

Some works based on soliton theory aimed at explaining tluetste and stability of the
Great Red Spot. However, none of these obtained a veloclty diglitatively similar to the
observed one, which is actually a strongly flimear structure. Structures similar to the Great
Red Spot have been observed in a number of numerical simngatbut without reproducing
in a convincing way both the characteristic annular jetcitne of the velocity field and the
shape of the spot. Detailed observations and fluid mechanalysis described convincingly the
potential vorticity structure and the dynamical aspectthefGreat Red Spot (seéZ, 97, 131]
and references therein). The potential vorticity struetigra constant vorticity inside the spot
surrounded by a gentle shear outside, which gives a goodrflaithanics theorylB1]. In this
section we explain this potential vorticity structure tkarto statistical mechanics. Statistical
mechanics provides also more detailed, and analyticahyhafdhe shape of Jupiter vortices.

The explanation of the stability of the Great Red Spot of tdwpising the statistical me-
chanics of the quasi-geostrophic model is cited by neatlthal papers from the beginning of
the Robert-Sommeria-Miller theory. Some equilibria hgvijualitative similarities with the ob-
served velocity field have been computed 181]. The theoretical study in the limit of small
Rossby deformation radius, especially the analogy withdider phase transition2%, 21] gave
the theory presented below: an explanation of the detalleges and structure and a quantita-
tive model. These results have been extended to the shaléder model 18]. The work [193
argued on the explanation of the position of the Great Red Sqmed on statistical mechanics
equilibria.

We describe in the following the prediction of equilibriutatstical mechanics for the quasi-
geostrophic model with topography. The start from the Vam-W/aals Cahn Hilliard variational
problem in presence of small topograpi®g), recalling that its minima are statistical equilibria
of the quasi-geostrophic model (see sectd?).

The Rossby deformation radius at the Great Red Spot latisidgaluated to be of order
of 500— 2000 km, which has to be compared with the size of the spotOIX 20,000km.
This is thus consistent with the limR < L considered in the description of phase coexistence
within the Van-Der-Waals Cahn Hilliard model (sectidrl), even if the criteriad < Ris only
marginally verified where the curvature radiusf the jet is the larger.

In the limit of small Rossby deformation radius, the entropgxima for a given potential
vorticity distribution and energy, are formed by strongsjdiounding areas where the velocity
is much smaller. Figur&3 shows the observation of the Great Red Spot velocity fieldlyaed
from cloud tracking on spacecraft pictures. The strongtjetcture (the interface) and phase
separation (much smaller velocity inside and outside ttexfice) is readily visible. The main
difference with the structure described in the previougieeds the shape of the vortex: it is
not circular as was predicted in the case without topographyith a linear topography. We
consider the effect of a more general topography in the restiasn.
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Observation (Voyager) Statistical Equilibrium

Figure 13: Left: the observed velocity field is from Voyagpasecraft data, from Dowling and Ingersd{ ; the
length of each line is proportional to the velocity at thainpoNote the strong jet structure of width of orderthe
Rossby deformation radius. Right: the velocity field for sitatistical equilibrium model of the Great Red Spot. The
actual values of the jet maximum velocity, jet width, vorteith and length fit with the observed ones. The jet is
interpreted as the interface between two phases; eachrofdbeesponds to a different mixing level of the potential
vorticity. The jet shape obeys a minimal length variatiopadblem (an isoperimetrical problem) balanced by the
effect of the deep layer shear.
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Statistical Equilibria Great Red Spot and
White Oval BC

Figure 14: Left panel: typical vortex shapes obtained frbmisoperimetrical problem (curvature radius equation
(85)), for two different values of the parameters (arbitrarytsdn The characteristic properties of Jupiter’s vortex
shapes (very elongated, reaching extremal latiglerhere the curvature radius is extremely large) are wellaepr
duced by these results. Central panel: the Great Red Spatrenaf the White Ovals. Right panel: one of the Brown
Barge cyclones of Jupiter’s north atmosphere. Note the pecyliar cigar shape of this vortex, in agreement with
statistical mechanics predictions (left panel)..

A Brown Barge

4.3.1. Determination of the vortex shape: the typical eldad shape of Jupiter’s features

In order to determine the effect of topography on the jet shag consider again the vari-
ational problem §6). We note that the topography = Rhhas been rescaled I®in the term
Rh(y)@ appearing in the variational problem. This correspondsregane where the effect of
the topography is of the same order as the effect of the jetdnergy. Two other regimes exist:
one for which topography would have a negligible impacts(tould lead to circular vortices,
as treated in sectiof.2) and another regime where topography would play the donircde.
This last regime may be interesting in some cases, but we thogaa it in this review.

Due to the scalindRhp, the topography does not play any role at zeroth order. We thu
still conclude that phase separation occurs, with sub-dwnaf areasA, andA_ fixed by the
potential vorticity constraint (see sectidril.]), separated by jets whose transverse structure is
described in sectiod.1.3 The jet shape is however given by minimization of the freergn
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contributions of ordeR. Let us thus compute the first order contribution of the tepphy
termRH = [, dr (—Rgh(y)). For this we use the zeroth order respl= £u. We then obtain
H=-uf, drh+uf, drh=Ho—2uf, drh, whereHo = u/,drh. We note that, does not
depend on the jet shape.

Adding the contribution of the topography to the jet free rgge(83), we obtain the first
order expression for the modified free energy functional

F = RH0+R<eL—2u/A+ dr h(y)), 87)

which is valid up to correction of ordex(R/r) and of ordeiR?°H. We recall that the total area
A, is fixed. We see that, in order to minimize the free energynie term tends to favor as
much as possible the pha&e with positive values of stream functiagm= u (and then negative
values of potential vorticitg = —u) to be placed on topography maxima. This effect is balanced
by the length minimization.

In order to study in more details the shape of the jet, we lddkeacritical points of the min
imization of @7), with fixed are&\ . Recalling that first variations of the length are propardib
to the inverse of the curvature radius, we obtain

2URNhY) +a = %Q, (88)

whereaq is a Lagrange parameter associated with the conservatitre afreaA .. This relates
the vortex shape to the topography and parametersde. From this equation, one can write
the equations foX andY, the coordinates of the jet curve. These equations derom
Hamiltonian, and a detailed analysis allows to specify tiital conditions leading to closed
curves and thus to numerically compute the vortex shape 2&&r more details)

Figure 14 compares the numerically obtained vortex shapes, with dh@d ones. This
shows that the solution to equatioB8f has the typical elongated shape of Jovian vortices, as
clearly illustrated by the peculiar cigar shape of Browndga:, which are cyclones of Jupiter’'s
north troposphere. We thus conclude that statistical nécband the associated Van-Der-
Waals Cahn Hilliard functional with topography explain Wék shape of Jovian vortices.

Figure 15 shows a phase diagram for the statistical equilibria, wighitér like topography
and Rossby deformation radius. This illustrates the povietatistical mechanics: with only
few parameters characterizing statistical equilibriardhtbe energ\e and a parameter related
to the asymmetry between positive and negative potentidicity B), we are able to reproduce
all the features of Jupiter’s troposphere, from circulaiterbvals, to the GRS and cigar shaped
Brown Barges. The reduction of the complexity of turbuleawfto only a few order parameters
is the main interest and achievement of a statistical mectidmeory.

Moreover, as seen on figui®, statistical mechanics predicts a phase transition fromices
towards straight jets. The concept of phase transition issaential one in complex systems, as
the qualitative physical properties of the system dralyichange at a given value of the control
parameters. This is also an essential point, to be bringaaohcept in turbulent problems. This
will be further emphasized in secti@4.3
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Figure 15: Phase diagram of the statistical equilibriuntestaersus the enerdy and a parameter related to the
asymmetry between positive and negative potential voytBj with a quadratic topography. The inner solid line
corresponds to a phase transition, between vortex andjstijat solutions. The dash line corresponds to the limit of
validity of the small deformation radius hypothesis. The ldtes are constant vortex aspect ratio lines with values
2,10,20,30,40,50,70,80 respectively. We have repredeantly solutions for which anticyclonic potential vortigit
dominate B > 0). The opposite situation may be recovered by symmetry.aFoore detailed discussion of this
figure, the precise relation betweEnB and the results presented in this review, pleaseZBe [

4.3.2. Quantitative comparisons with Jupiter's Great RpdtS

In the preceding section, we have made a rapid descriptidimeodéffect of a topography to
first order phase transitions. We have obtained and comghecdortex shape with Jupiter's
vortices. A much more detailed treatment of the applicatitmJupiter and to the Great Red
Spot can be found ir2p, 21]. The theory can be extended in order to describe the smedirsh
outside of the spot (first order effect gnoutside of the interface), on the Great Red Spot zonal
velocity with respect to the ambient shear, on the typidéLlidinal extension of these vortices. A
more detailed description of physical considerations erétations between potential vorticity
distribution and forcing is also provided 2%, 21].

4.4. Application to ocean rings

Application of equilibrium statistical mechanics to thesdeption of oceanic flows is a long
standing problem, starting with the work of Salmon—Hollgwidendershott]72 in the frame-
work of energy-enstrophy theory.

Another attempt to apply equilibrium statistical mechanic oceanic flows had been per-
formed by B0, 61] in the framework of the Heton model 0®§] for the self-organization phe-
nomena following deep convection events, by numericallyngoating statistical equilibrium
states of a two-layer quasi-geostrophic model.
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Figure 16: Snapshot of surface velocity field from a compnehe numerical simulation of the southern Oce®a§. [
Left: coarse resolution, the effect of mesoscale eddiesq0km) is parameterized. Right: higher resolution, without
parameterization of mesoscale eddies. Note the formafiderge scale coherent structure in the high resolution
simulation: there is either strong and thin eastward jetsngs of diameter 200km Typical velocity and width

of jets (be it eastward or around the rings) are respectivelym.s 1 and~ 20 km The give a statistical mechanics
explanation and model for these rings.

None of these previous approaches have explained the tybafudceanic rings. We show
in the following that such rings can actually be understosdstatistical equilibria by similar
arguments that explain the formation of Jovian vortices ($88] for more details).

4.4.1. Rings in the oceans

The ocean has long been recognized as a sea of eddies. Tlisdrafrst inferred fronin
situ data by Gill, Green and Simmons in the early 19784.[ During the last two decades, the
concomitant development of altimetr§d, 185 and realistic ocean modelin@(, 6] has made
possible a quantitative description of those eddies. Thststoiking observation is probably
their organization into westward propagating rings of détens(Le ~ 200km), as for instance
seen in figurel6. In that respect, they look like small Jovian Great Red Spots

Those eddies plays a crucial role for the general oceanlatron and its energy cycle, since
their total energy is one order of magnitude above the ldregtergy of the mean flow.

Those rings are mostly located around western boundargmstrwhich are regions charac
terized by strong baroclinic instabiliti€s such as the Gulf Stream, the Kuroshio, the Aghulas

1%When the mean flow present a sufficiently strong vertical stieaoclinic instabilities {56, 195 release part of
the available potential energy associated with this meaw fidich is generally assumed to be maintained by a large
scale, low frequency forcing mechanism such as surface stneds or heatinglp5
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Figure 17: Vortex statistical equilibria in the quagostrophic model. It is a circular patch of (homogenizsaten-

tial vorticity in a background of homogenized potentialtity, with two different mixing values. The velocity field
(right panel) has a very clear ring structure, similarlytte Gulf-Stream rings and to many other ocean vortices. The
width of the jet surrounding the ring has the order of magfetof the Rossby radius of deformatiBn

currents below South Africa or the confluence region of thgehtinian basin, as seen on figures
16and19. The rings can also propagate far away from the regions wthegeare created.

Most of those rings have a baroclinic structure, i.e. a \ldeld intensified in the upper
layer H ~ 1 km) of the oceans. This baroclinic structure suggest that tBelayer quasi-
geostrophic model introduced in the previous sectiondésaat to this problem. The horizontal
scale of the ringgLe ~ 200km) are larger than the widtR ~ 50 kmof the surrounding jet, of
typical velocitiesU = 1 m.s.

The organization of those eddies into coherent rings camberstood by the same statistical
mechanics arguments that have just been presented in theotdsipiter's Great Red Spot.
The rings correspond to one phase containing most of thejiteorticity extracted from the
mean flow by baroclinic instability, while the surroundingiescent flow corresponds to the
other phase. This statistical mechanics approach, theom@yto our knowledge to describe the
formation of large scale coherent structures, might theextieemely fruitful to account for the
formation of such rings. It remains an important open qoastoncerning the criteria that select
the size of such coherent structures. This is an ongoingesubj investigation.

4.4.2. The westward drift of the rings

In this section, we consider the consequences of the betet éffee sectioB.1.3, which
corresponds to linear topograplpy = B.y in (9). We prove that this term can be easily han-
dled and that it actually explains the westward drift of ggeaings with respect to the mean
surrounding flow.

We consider the quasi-geostrophic equations on a domaichwiinvariant upon a trans-
lation along thex direction (either an infinite or a periodic channel, for arste). Then the
guasi-geostrophic equations are invariant over a Galilesarsformation in the direction. We
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Figure 18: Altimetry observation of the westward drift ofeanic eddies (including rings) frons%], figure 4. The
red line is the zonal average (along a latitude circle) oftepagation speeds of all eddies with life time greater than
12 weeks. The black line represents the velofiiR? wheref; is the meridional gradient of the Coriolis parameter
andR the first baroclinic Rossby radius of deformation. This eg@dgpagation speed is a prediction of statistical
mechanics (see sectidmi.?

consider the transformation
vV =v+Ve,

wherev is the velocity in the original frame of reference ards the velocity in the new Galilean
frame of reference.

From the relatiorv = e, A Oy (10), we obtain the transformation law fqr: ¢/ = ¢ —Vy
and from the expressiog = Ay — @/R% + By (9) we obtain the transformation law far.
d = q+Vy/R%. Thus the expression for the potential vorticity in the neference frame is

\
q:Aw_%+<Bc+@>Y-

From this last expression, we see that a change of Galildareree frame translates as a beta
effect in the potential vorticity. Moreover, in a refererfcame moving at velocity- B.R%e, the
B. effect is exactly canceled out.

From this remark, we conclude that taking into account th@ leéfect, the equilibrium
structures should be the one described by the minimizafitimeovanDer-Waals Cahn Hilliard
variational problem, but moving at a constant westwardéjpee :R?. A more rigorous treat-
ment of the statistical mechanics for the quasi-geostmpiodel with translational invariance
would require to take into account an additional conserwethtjty, the linear momentum, which
would lead to the same conclusion: statistical equilibrearangs with a constant westward speed
V = B.R2. See also198 for more details and discussions on the physical consexseof this
additional constraint.

This drift is actually observed for the oceanic rings, sedrfstance figurd 8.
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Figure 19: Observation of the sea surface height of the rtttimtic ocean (Gulf Stream area) from altimetry REF.
As explained in sectio.1, for geophysical flows, the surface velocity field can berirgfeé from the see surface
height (SSH): strong gradient of SSH are related to strotgy jEhe Gulf stream appears as a robust eastward jet
(in presence of meanders), flowing along the east coast ¢fi Aanerica and then detaching the coast to enter the
Atlantic ocean, with an extensidn~ 2000km The jet is surrounded by numerous westward propagating 1
typical diameters ~ 200km Typical velocities and widths of both the Gulf Stream asdiitgs jets are respectively
1m.s 1 and 50km, corresponding to a Reynolds numtie~ 101, Such rings can be understood as local statistical
equilibria, and strong eastward jets like the Gulf Streach @stained as marginally unstable statistical equilibmia i
simple academic models (see subsectibsh).

5. Are the Gulf-Stream and the Kuroshio currents close to sttistical equilibria?

In section4.4, we have discussed applications of statistical mechad&ssito the descrip-
tion of ocean vortices, like the Gulf-Stream rings. We hage anentioned that statistical equi-
libria, starting from the Van-Der-Waals Cahn Hilliard faiomal (86), may model physical sit-
uations where strong jets, with a width of ord&rbound domains of nearly constant potential
vorticity.

This is actually the case of the Gulf Stream in the North Attancean or of the Kuroshio
extension in the North Pacific ocean. This can be inferreh fobservations, or this is observed
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Figure 20: b) and c) represent respectively a snapshot afttkamfunction and potential vorticity (red: positive
values; blue: negative values) in the upper layer of a thagers quasgeostrophic model in a closed domain, repre-
senting a mid-latitude oceanic basin, in presence of windrig. Both figures are taken from numerical simulations
[1], see alsoT]. a) Streamfunction predicted by statistical mechanies,sectiorb on the preceding pader further
details. Even in an out-equilibrium situation like this otiee equilibrium statistical mechanics predicts corgetite
overall qualitative structure of the flow.

in high resolution numerical simulations of idealized withdven mid-latitude ocean, see for
instance figure0 (and ref. [7] for more details).

It is thus very tempting to interpret the Gulf Stream and thedshio as interfaces between
two phases corresponding to different levels of potentiaieity mixing, just like the Great Red
Spot and ocean rings in the previous section. The aim of tiapter is to answer this natural
guestion: are the Gulf-Stream and Kuroshio currents clostatistical equilibria?

More precisely, we address the following problem: is it fldssto find a class of statistical
equilibria with a strong mid-basin eastward jet similar ie Gulf Stream of the Kuroshio, in
a closed domain? The 1-1/2 layer quasi-geostrophic model gectior2.1.3 is the simplest
model taking into account density stratification for mititlede ocean circulation (in the upper
first 1000m) [157, 195. We analyze therefore the class of statistical equililaddch are minima
of the Van-Der-Waals Cahn Hilliard variational proble86), as explained in sectiof.2 We
ask whether it exists solutions to

F=min{.7[¢g] | Alp] =B}
. Re(0g)? i (89)
with 7 = [, dr [F52- 4 (¢) - RByg| and o/ [¢] = [, dr g
in a bounded domain (let say a rectangular basin) with stroitgbasin eastward jets. At the
domain boundary, we fix = 0 (which usingg = R?y, and (LO) turns out to be an impermeabil-
ity condition). We note that the understanding of the foilogvdiscussion requires the reading
of sections 4.1 t0 4.3.

The termeSCy is an effective topography including the beta effect andetifiect of a deep

zonal flow (see sectio®.1.3. Its significance and effects will be discussed in secti@ As in
the previous section, we consider the lilRit« L and assumé be a double well function.
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Figure 21: a) Eastward jet: the interface is zonal, with {sipotential vorticityq = u on the northern part of the
domain. b) Westward jet: the interface is zonal, with negagiotential vorticityg = —u in the northern part of the
domain. c) Perturbation of the interface for the eastwardgafiguration, to determine when this solution is a local
equilibrium (see subsectidn2). Without topography, both (a) and (b) are entropy maximéh\pbsitive beta effect
(b) is the global entropy maximum; with negative beta effagts the global entropy maximum.

As discussed in chaptdrl, with these hypothesis, there is phase separation in twdosub
mains with two different levels of potential vorticity mig. These domains are bounded by
interfaces (jets) of widtlR. In view of the applications to mid-basin ocean jets, we amsthat
the areaA, occupied by the value = u is half of the total area of the domain (this amounts to
fix the total potential vorticity constrairit; (2.2.2). The question is to determine the position
and shape of this interface. The main difference with thesa=ated in subsectighlis due
to the effect of boundaries and of the linear effective toppgy RG.Y.

5.1. Eastward jets are statistical equilibria of the qugsiestrophic model without topography

The valuep = +u for the two coexisting phases is not compatible with the loauy condi-
tion ¢ = 0. As a consequence, there exists a boundary jet (or boutedaes) in order to match
a uniform phasep = +u to the boundary conditions. Just like inner jets, treatedeiction4,
these jets contribute to the first order free energy, whiekgthe jet position and shape. We
now treat the effect of boundary layer for the case 0 (3. = 0 in this case). As explained in
section4.1.3 the jet free energy is the only contribution to the totakfemergy.

We first quantify the unit length free enerdy, for the boundary jets. Following the reason-
ing of sectiord.1.3 we have

Fb:min{/dz [R;%H(cp)]}.

This expression is the same &), the only difference is the different boundary conditioits
WasQ —; o Uand@ —; ., , —Uu, itis now @ —,_, .., uand@(0) = 0. Becausef is even,
one easily see that a boundary jet is nothing else than halfr@erior domain jet. Then
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whereF; ande are the unit length free energies for the interior jets, dimdd in sectiord.1.3
By symmetry, a boundary jet matching the value- —u to ¢ = 0 gives the same contributi¢h
Finally, the first order free energy is given by

%‘:eR<L+%>,

wherely, is the boundary length. Because the boundary lebgtis a fixed quantity, the free
energy minimization amounts to the minimization of the iiittejet length. The interior jet po
sition and shape is thus given by the minimization of theriatget length with fixed ared\, .
We recall that the solutions to this variational problemiaterior jets which are either straight
lines or circles (see sectiaghl.3.

In order to simplify the discussion, we consider the case refctangular domain of aspect
ratio T = Ly/Ly. Generalization to an arbitrary closed domain could alsalibeussed. We
recall that the two phases occupy the same area- A = %LXLy. We consider three possible
interface configurations with straight or circular jets:

1. the zonal jet configuration (jet along tk@xis) withL = Ly,
2. the meridional jet configuration (jet along thexis withL = Ly,
3. and an interior circular vortex, with= 2\/7A = ,/2mL,Ly .

The minimization ofL for these three configurations shows that the zonal jet i®laadjimini-
mum if and only ift < 1. The criterion for the zonal jet to be a global RSM equililoni state is
thenL, < Ly. We have thus found zonal jet as statistical equilibria e¢hsen = 0.

An essential point is that both the Kuroshio and the Gulf@trare flowing eastward (from
west to east). From the relatian= e, x Oy (10), we see that the jet flows eastwarg & 0)
whend, iy < 0. Recalling thatp = R?, the previous condition means that the negative phase
¢ = —Uu has to be on the northern part of the domain, and the ppase on the southern part.
From ©), we see that this corresponds to a phase with positive pait@orticity g = u on the
northern sub-domains and negative potential vortigitg —u on the southern sub-domain, as
illustrated in the panel (a) of figurX).

Looking at the variational problem89), it is clear that in the caséc = 0, the minimization
of @ is invariant over the symmetgy— —@. Then solutions with eastward or westward jets are
completely equivalent. Actually there are two equivalasitisons for each of the case 1, 2 and
3 above. However, adding a beta effact Rﬁcy will break this symmetry. This is the subject
of next section.

We conclude that in a closed domain with aspect riagid_y < 1, without topography, equi-
librium states exist with an eastward jet at the center offttraain, recirculating jets along the
domain boundary and a quiescent interior. E@fL, > 1, these solutions become metastable

20\We have treated the symmetric case wlids even. The asymmetric case could be also easily treated

82



states (local entropy maximum). This equilibrium is degatesl, since the symmetric solution
with a westward jet is always possible.

5.2. Addition of a topography

For ocean dynamics, the beta effect plays a crucial roleuseow consider the case where
the topography igg = By + %. The first contribution comes from the beadffect (the variation
of the Coriolis parameter with latitude). The second cbution is a permanent deviation of
the interface between the upper layer and the lower layarsifplicity, we consider the case
where this permanent interface elevation is driven by atamgzonal flow in the lower layer:

Yy = —Ugy , which givesng = ( Bc — % y= Rﬁcy. Then the combined effect of a deep con-

stant zonal flow and of the variation of the Coriolis paramati¢h latitude is an effective linear
beta effect.

In the definition of’BvC above, we use a rescaling with This choice is considered in order
to treat the case where the contribution of the effectiva ledfiect appears at the same order as
the jet length contribution. This allows to easily study hive beta effect breaks the symmetry
@ — —@ between eastward and westward jets. Following the arguangectiond.3.1, we
minimize

F = RH0+R<eL—2u/ drf%cy>, (90)
A,

(see equationd?)), with a fixed area,. The jet position is a critical point of this functional:
e/r — 2uB.yjet = o (see equationd@)), wherea is a Lagrange parameter apg; the latitude of
the jet. We conclude that zonal jets (curves with consggptandr = +) are solutions to this
equation fora = —2uRB.yje. Eastward and westward jets described in the previousoseate
still critical points of entropy maximization.

5.2.1. With a negative effective beta effect, eastwardgjetstatistical equilibria

We first consider the cagg < 0. This occurs when the zonal flow in the lower layer is
eastward and sufficiently strongd > R2S). If we compute the first order free enerdgy0y for
both the eastward and the westward mid-latitude jet, it &y ¢a see that in order to minimize
#, the domainA, has to be located at the lower latitudes: taking O at the interface, the
term —2qu+ d?r By = uBcLxLy/4 gives a negative contribution when the phase witau (and
g = —u) is on the southern part of the domai, (= (0,Lx) x (—%,0)). This term would give
the opposite contribution if the phage= uwould occupy the northern part of the domain. Thus
the statistical equilibria is the one with negative streaamafion ¢ (corresponding to positive
potential vorticityq) on the northern part of the domain. As discussed in the esgatfon5.1
and illustrated on figurgl, panel (b), this is the case of an eastward jet.

Thus, we conclude that taking into account an effective tegjaeta-effect term at first or-
der breaks the westward-eastward jet symmetry. When 0, statistical equilibria are flows
with mid-basin eastward jets.
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5.2.2. With a positive effective beta effect, westwardgetstatistical equilibria

Let us now assume that the effective beta coefficient is igesitThis is the case when
Ug < R?B., i.e. when the lower layer is either flowing westward, or wastl with a sufficiently
low velocity. The argument of the previous paragraph can beeused to show that the statistical
equilibrium is the solution presenting a westward jet.

5.2.3. With a sufficiently small effective beta coefficieagtward jets are local statistical equi-
libria

We have just proved that midlasin eastward jets are not global equilibria in the cagmef
itive effective beta effect. They are however critical gsinf entropy maximization. They still
could be local entropy maxima. We now consider this questima mid-basin strong eastward
jets local equilibria for a positive effective beta coefiei? In order to answer, we perturb the
interface between the two phases, while keeping constardréa they occupy, and compute the
free energy perturbation.

The unperturbed interface equationyis- 0, the perturbed one = I(x), see figure21.
Qualitatively, the contributions to the free energy (90), of the jet on one hand and of the
topography on the other hand, are competing with each otlA@y perturbation increases

the jet lengthL = [dx /1+ (%()2 and then increases the second term in equa@dh Ky
0.71=Re[ dx(dl/dx)z. Any perturbation decreases the third term in equat@th lpy 6., =
—2RyB; [dx I2.

We suppose thdt= I sin 'E—’:x wherek > 1 is an integer. Then

~ ki 2
O0F =091+ 0% =—-2ufB:+e L_ .
X

Because we minimizeZ#, we want to know if any perturbation leads to positive vaoiad of
the free energy. The most unfavorable case is for the srhatiése ofk?, i.e. k?* = 1. Then we
conclude that eastward jets are local entropy maxima when

~ - lem?
BC<Bc,cr:§aL_)2(-

We thus conclude that eastward zonal jets are local eqailibr sufficiently small values qﬁc.

_The previous result can also be interpreted in terms of theattogeometry, for a fixed value
of B.. Eastward jets are local entropy maxima if

e
LX < Lx7cr =TI = .
ZUBQCT

Let us evaluate an order of magnitude lfiQg, for the ocean case, first assuming there is no deep
flow (Ug = 0). ThenRf; is the real coefficient of the beta plane approximation. Rebexing
that a typical velocity of the jet i§ ~ uR, and usinge ~ U? (see [L9§] for more details). Then
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Lxcr & T, /%. This length is proportional to the Rhine’s’ scale of geagibal fluid dynamics

[195]. For jets like the Gulf Stream, typical jet velocity ismis™t andB; ~ 10 m~t.s ! at
mid-latitude. TherlL ~ 300km This length is much smaller than the typical zonal extemsio
the inertial part of the Kuroshio or Gulf Stream currents. tlgs conclude that in a model with
a quiescent lower layer and the beta plane approximatianems like the Gulf Stream or the
Kuroshio are not statistical equilibria, and they are ndthee close to local statistical equilibria.

Taking the oceanic parametef& & 10 m1s~1, R~ 50km), we can estimate the crit-
ical eastward velocity in the lower laygly .- = 5 cm s above which the strong eastward jet
in the upper layer is a statistical equilibria. It is diffictd make further conclusions about real
mid-latitude jets; we conjecture that their are marginaligble. This hypothesis of marginal
stability is in agreement with the observed instabilitiethe Gulf-Stream and Kuroshio current,
but overall stability of the global structure of the flow. Arflaer discussion of these points will
be the object of future works.

In all of the preceding considerations, we have assumecthlk:.w;ttermREC was of orderR
in dimensionless units. This is self-consistent to complieunstable states. To show that a
solution is effectively a statistical equilibria whé&)’ﬁC in of order one, one has to use much less
straightforward considerations than in the precedinggraghs, but the conclusions would be
exactly the same.

Notice that the description of an inertial solution presentan eastward jet in a closed
domain constitutes in itself an important step toward thgoal studies of oceanic mid-latitude
jets, beside the application to statistical mechanicsatrit foe for instance the starting point of
stability studies, by applying classical methods to désctine evolution of perturbations around
this mean state.

5.3. Conclusion

We have shown that when there is a sufficiently strong eadtil@w in the deep layer (i.e.
whenUq > Ug ¢r With Ug ¢ = RZBW), ocean mid-latitude eastward jets are statistical dayialj
even in presence of a beta plane. When the flow in the deepitalgver than the critical value

Ugcr but still almost compensate the beta plane(. — % < %SgR), the solutions with the
eastward jets are local equilibria (metastable states)enVBh— % > %ﬁ éRthe solution with

an eastward jet are unstable.
We have also concluded that the inertial part of the real-Stiéam or of the Kuroshio ex-
tension are likely to be marginally stable from a statistinachanics point of view.

The statistical equilibria that we have described in thistiea have a flow structure that
differs notably from the celebrated Fofonoff soluti@0[.

The Fofonoff solution is a stationary state of the quasistrephic equationsg{9-10) on a
beta planerfy = B;y) obtained by assuming a linear relationship between patamrticity and
streamfunctiond = ay), in the limita+R~2? > L~2, whereL is the domain size. In this limit,

85



o P
i) LA AL

|.|-. . |.- l. i |
o et e
T _—\:\-\: T,
i _ i
e _—:-" ]
V33 =2 P Ty
JIrE.___ __:I:II I|'I.II_.- -\.;:"1“ ! - -_hll-\.lu
B o, A
'.I'-C'"—' -_':_,n'." 'I'-\."" _.,II.-.ll
R L

Figure 22: Phase diagrams of RSM statistical equilibriuatest of the 1.5 layer quageostrophic model, character-
ized by a lineaig —  relationship, in a rectangular domain elongated inxldérection. S(E,I") is the equilibrium
entropy,E is the energy andl the circulation. Low energy states are the celebrated Edfeolutions BJ], present-
ing a weak westward flow in the domain bulk. High energy sthte® a very different structure (a dipole). Please
note that at high energy the entropy is non-concave. Thisl&ead to ensemble inequivalence (8&page50),
which explain why such states were not computed in previtudies. The method to compute explicitly this phase
diagram is the same as the one presented in subs&cipage52. See 197 for more details.

the Laplacian term in9) is negligible in the domain bulk. Theg ~ B;/(a+ R~?)y, which
corresponds to a weak westward flow, as illustrated fig@resStrong recirculating eastward jets
occur at northern and southern boundaries, where the Liaplearm is no more negligible.

The original work of Fofonoff was carried independentlynfrgtatistical mechanics consid-
erations. The lineay—  relationship was chosen as a starting point to compute ticelly the
flow structure. Because both the Salmon—Holloway—Henadérskatistical theory]72] (which
is the extension of the Kraichnan energy-enstrophy theoprésence of topography) and the
Bretherton—Haidvoguel minimum enstrophy princip®8][did predict a linear relationship be-
tween vorticity and streamfunction, it has been argueddtadistical equilibrium theory predicts
the emergence of the classical Fofonoff flows, which hadcétffely been reported in numerical
simulations of freely decaying barotropic flows on a betax@léor some range of parameters
[20Q.

We have seen in the last paragraph of subse@iB8mpage34 and at the end of subsection
3.1.3page47that all those theories are particular cases of the RSM8tati mechanics theory.
On the one hand it has been actually proven that the clagsiéahoff solutions are indeed RSM
statistical equilibria in the limit of low energied497]. On the other hand, as illustrated by the
results of this section, there exists a much richer varie®®M equilibrium states than the sole
classical Fofonoff solution. Even in the case of a lingar ¢ relation, high energy statistical
equilibrium states are characterized by a flow structuré difeers notably from the original
Fofonoff solution , as illustrated figur22. These high energy states correpond actually to the
RSM equilibrium states of the Euler equation, originallyrgmuted by #7]. The transition from
classical Fofonoff solutions to those high energy stateskeen related the the occurrence of
ensemble inequivalencd97]. This explains also why such high energy states have nat bee
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reported in earlier studies, where computations were avpeyformed in the (unconstrained)
canonical ensemble (see the discussion at the end of sigvs2@&.4page34).

The early work of Fofonoff 0] and the equilibrium statistical mechanics of geophysical
flows presented in this review are often referred to as thi#i@epproach of oceanic circulation,
meaning that the effect of the forcing and the dissipatiennaglected.

Ocean dynamics is actually much influenced by the forcingthedlissipation. For instance
the mass flux of a current like the Gulf Stream is mainly expdi by the Sverdrup transport.
Indeed in the bulk of the ocean, a balance between wind stoesisig and beta effect (the
Sverdrup balance) lead to a meridional global mass flux (fstance toward the south on the
southern part of the Atlantic ocean. This fluxes is then oe@westward and explain a large
part of the Gulf Stream mass transport. This mechanism liedidse of the classical theories for
ocean dynamicslp7]. Because it is not an conservative process, the inert@cgeh does not
take this essential aspect into account. Conversely, #daitrnal theory explains the Sverdrup
transport, the westward intensification and boundary otirfgut gives no clear explanation of
the structure of the inertial part of the current: the stiprmgstward jets.

Each of the classical ocean theodys]] or of the equilibrium statistical mechanics point
of view give an incomplete picture, and complement eachrothrother interesting approach
consider the dynamics from the point of view of bifurcatitieary when the Reynolds number
(or some other controlled parameters) are increased. These types of approaches seem
complimentary and we hope they may be combined in the futugenhore comprehensive non
equilibrium theory.
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6. Non-equilibrium statistical mechanics of two-dimensiaal and geophysical flows

In the previous chapters, we dealt with equilibrium stetgtmechanics for twalimensional
and geophysical flows. Assuming ergodicity, equilibriuratistical mechanics describes long
time outcome of the evolution of the 2D Euler equations ordhasi-geostrophic equations.
Ergodicity was then our only assumption, and all the preskrasults can be derived rigorously.

In laboratory experiments or geophysical situations, nflosts are however subjected to
dissipative processes. Very often such flows are in stifti steady states, where forcing
balance dissipation on average, and where fluxes of eneygther conserved quantities char-
acterize the system. This is a situation of Non Equilibriutea8ly States (NESS), following the
terminology of statistical mechanics.

In many situations of interest the action of forces and gatgdn mechanisms are weak com-
pared to the inertial (Hamiltonian) part of the dynamicst iRstance, the turnover time scale can
be small compared to forcing time scale (i.e. atypical tirreded to create the structure starting
from rest) or to a dissipation time scale (i.e. a typical tine@ded to dissipate the structure if
the force would be switched off). In such situations of wealcés and dissipation, at leading
order one recovers the inertial dynamics: the Euler egasiio the quasi-geostrophic dynamics.
Then a natural question is to know whether we are close oorsmrne statistical equilibria, and
if statistical equilibrium could learn us something forgkenon-equilibrium situations.

A further objective is to make an non-equilibrium theorytticauld predict the invariant
measure and to predict the properties of this NESS direatiiy the dynamics, for instance us-
ing a kinetic theory approach.

In order to discuss these issues more precisely, we corigittee following the 2D Navier-
Stokes equations with viscous dissipatiorinear frictiona and stochastic forces:

Gw+ (V-D)w=VvAw—aw++on(t,x); (91)

whereg is the average energy injection rate by the stochastic fpigewill be defined precisely
latter on;n is actually the curl of a force, but without ambiguity we dak stochastic force in
the following). We recall thato = Ay is the vorticity, andv = e, x 0y the two-dimensional
velocity field.

This is the most simple model for discussing the statistich@large scales of 2D and geo-
physical flows, in a statistically steady regime. The typesasoning presented in the following
can be easily generalized to other models.

In the casex = 0, many interesting mathematical results have been reoelnthined for the
stochastic Navier-Stokes equatio®4)( the existence of an invariant measure, its properties in
the Euler limitv — 0, the validity of the law of large numbers, central limitéhems, ergodicity
(see [L16, 114, 115, 29, 203 134 and references therein). We do not describe these rebultts,
only cite them when they are related to the more physicaiestuakllow.

This chapter is organized as follows. In sect@d we explain that two different regimes
exist for the NESS of the 2D Navier-Stokes equations, depgnoh the values of the forcing
paramete and the linear friction parameter. The first one is the classical regime of the self
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similar direct cascade of enstrophy and inverse cascadeeofy first predicted by Kraichnan
and studied thoroughly during the last three decades. Tdwndeone is the regime dominated
by the largest scales of the flow. This turbulent large sad@nme is the interesting one as soon
as one is interested in predicting the statistics of theektrgcales of geophysical flows. We
explain that it is natural to guess that this regime has satations with equilibrium statistical
mechanics of the Euler equations, even if the microcanbmiezsure does not describe its
statistics.

In section6.4, we explain that we can predict many properties of this tierttularge scale
regime from the equilibrium statistical mechanics, fotamee the topology of the average veloc
ity field. For instance, we show that we can predict non-doyiilm phase transitions: situations
of bistability between two different topologies of the ety fields. We also explain the strong
limitations to the use of equilibrium theory for such noni#igrium situations.

In section6.5, we explain how a kinetic theory could be developed to dbsdtie turbulent
large scales of turbulent flows in a non-equilibrium steatdyes We explain what would be
the minimal requirements for such a theory, and the assatidifficulties. In sectior6.6 we
describe recent progresses in this direction.

6.1. Non-Equilibrium Steady States (NESS) for forced assijtted turbulence

In this subsection, we show that depending on the valueseofrittion parametena and
the forcing parameter, there are two main regimes for the stochastic Navier-Stekgiations
(91). We begin by some general considerations on the balanceeofe and other conserved
guantities.

6.1.1. Stochastic forces
We first define the stochastic forggt,x). It is a sum of random noises:

I’](t,X) = Z frex (X7y) r]k(t)7

where{e} is the orthonormal basis of the Laplacian eigenvectors itichlet boundary con-
ditions for the domairZ: —Ae = Axec with [, dreyey = dw. For a doubly periodic domain
of size(Ly,Ly) we havek = 2r(ny/Ly, ny/Ly) with integersn, andny, & (r) = exp(ik.r) /LyLy
and A, = |k|?. The termsn are independent white noiségy (t) N (t)) = e d (t —t'), fy is
the force spectrum and is the force amplitude that will be related to the energy amstrephy
injection rate later on. In all the following we assume tliptdecays rapidly for largd: the
stochastic force is white in time and smooth in space.
We rewrite @1) in the usual stochastic form:

dw=[-(u-0)w+vAw— aw]dt+ \/EZ frexdW, (92)

wheredW are the Wiener processes associated yith
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6.1.2. Energy balance
For the deterministic dynamics (i.e. without stochasticifty, o = 0), the energy balance

reads dE
— =—vZ—-20aE,
dt

whereE = %fg dr v2is the energy) andZ = [ dr w? is the enstrophyl(9). For the stochastic
dynamics, application of the Ito formula to the energy etiohy starting from 92), leads to

d(E)
dt

where the brackets are averages over the white noisesatéatiz and where we assume

= —v(Z)—2a (E)+0, (93)

e
Bo=5Y 5 =1 (94)

We see from §3) that o is the average energy injection rate; the assumplga= 1 is just
equivalent to definingr. The energ)E is on units of s 2, so the units foro are nfs2 and
the units forf, arem1.

Similar balance relations can be easily derived for all ttieloconserved quantities. We do
not discuss these relations here as we will not need theneifotlowing. More details can be
found in [114] and [143).

6.2. First regime: the Kraichnan self-similar cascades

We first consider the case where the force spectrum is pea&eddia given wave number
ki. Following Kolmogorov type of reasoning, d andv are small enough, it is then possi
ble to define inertial ranges in which the effects of forcimgl aissipation will be negligible.
Such inertial ranges will then be characterized by fluxesoofserved quantities, for instance
energy and enstrophy. When the fluxes are dominated by dgahpriocesses which are local
in Fourier space, this is called a cascade regime. Suchdesda two-dimensional turbulence,
have first been studied by Kraichnan using ideas similar faégorov ideas for 3D turbulence.
We give here a very rapid account, mainly based on dimensimgaments. More details can be
found in [113 and in more recent reviews or lectures. Interesting receslts in this domain
include study of statistics of zero vorticity lines in redat with the stochastic Loewner equation
(SLE) [8] and precise conditions for locality of turbulent cascadéh applications also to two-
dimensional turbulencgr3, 74, 3].

The system is forced at wave numberwith an energy injection rate per unit surfage
Following the notations of the previous subsection, we havea/L?. This corresponds to
an enstrophy production ratg ~ kie. We suppose that the system has reached a statistically
steady state and that the energy is limited to sdatésmuch smaller that the domain size A
more precise statement of this hypothesis, and a condiioitsfvalidity will be given at the end
of this section. In the following of this section, we assurasaade regimes (for inertial scales
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k> ki andk < k¢, we assume constant fluxes of conserved quantities duedabdgnamical
processes in Fourier space).

In the limit where the large scale separatidky > 1, it is then relevant to write the total
energy per unit surfacEs = E /L2 on the form of a continuous spectruri; = [ E(k)dk (see
section2.3.2for the definition ofE (k)). We consider the energy fluxes at sckléhe energy
going from modes with wave numbers larger thaa wave numbers smaller tha&nfor a precise
definition see §3]). One could imagine a situation with both an upscale endtgy (k < k)
and a downscale oné ¢ ki), both of the order oE. However, at small scale (lardg, this
would imply an enstrophy flux of ordesk?. But becausek? > ski ~ 1, this would contradict
the hypothesis of a steady regime, since there would be mochk emstrophy going downscale
than the enstrophy injected. We conclude that the energgtiegl aks goes mostly toward large
scales, at a fixed rate Using a similar argument where the energy and enstroplyygplaverse
role, we conclude that in the limit or large scale separaltion> 1, enstrophy injected at scale
k¢ flows mostly toward small scales at a rate

We thus conclude that for statistically steady states,ggrfémws mainly upscale and enstro
phy mainly downscale; more precisely in the limit of infinitertial ranges all the energy flows
upscale and all enstrophy downscale. In sec8dh?2 using Fjortoft argument, we obtained a
qualitatively similar result for the dynamics of decayingtulence. In section®.3.4and2.3.5
we explained that for the Euler equation, statistical maidsapredicts that all energy is concen-
trated in the largest scale and the all the enstrophy or atkariant excess (a precise meaning
being given by the entropy) flows towards smaller and smallaies. We see that these three
precise results, for three different situations, give &igeemeaning to the statement that energy
goes towards large scales and enstrophy towards smalssodlgo dimensional turbulence.

By using a dimensional analysis, Kraichnan gave a predidio the slope of the energy
spectrumEg(K) in the inertial ranges, in the cascade regimes. Let us firssider the inertial
range for scales above the injection scile:(k¢). This is the inverse energy cascade, as energy
goes upscale in this region, with a given flexwith unit m?.s~3), and enstrophy flux is negli-
gible. Because of the locality hypothesis, at s¢alé (unit L), the energy spectrurs(k) (unit
me.s2) can then depend only anandk. Dimensional analysis then gives

Es(K) ~ €23k 5%  for k< ki .

Let us now consider the inertial region for scales below tiection scale. This the enstro-
phy cascade inertial range as the enstrophy goes downsctiis iregion, with a given flux
(with unit s~2), and the energy flux is negligible. The energy spectrum alesc ! can then
depend only otk andn. Dimensional analysis then gives

Es(k) ~n?3k3  for k>>ki.

Predictions of the self-similar cascade theory have bellowied by numerous experimental
studies in many different settings over the last three desésee§, 9] and references therein),
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Figure 23: First experimental observation of the inversergy cascade and the associaked/'? spectrum, from
[179. The 2D turbulent flow is approached here by a thin layer ofawey and a further ordering from a transverse
magnetic field. The flow is forced by an array of electrodeshathiottom, with an oscillating electric field. The
parameter Rh is the ratio between inertial to bottom fricterms. At lowRhthe flow has the structure of the forcing
(left panel). At sufficiently highiRhthe prediction of the self similar cascade theory is wellevlaed (right panel,
bottom), and at even high&h, the break up of the self similar theory along with the orgation of the flow into a
coherent large scale flow is observed (see right panel above)

and this has led to beautiful experimental resul&] 155. Among others, there have been mea
surements of the-5/3 slope of the backward energy cascade part of the specttidén 155

(see also figure83 and24), as well as of the-3 slope of the forward enstrophy cascade part of
the spectrum54].

In the previous paragraph, we dealt with the inertial rangggy spectrum. For large enough
scales, the friction-aw is ho more be negligible and the inertial range hypothesisnoce
valid. The energy is then be dissipated and no more flow tavindjer and larger scales.
In experiments, this is visible as a maximum in the energytspm Eg(k). Using a classical
argument based on dimensional analy&®/ (see also$8] for a critical discussion, orl95),
we predict the scalk; at which the cascade stops. This scale can depend oryrofis—3) and
on the frictiona (s™1):

s1/2
L = CW’ (95)
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FIG. 1. The experimental set-up. kizn (em")

FIG. 2. Energy spectra. (a) Temporal evolution: (b} compensated energy
spectrum for the stationary regime,

Figure 24: Another experimental observation of the invexsergy cascade and the associdted3, from [155.
The 2D turbulent flow is approached by a thin layer of (ligtetys water lying above another thin layer of (dense)
salty water. The stable stratification provides a furtheleang. The flow is stirred at small scales by the interaction
between an horizontal electric field imposed across thergrpatal cell and a vertical magnetic field imposed by
an array of magnets located below the experimental cell. &geos the right panel that predictions of ssihilar

inverse energy cascade (tkie/3 spectrum) are well observed. Please note also the integessinsient evolution of
the energy spectrum.

wherec is a non-dimensional constant.

If the dynamics takes place in a finite box of sizghe energy flux towards largest scales can
be stopped by the box before it is dissipated by the frictlarsuch a case the energy pile up at
the largest scale. The self-similar hypothesis for the tspecthen break down, and we actually
observe that energy fluxes are no more local. The Kraichrauargithen break down. In a finite
box, the Kraichnan picture can be valid only if the sdalés much smaller than the box sike

Recalling thato = L2, we thus conclude a necessary condition to observe a uahieverse
energy cascade?s
gl/2

Ra = \/§L2a3/2

In the opposite cas®, > 1, for instance for too strong energy injection or too weasigiation
for a given box size, the energy cascade will not be arrestdddtion, but will begin to pile up

< 1. (96)

21The /2 is unimportant and is added for convenience in latter caatjmns.
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at the largest scales. Then the largest scalesosgdinize and create coherent vortices and jets.
This is the second regime of two dimensional turbulencegtdibcussed in the next sections.

6.3. Second regime: the coherent large scale flow

We are now interested in the regime where the flow self orgaatzthe largest scale.
Because the energy will flow towards the largest scalesniafaral to neglect the energy dissi-
pation by viscous effect. We will give a more precise craarfor this to be valid later on. From
the energy balanc@8), neglecting viscous effect, we have

g
Ec) ~ —.
(Ee) 2a

A typical velocity for the large scale flow is this= /(Ec)/L = %, /5 A typical time scale

for the largest scales (a turnover time) is thea L/U = LZ\/%". A natural non-dimensional
parameter iR, the ratio of the dissipation time scal@d over the turnover time scalke

R, = V3 gl/2

q3/2L 2

Ry is indeed a Reynolds number based on the linear fricti@md the large scale flow velocities
and length scale. We note that the criteria for observinfyaghnization of the energy at the
largest scale9b) is Ry > 1, as could have been expected. The limit of large time seglara-
tion, Ry > 1, is particularly interesting.

It is natural to write non-dimensional dynamical equatiassg as a length unit the domain
sizeL and as a time unit a typical large scale turnover time LZ,/%": t=r1t’' and(x,y) =
L(X,y). In these non-dimensional units the dynamical equatioas ar

1 1 /2
d/w’+(u’-D’)w’:mA’w’—Ew’Jr Er’/7
with o' =AY/,

where
Re=UL/v = %2/ (2a)"?v
is the Reynolds number based on the large scale velocity améid size.

We rewrite the non-dimensional equations dropping the gsiend identifyingr to 1/R,
Atoaandv to 1/Re We then obtain

odw+ (u-0)w=VvAw—aw++v2an,

with w =AY 97)

and with
n(t,x) = Z fiex (X, y) nk(t), (98)
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where{ fy} verifies the constraintog).

We are interested in the limit where the viscous ReynoldsbernReis much larger than
the Reynolds number based on the linear friction(meaning that, as far as the large scales
are concerned, viscous dissipation is negligible comptréidear friction dissipation). In these
non-dimensional units, this condition reads« a. The regime of large scale self organization
is o < 1. We will thus study the limiv < o < 1. We call this the limit of weak forces and
dissipation.

In the non-dimensional units, the energy balar8®) {s

% = —2v(Z)+2a (1 (E)), (99)

giving the stationary balance
(E>S:1—§(Z>s§ 1 (100)

We study the dynamics of the coherent large scale flow regintteei next sections.

6.4. Equilibrium statistical mechanics and NESS; predittof non-equilibrium phase transi-
tions

6.4.1. Are the largest scales of the 2D Navier-Stokes eppumtilose to statistical equilibrium,
in the limit of weak forces and dissipation?

We have stressed in the introduction that the Non Equilibristeady States (NESS) of the
two-dimensional equation break detailed balance, ancharplace of fluxes of conserved quan-
tities. The microcanonical measure we built from the Lidleviheorem in sectio2.2.3and the
equilibrium states we have studied in secti@g and5 have no such fluxes. Then the micro-
canonical measure can not describe the details of thetitsii these NESS. There is however
the possibility that the stationary measure be close to tlaeoganonical equilibrium one in the
limit of weak forces and dissipation. We discuss this suisdee now.

In the limit of weak forces and dissipation,< a < 1, the non-Hamiltonian terms in the
stochastic Navier-Stokes equatid®7) are vanishingly small. The associated fluxes are also
vanishingly small. Because of these small parameters, thea natural to assume that the
flows will be concentrated near to statistical equilibrias the equilibrium statistical mechanics
predicts that the flow is concentrated close to stationahytisos to the 2D Euler equations,
a natural conjecture is that in the limit < a < 1, the stationary measure of the stochastic
Navier-Stokes equations will be also concentrated closmsembles of stationary solutions to
the 2D Euler equations.

That such a behavior is plausible is actually supported bgragtheorems. At the dynamical
level, the Navier-Stokes equation is actually well behawetie limit v < a <« 1: for arbitrary
large but finite times, its solutions remain close to the tsmhg of the Euler equation. This is
also true at a statistical level, as recently proved by S.sikufor the casex = 0 [116]: in the
limit v — 0 the invariant measure for the stochastic Navier-Stokeatemn is described by so-
lutions to the Euler equation. These mathematical theomampport the idea that the invariant
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measure will be related to the statistics of Euler dynanfiasthey do not prove that the measure
is concentrated close to ensemble of stationary solutmtiset Euler equations. This remains a
challenge for further mathematical results.

We note that the situation is completely different in thrémehsional turbulence: as €ex
plained in sectiorR.3.4 equilibrium statistical mechanics of the 3D Euler equaipredicts a
trivial measure with no flow. Then 3D turbulence is intrir@lg a non-equilibrium problem.

As we will see in the following, the conjecture that the ingat measure is concentrated near
stationary solutions to the 2D Euler equations is suppdst&ti by numerical simulations and
experiments. Even in this non-equilibrium context equilib statistical mechanics is useful.
This is a common situation in statistical physics. For ins&in systems with short range
interactions driven non-equilibrium, one expects locahthodynamic equilibrium to hold, when
the temperature gradient is small enough. In our caseaictiens are non local, but in the limit
V< a < 1, we expect to be close to statistical equilibria. We seedhia zeroth order prediction
from equilibrium statistical mechanics in a non-equilifon situation.

This zeroth order prediction already gives us strong catali results about the non-equilibrium
dynamics. However the predictive range of these argumenery limited. For instance the en-
ergy distribution and Casimir distributions will be deténed by non Hamiltonian processes.
They can not be derived from equilibrium processes. As gnangl Casimirs are the control
parameters of the equilibrium statistical mechanics, wis ttonclude that we can guess from
equilibrium statistical mechanics that we should be clossgoime ensemble of stationary solu-
tions to the 2D Euler equations, but that non-equilibriumotty is needed to predict which ones
and with which probability.

Moreover as soon as statistics of fluctuations is concelihexdmeaningless to try to make
predictions based on equilibrium statistical mechanisd]wctuations statistics will have to be
consistent with non-equilibrium fluxes.

We thus conclude that we expect the stochastic Navier-Stiokariant measure to be con-
centrated close to ensemble of statistical equilibria ¢Wwlaire also stationary solutions of the 2D
Euler equations). In sectich4.2we show that this is confirmed by numerical simulations and
experiments. In sectiof.4.3 we show that this allows to predict non-equilibrium phasagi-
tions. To know which of the dynamical equilibrium statestod Euler equations is selected by
forcing and dissipation, and to predict the fluctuationistias, one needs an non-equilibrium
theory. Possible candidates for such theories will be dised in sectios.5.

6.4.2. Non-equilibrium flows are close to statistical eipia

In order to illustrate this discussion, we discuss the cdsa doubly periodic domain.
Whereas this case has no experimental counterpart, itresnagty interesting from an academic
point of view. Indeed because of the absence of boundar@ms)dary layers are absent and
make the dynamical situation much more simple. Moreovesugs-spectral codes allows for
much more precise numerical simulations than in any othemgdries.

Numerical simulations of the 2D Navier-Stokes equationa gelf-similar transient regime,
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have been presented ib€], for a square periodic box. This paper also show interggtiower
laws for the vortex profiles, in this regime. In the followjnge concentrate on the statistically
steady regime and discuss relation with equilibrium diaismechanics, and neequilibrium
phase transition®2f, 143.

We have described the equilibrium statistical mechani¢tkeo®D Euler equations in doubly
periodic domains in sectioB.5. Figure8, page60, shows an equilibrium phase diagram. It
shows that two types of flow topologies may be expected: diflows or parallel flows, a
crucial parameter being the aspect ratio of the domdain

Direct numerical simulations of the stochastic NavierkBtequations in a square domain
o = 1 exhibit a statistically stationary flow with a dipole structure (Fig25 a)), whereas for
0 > 1.1, nearly unidirectional flows are observed (F&h b)). This result has been confirmed
both fora = 0 anda # 0, and for different values of and force spectra. The structure of
statistical equilibria is thus observed also for non-ahtiim steady states.

As seen in sectioB, statistical equilibria are characterized by a functiceddtionshipw =
f (@) between vorticity and streamfunction. One observes in Fsg w — @ scatter-plot (light
blue or gray), for the two cases of a dipole and a unidireefidiow. In the dipole case, the
w — Y relationship is well observed for the larger valueg®f, which corresponds to the core
of the vortices. In the area in between the vortices, thaioglship betweerw and  is more
scattered. This correspond to the small scale filamentsl@isin the vorticity picture (see figure
25).

When we average the vorticity fields and the stream-funstmrer several turnover times,
we obtain the black curves which are very nioe- ( relationships. Thev — ( relationship
has the same convexity as a sinh (but is different from a sintthe dipole case and the same
convexity as a tan-h in the unidirectional case. We thus lodecthat the observed flows are
composed of average quasi-stationary large scale stes;tipoles or unidirectional flows, over
which are superimposed fluctuations corresponding to sunalé filamentation.

In this sense, the structures are close to equilibrium. We tiat the parallel flows seems
to be farther from equilibrium than the dipole as the averatgtionship is a quite thick line. In
this case this is due to the presence of intermediate sceleagas seen on the vorticity picture.

This confirms the usefulness of the predictions of equilitoristatistical mechanics in this
non-equilibrium context.

More details about the analysis of the proximity of the flovthngtationary solutions to the
2D Euler equation for doubly periodic conditions are giverjd4, 143. A similar conclusion
can also be drawn from the numerical resuki§][ even if the notion of stationary solution to the
2D Euler equation is not used in this work.

In the limit of weak forces and dissipation, it is recogniZed a long time that the flow
should be close to stationary solutions. For instance, tlasiegeostrophic flows on a beta plane
are known to form zonal jets, which are dynamical equilibrigtates of the quasi-geostrophic
equations, and this have been studied a lot recently. Indaty experiments, the importance
of the formation of large scale coherent structure closetatiomary solutions has also been
recognized for a long timelfr9.
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Figure 25:w —  scatterplots (cyan) (see color figure on the .pdf version). In bltek same after time averaging
(averaging windows & 7 < 1/v, the drift due to translational invariance has been remp\egft: dipole case with
0 = 1.03. Right: unidirectional casé = 1.10.

6.4.3. Non-equilibrium phase transitions in the 2D-StatltaNavier Stokes equations

Phase transitions are situations where the qualitativegpties of the system change drasti-
cally. They are thus especially important from a physica amlynamical point of view.

We have stressed that we are not able to predict the pralyatifilihe energy and of the vor-
ticity moments for non-equilibrium situations. Howevees$le are the main control parameters
of the equilibrium properties. For this reason the use ofilégum theory for slightly non-
equilibrium situations give only qualitative results angled not provide a precise prediction.
However phase transitions give such drastic changes tbwtstiould also be clearly identified
even in non-equilibrium steady states.

We illustrate this idea in the case of 2D Navier-Stokes d@quoatin the doubly periodic
domain. FigureB, page60 shows that a phase transition occur between dipoles andlgbara
flows at equilibrium. A natural order parameter|1g|, wherez = ﬁ J dr w(x,y) exp(iy).

Indeed, for unidirectional floww = ae;, z = 0, whereas for a dipole = a(e; + &), |z1| = a.

We have thus empirically looked for a non-equilibrium phasmsition (for the Navier-
Stokes equations with random forces) that is the trace oéthalibrium phase transition. A
crucial control parameter is the aspect ratio of the dom&mhave made numerical simulations
for different values ofd. Figure 26 shows|z;| time series ford = 1.02 andd = 1.04. The
remarkable observation is the bimodal behavior in thissitaon range. The switches frofm |
values close to zero to values of order 06 @orrespond to genuine transitions between unidi-
rectional and dipole flows. The probability distributiomfition (PDF) of the complex variable
7 (Fig. 26) exhibits a circle corresponding to the dipole state (a sliggole random transla-
tion corresponds into to a phase drift far explaining the circular symmetry). The parallel flow
state corresponds to the central peak dAscreases, one observes less occurrences of the dipole.
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Figure 26: Dynamics of the 2D Navier—Stokes equations witlstgstic forces in a doubly periodic domain of
aspect rati@d, in a nonequilibrium phase transition regime. The two main plots thie time series and probability
density functions (PDFs) of the modulus of the Fourier congz; = ﬁ [ dr w(x,y) exp(iy) illustrating random

changes between dipolelz( ~ 0.55) and unidirectional flows|%;| ~ 0.55). As discussed in sectich4.3 the
existence of such a non-equilibrium phase transition caguiessed from equilibrium phase diagrams (see figure

We thus conclude that situations of phase transitions drerarly important. Prediction of
equilibrium phase transition help at locating non-equili;m phase transitions in slightly non-
equilibrium situations. The ideas developed here in thésdiof the 2D Navier-Stokes equation
can be applied in a much broader context, for quasi-gedstropr shallow-water dynamics.
Indeed we conjecture that this would explain the observs@bility in recent quasi-geostrophic
experiments190, 201 (see figure27).

We also conjecture that this is an explanation of the biktalof the Kuroshio current (Pa-
cific ocean, east of Japan) (see figu28s29 and30).

6.5. Towards a kinetic theory of NESS

We have explained in the previous sections that in the lifvt@ak forces and dissipation,
we expect to be close to some statistical equilibria. TH@e to predict qualitative properties
of the flow and non-equilibrium phase transitions. Howeivearder to be able to predict which
of these equilibria will be selected and to be able to makeliptiens about the statistics of
fluctuations, we cannot rely on the equilibrium theory andhaee to develop a non-equilibrium
theory. A way to proceed is to make a kinetic theory of thesa-Hquilibrium Steady States.

Such a kinetic theory approach, as any kinetic theory, wilbased on an asymptotic expan-
sion. Usually the small parameter is the ratio of the typitak scale for the small scale fluc-
tuations over the typical time scale for the evolution ofefia variables. For the 2D-stochastic
Navier-Stokes equations, in the limit of small forces anssihiationv < a < 1, the natural
small parameter is the friction coefficieat It is indeed the ratio of the turnover time scale (the
timescale at which fluctuation are advected) over the tinadesover which energy and other
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Figure 27: Bistability in a rotating tank experiment withptgraphy (shaded are&¥0, 201]. The dynamics in this
experiment would be well modelled by a 2D barotropic modehwopography (the quasgjeostrophic model with

R = o). The flow is alternatively close to two very distinct stateith random switches from one state to the other.
Left: the streamfunction of each of these two states. Ritita:time series of the velocity measured at the location
of the black square on the left figure, illustrating cleaHg bistable behavior. The similar theoretical structuces f
the 2D Euler equations on one hand and the quasi-geostropdel on the other hand, suggest that the bistability in
this experiment can be explained as a non equilibrium phragsition, as done in sectidh4.3(see also figur@6)

-

Figure 28: Kuroshio: sea surface temperature of the padita east of Japan, February 18, 2009, infra-red ra-
diometer from satellite (AVHRR, MODIS) (New Generation S&arface Temperature (NGSST), data from JAXA
(Japan Aerospace Exploration Agency)).

The Kuroshio is a very strong current flowing along the cosstith of Japan, before penetrating into the Pacific
ocean. Itis similar to the Gulf Stream in the North Atlantlo.the picture, The strong meandering color gradient
(transition from yellow to green) delineates the path ofdtreng jet (the Kuroshio extension) flowing eastward from
the coast of Japan into the Pacific ocean.

South of Japan, the yellowish area is the sign that, at the ¢ifthis picture, the path of the Kuroshio had detached
from the Japan coast and was in a meandering state, like I9%@-1962 period (see figuas)

invariant of the inertial dynamics evolve.

In the limit of weak forces and dissipation, the flow remaifsse to statistically quasi
stationary states (evolving on a time of ordefal for instance dipoles or parallel flows in
the case of doubly periodic conditions, discussed in se@&id.2, with vorticity Qo (r,t) and
velocity Vo (r,t). Atleading order in the theory, we naturally obtain tigtmust be a dynamical
equilibrium state of the Euler equatioNs.[2 o = 0. For it to be quasi-stationary, it also has to
be dynamically stable.
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Figure 29: Bistability of the paths of the Kuroshio duringth9561962 period : paths of the Kuroshio in (left) its
small meander state and (right) its large meander state.1006@-m (solid) and 4000-m (dotted) contours are also
shown. (figure from Schmeits and Dijkstral&/p], adapted from Taft 1972).
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Figure 30: Bistability of the paths of the Kuroshio, from Gind Miao [L61]: time series of the distance of the
Kuroshio jet axes from the coast, averaged other the pahneatdast between 132 degree and 140 degrees East, from
a numerical simulation using a two layer primitive equatioodel.

The fluctuations evolve rapidly. The velocity fluctuatioms axpected to be much smaller
that the velocityVy. It is then tempting to try a perturbative expansion using thme scale
separation. We thus decompose the fields as

w=Qp+dwandv =Vy+ov. (101)

In the more general cas€q evolves slowly over time. It may also exist cases whegeis
actually stationary. For technical reasons, it will be dienpo discuss in the following the case
whereQq is stationary; however the generalization to the quasiestary case or to situations
with self-similar growth is straightforward. We defifi¢ as an average over the noise realization.
ThenQp = (w).

We start from the stochastic Navier-Stokes equations

dw+ (v-0)w= vAw—aw+v2an (t,x). (102)
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We will need along the discussion the linearized Na@tokes equation close to the base vor-
ticity profile Qg

G0w+L[dw = with L[dw|] =Vo.00w+0v-[Q o— vAw+ aw. (103)

We decompose the fields as average plus fluctuatibdd) ( The 2D Navier-Stokes equations
102are then equivalent to the dynamics of the fluctuations,nginxe

Gow+L[dw =Vv2an(t,x) —dov-0dw— aQo+ VAQq (104)
Taking the average oflQ4) gives
<5V- |:|5(JO> = —0Qp+ VAQq.

This important equation just expresses that the mean itgrtimfile is determined by a balance
between the average of the nonlinear contributions of tletUfflions (Reynolds stresses) on one
hand and the dissipation on the other hand. The challendeiisto find a theory to compute
these Reynolds stresses.

The Reynolds stres®v.[0d w) is a quadratic quantity; it can thus be evaluated from the two
point correlation functiorg, (r1,r2,t) = (dw(ri,t) dw(ra,t)). The equation for the time evo-
lution of the two-point correlation function is easily obted from (L02), using the Ito formula
and averaging. We obtain

0@+ L1+ Lo =2aF, + NLy, (105)

wherel; (respLy,) is the linearized Euler operattr(103) acting on the variable; (respr,),
NLz(r1,r2) =—(0v(r1).0dw(r1)dw(ra))—(dv(r2).0dw(ry) dw(r1)) is the contribution of
the nonlinear term andoZ-; is average effect of the stochastic force on the two-poiretation
function (with the stochastic forc®8), page9d4, we haver, (r1,r2) = S f2ex (r1) & (r2)).

Due to the nonlinearity, the equation for the two points elation function £05) involves a
three point quantitiNL,. One could easily write the whole hierarchy for tioint correlators.
Any truncation of such a hierarchy is arbitrary, except isesawhere a small parameter allows
to neglect the nonlinear terms in a self-consistent way.hSusituation occurs for instance in
kinetic theory, more specifically in the kinetic theory ofstgms with long range interactions
[20] that share deep analogies with the present problem, omep&deing the kinetic theory of
the point vortex model43] (an application of similar idea to the relaxation towardsiébrium
of the 2D Euler equation as also been discussed,&&aid further discussion in sectié6).
We then call such an approach a kinetic approach.

Such a kinetic theory approach is a classical one. Simitadgdave been discussed back in
the seventies and eighties in other contexts and are siiliest currently (quasi-normal closures,
rapid distortion theories, second order cumulant trunoatiand other related approaches). Very
few of these works however consider inhomogeneous flows ke by the large scales, as is
our interest here. Some exceptions are a series of thesdratid numerical works made during
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last decaded8, 119, 150, 149, 42], among them a very interesting model of 2D wall turbulence
[149. In the case of the large scales of geophysical flows, reic¢ertesting works have used
numerical simulations, for instance to study the limits e€@nd order cumulants expansion
[132], or to study numerically a self consistent closure desugilbhe coupling of the mean flow
and of the second order cumulai@]. Another line of research, on related issues, has been to
search for crude closure8g, 89], or more precise mathematical result8(], when the system

is subjected to random bombardments

In all of the previous works, some hypothesis of a phenonwgyicdl nature are made in-or
der to simplify the problem at some point (closure without#imparameter, assumption of scale
separations, Markovianization), that allows interessiggdies to be pushed forward. However,
there still remains a lot of work to assess either numeyiaailtheoretically the validity or not
of these hypothesis, and thus to be really able to propossafttieory of the large scales of two
dimensional and geophysical flows. Our belief is that angmss in this direction requires a
better theoretical understanding of the basic objectsappuein the theory.

For instance any progress in the kinetic theory requiresititkerstanding of equatiod@5),
and thus requires a theoretical understanding of the tvilt-finear operator on the rh&; @ +
Liw + Lo@ = F. Similar n-point linear operators, implying the lineadzeperatoi., appear at
each level of the hierarchy of the equations for thgoint correlation function. A prerequisite
for any understanding of this linear operator is a detailedeustanding of the linearized Euler
equation and of its asymptotic behavior. The current tha@mleunderstanding of is readily
not sufficient to go forward with the kinetic theory.

The results for the behavior bfcan not be universal. They depend a lot on the boundary con-
ditions, on the topology of the streamlines and on the specitidel (Euler, quasi-geostrophic,
etc...). For instance, any theory that would not dependi@iplon boundary conditions would
be promised to failure. The theoretical analysis of thediraperatoL is one of the aims of next
section.

6.6. Relaxation towards equilibrium and asymptotic bebraweif the 2D Euler and linearized
Euler equation

6.6.1. Irreversibility of reversible dynamical systems

The 2D Euler equations
gdw+(v-O)w=0 (106)

is time reversible: it is invariant over the time reversahsyetryt — —t, w — —w (or equiva-
lently v — —v). However, it has anyway an irreversible behavior. Indesdgxplained in section
2, for large times, enstrophy and other Casimir invariantads towards lower and lower scales
and the largest scales of the flow converge towards a staji@atution to the 2D Euler equa-
tions. Such an apparent paradox between the time reversatsiry of the microscopic dynam-
ics (here the Euler equations) and the irreversible evaiutif macroscopic variables (here the
largest scales of the flow) is a classic problem of statistieachanics.

This reversibility paradox is usually satisfactorily exipled by introducing in the discussion,
the discussion of relative probabilities of types of iditianditions (see for instance the classical
discussion 162 about irreversible behavior in electromagnetism). Ingtegistical mechanics
this idea is formalized using the concepts of microscopisw® macroscopic variables and by
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introducing the notion of a probability for the macroscosiates. The entropy of a macrostate
guantifies the number of microstates corresponding to angivacrostate. Then for a sample of
rare initial microscopic conditions (corresponding toa kntropy macrostate), an overwhelm
ing number of the trajectories evolve towards microscopinfigurations corresponding to a
more probable (higher entropy) macrostae][

For this classical explanation of the reversibility parado be relevant, a clear distinction
between microscopic and macroscopic variable is essgiftigrequires to consider a limit with
a large number of degrees of freedom (usually the thermadimbmit in classical physical
systems). The Euler equation is different from those dlassystems in the sense that it is a
partial differential equation that has from the beginningrdinite number of degrees of freedom.

Beside the general qualitative explanation of the revéitgitparadox, there is only a few
examples where one can prove mathematically the irreversiolution of the macroscopic
variable directly from the microscopic dynamics. The mashbus example is probably Land-
ford’s proof of the validity of the Boltzmann equation (arfdi$ macroscopic irreversibility),
for a system of dilute particles (Grad limit), with hard cangeractions (seelB4] for a very
clear presentation). We want to stress that the Euler emuatay be another example where an
irreversible behavior can be proved for a reversible eqodsee 23)).

The aim of the following discussion is to present the resalf&3] related to the irreversibil-
ity problem. These results moreover include a detailedystiidhe linearized Euler equation
which is directly related to the discussion of secti®® about the kinetic theory of the 2D
Navier-Stokes equation. The general discussior28hie however rather technical, and in this
section we only derive the main results for the special chaeonstant shear, for which explicit
computation are straightforward ] and state the more general results.

6.6.2. Irreversible relaxation of the linearized Euler egjon

We consider in the following the linearized 2D Euler equagiclose to a stable parallel
flows, in a doubly periodic domain or in a channel. We stresgdver that all the following
results should be valid for a stable circular vortex in a gisometry?

Any parallel flowvo=U (y) ey is a stationary solution to the 2D Euler equatiot86) in a
doubly periodic domain or in a channel. We consider the Eedgiations with initial conditions
close to this base flonQ = wy + w andV = v + vy, whereay (y) = —U’(y) is the base flow
vorticity andw andv are the perturbation vorticity and velocity, respectivélyeads

dw—+U (y)dkw—wU" (y) =0, (107)

whereyy is the transverse velocity component.

We assume that the base flbin(y) is linearly stable (there is no unstable mode to the linear
equation 107)). We note that anyo(y) independent ok is a trivial neutral mode of107). If
we decompose in Fourier modes along the longitudinal directianix,y) = ¥ aw (y) e the

22For these results to be valid, some further conditions orb#teavior of the vorticity at the core of the vortex
may be required; this remains to be studied.
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linearized Euler equation faoy is
drax +ikU (y) ax — ikl (y) =0, (108)

whereyy is the Fourier transform of the streamfunction. We assuragftn allk £ 0, equations
(108) have no neutral modes (this situation of a linear operatthr mo modes may seem strange,
it is however not unusual for a nevormaf? linear operator; for instance one can prove that that
(108 has no mode as soon dsis monotonic in a channel geometr§4], this is also true for
the Kolmogorov flow in doubly periodic domaing9)).

The linear shear.Because of its third I.h.s. term, a general discussiod @7)(is rather complex
and requires the use of complex mathematical ta28 [It is often argued that this third term
can be neglected, but this is usually a very bad approximdtiee £3]). However in the special
case of a linear shear flow(y) = oy, the third term vanishes and the equation is then very
simple

dw+ aydyw = 0.

This equation can be easily solved:
w(X,y,t) = w(x— owt,y,0).
It is even more simple if we consider perturbation on the fas(r,y,t) = wx (y,t) exp(ikx), then
(Y1) = ax(y,0) exp(—ikayt). (109)

The velocity can be expressed from the vorticity using usir@reen function formalism.
We have

Vi) = [ oY Gy ey ) (110)
where, usingo = Ay, vy = —‘3—‘5 andvy = %—‘ﬁ G is defined by
IH . . 0%H
Gk(y7y) = <_a—yk7|ka> (yvy,) with 0y2k - kZHk =0 (y_y,) ) (111)

with for instance a channel boundary conditiogss (—L,L) with ¢ (L) = ¢ (—L) = Hx(L) =
Hk(—L) = 0. Using (09), we have

V1) = [ dY Gic(y) caly'.0)exp(—ikoyt) (112)

23 linear operatot. is said to be normal if it commutes with its adjolrt* = L*L. In finite dimensional spaces, a
normal operator can always be diagonalized on an orthodpasal. This result often generalize to infinite dimensional
space, for instance in the case of bounded self-adjointadqer typical of quantum dynamics. By contrast, non-
normal operator may not be diagonalizable, and may not hayerede as illustrated by many examples in fluid
mechanics for instance.
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Figure 31: Evolution ofo(x,y,t) from an initial vorticity perturbatior(x,y,0) = w (y,0) cos(x), by the linearized
2D Euler equations close to a shear flowy) = gy . (colors in the .PDF document)

We consider the asymptotic behavior, for large times the oscillating integrall(12). Since
Kelvin, very classical results do exist for the asymptogbévior of such integrals, the most well
known results being the stationary phase approximationutrtase there is no stationary phase,
and the asymptotic behavior of the velocity field is obtaibgduccessive integrations by parts,
which lead to

wx (Y, 0) exp(—ikyat
Viex(%:) |(I3</ ) exp( th ) and (113)
wx (y) exp(—ikyat)
Vk.y(y>t) t:oo |k O.2t2 (114)

The exponents of the algebraic lawg for v and %/t2 for vy are related to the singularities of
the Green functio.

This shows that the velocity field decays algebraically fogé time. As illustrated by figure
(34) in the case of the Kolmogorov flow, the velocity actually @gsmuch faster (exponentially)
for times of order Yo and then the decrease has algebraic tails. This irreverbathavior of
the velocity field for a reversible equation (the lineariz&l Euler equations are time reversible
(symmetryt -+ —t, w — —w,v— —v,U — —U andQqy — —Qy) is a striking result.

Heuristically, the vorticity field is strongly sheared anguce filaments at finer and finer
scales as illustrated by figurd1). The computation of the velocity field from the vorticityIfie
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Figure 32: Evolution of the vorticity perturbatiam(x,y,t) = w(y,t) exp(ikx), close to a parallel flowg(x,y) =

U (y)ex with U (y) = cos(y), in a doubly periodic domain with aspect ratio The figure shows the modulus of the
perturbationw(y,t)| as a function of time ang One clearly sees that the vorticity perturbation rapidignerges to
zero close to the points where the velocity profiléy) has extremal{’(yp) = 0, withy, = 0 andm). Thisdepletion

of the perturbation vorticityat the stationary streamlingg is a new generic selfonsistent mechanism, understood
mathematically as the regularization of the critical lagargularities at the edge of the continuous spectrum (see
[23)). (colors in the .pdf document)

involves an integration, the contribution of these fine sédments is then weaker and weaker.

General parallel flow. The algebraic decay of the velocity field for the lineariz&Buler equa-
tions close to a linear shear has been first obtained by @akeauging an explicit computation
rather than the oscillating integral explanation givenvaboFor more general base flows with
strictly monotonic profiled) (y) (without stationary streamling’ (yo) = 0), from classical ar-
guments 170, 30] using the Laplace transform, one expects an asymptotabedic decrease of
the velocity field with the same/L and 1/t? laws (see also an ansatz for large time asymptotic
in [31]).

In the case of base flows(y), the oscillating phase in the integrall@) isikU (y)t. Then for
base flows with stationary streamling$(yp) = 0, the oscillating integrall(12) has a stationary
phase and one expects other algebraic laws for the asympédticity fields (for instance /4/t)
(see discussions by81, 127]). It has however been proved recently that, unexpectetily,
same power laws occuR§]. This is associated with a very surprising non-local meda of
vorticity depletion at the stationary streamlines, nototibgd before (se€2[] and figure32).
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The general resul2], valid for any stable flow (y) without any mode for108), is then

. 1
W(Y,t) ~ @ (y)exp(—ikU(y)t) + & (t—y> : (115)
with an algebraically decaying velocity for large times

@ (y) exp(—ikU(y)t)

WO Y TR Ot (116)
W(yt) ~ W (y) exp(—ikU W), (117)

ek (U(y))?
where the asymptotic vorticity profila, (see (15), (116) and (L17)) can be computed from the
Laplace transform of the linearized equatid0®) (see R3]). The algebraic decay of the velocity
field is illustrated on figure83 and34, in the case of the Kolmogorov flow (y) = cos(y) on
doubly periodic domains.

6.6.3. Relaxation and asymptotic stability of parallel fiofer the 2D Euler equations

In the previous section, we have obtained results for thepsytic behavior of the linearized
2D Euler equations, with initial conditions close to someafial flowsvg (r) =U (y) . We now
address the evolution of the same initial conditions by t@inear Euler equatiorl(6).

The asymptotic stability of an ensemble of parallel flows nsethat for any small perturba
tion of a parallel flow, the velocity converges for large teriewards another parallel flow close
to the initial one. The aim of this section is to explain whe imearized dynamics is a good
approximation for the non-linear dynamics for any titnand to explain why the flow velocity
is asymptotically stable (in kinetic energy norm), for shiraitial perturbation of the vorticity (in
the enstrophy norm). Such an irreversible convergencetisking phenomena for a reversible
equation like the 2D Euler equations.

We consider the initial vorticityQ (x,y,0) = —U’ (y) + ew(x,y,0), wheree¢ is small. We
suppose, without loss of generality, thadxw = 0. The perturbatiorw can be decomposed in
Fourier modes along thedirection

w(xyt) = Zwk(y,t) exp(ikx) .

From the Euler equationd.06), the equation fory is

0 ¢ + kU (y) ax — ikgaU” (y) = —eNL

) B oY J ..
The left hand side is the linearized Euler equation, whetteasight hand side are the nonlinear

corrections. We want to prove that, for sufficiently smalineglecting the nonlinear terms is
self-consistent.
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For this we have to prove that the nonlinear terms remainotmify negligible for large
times. We then use the asymptotic results for the lineargaation {15117) and w =
d?y /dy? — k?yi. We have, for an,

o —ikU (y)t
G (%51) ~ (T;(UL’ (;;/))2 2 lz 0

and L (Y.t) ~ oL () exp(—ikU (y)t), (119)

where the subscrigt refers to the evolution according to the linearized dynamid/e call a
quasilinear approximation for the right hand side of equrafl 18), the approximation whergy
andw, would be evaluated according to their linearized evolutitwse to the base flow (y).
From (119), one would expect at first sight that this quasilinear ayipnation of the nonlinear
term NLg., would give contributions of orde®(1/t). The detailed computation, easily per-
formed from (L19), actually shows that the contributions of ord&¢1/t) identically vanish for
large times. This cancellation of terms is a remarkable gntypwith important consequences.
Then

g
EN Lk7Q|_ oo O <t_2) .

This important remark proves that within a quasilinear agpnation, the contribution of the
nonlinear termNLqg. remains uniformly bounded, and more importantly it is iméde with
respect to time.

Then we conjecture that the contribution of the nonlineamngeremains always negligible.
More precisely, we conjecture that within the fully nonmequation, for sufficiently smad:

W () exp(—ikU (y)t)
LnUk (y7t) t:w (IkU,(y))Z t2

and ax (y.t) ~ @k (¥) eXp(—kU (y)1),

with
e (Y) = Wk Lo (Y) +O(€)

A similar reasoning in order to evaluate the nonlinear evatufor the profileU (y) would
lead to the conclusion that for large times

Qo (Y1) ~, —Ua (y) with U, (y) =U (y) +3U (y),
wheredU = O (£2).

This means that the parallel flow quickly stabilizes agaivetals another parallel flow which
is close to the initial one. This stabilization is very rapicccurs on times scales of ordefd
whereo is a typical shear rate.

We thus conclude that the relaxation towards stationamtisols to the 2D Euler equations is
a very fast and simple process, leading to a stationary citetiene scales given by the linearized
dynamics. The velocity fluctuations are weakened extreffiashby the dynamics, such that their
effect becomes soon negligible. This is by contrast withpienomenology of particle models,
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like the point vortex model, where fluctuations are congfgmtoduced due to the singularities
of the vorticity field, related to the discrete point pael

The long term evolution of point vortex models close to gisationary states of the 2D
Euler equations is thought to be described by a kinetic énuft3, 4] analogous of the Lenard-
Balescu equation of plasma physics. A very natural hyp@hgshat a similar kinetic equation
could describe the long term evolution of initial conditsodose to stationary states of the 2D
Euler equations, as interestingly proposed4s3}.| Whether this is justified or not, and for which
class of solutions, is a very complex issue, that has not bettled yet, neither from a theoret-
ical nor from an empirical point of view. The results desedhn this section suggest that this
is not the case for analytical initial conditions close taghal flows, as then the fluctuations
decays very quickly and the flow settles to a stationary sta¢éore a regime of long term quasi-
stationary evolution could appear. As far as larger clas$ésitial conditions are concerned
(close to other type of base flow than parallel flows, or with aoalytic classes of initial condi-
tions) the answer is unclear yet.

One might then want to compute the modified profile. The priegednalysis leads to the
quasilinear expression

58U (y) = —¢2 /0 " dtNLogw (t) + 0 (). (120)

This expression involves integrals over times of the lireeal Euler equation. It is not amenable
to any simple explicit expression, but it can be evaluatédguthe Laplace transform o0108).

We conclude that for any profild with no unstable nor neutral modes fa0g), any pertur-
bation corresponding to a small vorticity, the assumpti@t the dynamics can be treated with a
guasi-linear approximation is a self consistent hypotheBnen the velocity converges for large
times towards a new parallel velocity profile which is clogetfte initial profileU. Figures33
and35, on pagel27, show that numerical computations confirm this conjecture.

From this discussion, we conclude that is natural to conjecthat any profilé&J verifying
the hypothesis of this work (no unstable and no neutral mfutg408)), any perturbation corre-
sponding to a small vorticity will converge at large timewéods a new parallel velocity profile
which is close to the initial profil&J. A possible theorem expressing this more precisely this
would require a detailed analysis of subsequent terms irsgmtotic expansion for smadi,
in a similar way to the results recently obtained by Mouhal &filani [145], for the Landau
damping in the very close setup of the Vlasov equation. Afjpobsuch a theorem for the Euler
equations is not known yet, even in the simplest case of d@tdfivithout stationary points.

On the basis of the previous discussion, a further conjeattauld be that the ensemble of
shear flows without unstable nor neutral modes 168 is asymptotically stablé* in the sense
given previously (initial perturbation controlled by a tioity norm, for instance the enstrophy
and large time perturbation controlled in kinetic energynmo?®.

2%We think here to the notion of asymptotic stability of an enbke of stationary solutions of an infinite dimen-
sional Hamiltonian equations, see for example the wbB8[where stable solutions slightly perturbed are proved to
converge for large times towards another slightly diffesiution. Asymptotic stability has been proved for other
solutions of infinite dimensional Hamiltonian systems.

25A classical argument, presented in a rigorous framework hgli6ti and Maffei B4] in the context of the
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7. Conclusion and perspectives

Statistical mechanics of two dimensional and geophysioaldlbrings a new perspective to
the study of the selbrganization of turbulent flows. It is complimentary to etlstudies, based
on fluid dynamics, non linear dynamics and numerical contfmurts. The successes in model-
ing Jupiter’'s troposphere or some aspects of the ocearcesrtising the drastic simplification
provided by statistical mechanics concepts is very enginga One of the current aim is to de-
velop the theory in order extend the range of validity andvahce of the approach, for instance
in order to address further problems in geophysical turimde

The equilibrium statistical mechanics theory of the 2D Ewaled quasi-geostrophic equa-
tions is still a actively developing field. Recent resultst presented in this review, include a
classification of phase transitions and of ensemble inatgrice 6], which of important prac-
tical interest, and extension of the results of stabilitystationary solutions70]. A complete
theory of phase transitions, specifically addressing tkeiipity of two dimensional and quasi-
geostrophic turbulence is however still lacking.

Equilibrium statistical mechanics has also been extenelgehtly to magneto-hydrodynamics
equations 102, 121], non-linear Schroedinger equatiorfl, 71], the Shallow-Water model
[50Q], or models of axisymmetric turbulenc&d2 142, 14§. In experimental statistically sta-
tionary forced and dissipated turbulence, comparison @fRBF of velocity or vorticity fluc-
tuations, with prediction from equilibrium statistical of@nics, is discussed ii(Q4] or in
[122 142, 148.

From a theoretical point of view, these new applicationsallgthave not the same level
of rigor as the statistical mechanics of the 2D Euler and iggeasstrophic equations. More
precisely, the classical program of equilibrium statetimechanics: building from the Liouville
theorem the natural invariant measure of the dynamicaltemsa— the microcanonical measure
—, and being able to compute the real entropy corresponditiget phase space volume, is not
achieved for these models. In some of the works cited abaragsrery natural hypothesis
are made, that will probably be proved to be true in the fytiresome others ad-hoc fixes are
proposed the logic of which seems sometimes not to be basel@anprinciples. Still some of
the results are quite interesting and lead to very appealipijcations. It is thus a very exiting
challenge to try to develop the theory for the equilibriumatistical mechanics of these models,
in order to understand the validity or not of the previousrapphes, and to obtain more physical
insights. It is also essential to assess the limits of thgeanf validity of equilibrium statistical
mechanics, also for other models of interest for geophl/fimas.

As we explained is this review, equilibrium statistical magics may give, in some specific
circumstances, interesting results for actual non-dayiiln flows. We discussed the examples

Vlasov equation implies that stationary solutions to thasélv equation for which Landau damping would occur,
would be unstable in a weak norm. At the core of the argumestthie time reversal symmetry of the equations.
These arguments would easily generalize to the Euler emsatiThis may seem in contradiction with the notion of
asymptotic stability. However the notion of stability dissed by Caglioti and Maffei involves weak topology for
both the initial conditions and final state. There is no cadittion with our definition of asymptotic stability, as we

control here the initial perturbation in a vorticity normdacontrol the convergence in a velocity norm.

111



of Jupiter’'s troposphere where it exists a large separai@vween the time scales for the inertial
(Hamiltonian) and noiinertial aspects of the dynamics (forces and dissipatioripr instance
for ocean rings where the dynamical process of their foilrnas extremely rapid. A large part
of the range of interest of equilibrium statistical mecleanin the laboratory or for geophysical
flows, has still to be studied, and many progresses shall de mahis direction in future works.

For many applications, a non-equilibrium statistical naathbs is required. We discussed
in the last section recent progresses for the study of tlaaigbn towards stationary solutions
of the 2D Euler equations and recent progresses towardstiitescription of the 2D Navier
Stokes equations with weak forces and dissipation. Thigpi®mising field of research, where
theoretical physics and mathematical results are foreisegmear future. This type of works is
essential to explain the large scale organization of gesipalyturbulence.

Other approaches for non-equilibrium statistical meotgnike linear response theory, large
deviations or path integral representations of stochasticesses will probably be part of future
theories for turbulent flows.
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Figure 33: The spaetime series of perturbation velocity componeriiss ,(y;t)| (&) and|vsy(y;t)| (b), for the
initial perturbation profile co&/d) in a doubly periodic domain with aspect ratdo= 1.1. Both the components
relax toward zero, showing the asymptotic stability of theeE equations. (colors in the .pdf document)
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Figure 34: The time series of perturbation velocity compusy;s . (y,t)| (@) and|vs y(y,t)| (b) at three locations,
y = 0 (vicinity of the stationary streamline) (red)= 17/4 (green), ang/ = 11/2 (blue), for the initial perturbation
profile A(y) = 1 and the aspect rati® = 1.1. We observe the asymptotic forfg ,(y,t)| ~t~%, with a = 1, and
Vs y (V)| ~ t=B, with B = 2, in accordance with the theory for the asymptotic behavfahe velocity (equations
(113 and @14)). The initial perturbation profile is c¢g/d) in a doubly periodic domain with aspect rato= 1.1.
(colors in the .pdf document)
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Figure 35: The spaeime series of the-averaged perturbation vorticityy (y,t) = w(y,t)-Qo (y,0). The initial
condition isw (y,t) = Qg (Y. 0) + £cos(x), in a doubly periodic domain with aspect ratic= 1.1 (colors in the .pdf

document).
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