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Universal Gaussian fluctuations on the discrete Poisson chaos

by Giovanni Peccati ! and Cengbo Zheng 2

Abstract: We prove that homogenous sums inside a fixed discrete Poisson chaos are universal with
respect to normal approximations. This result parallels some recent findings, in a Gaussian context, by
Nourdin, Peccati and Reinert (2010). As a by-product of our analysis, we provide some refinements of
the CLTs for random variables on the Poisson space proved by Peccati, Solé, Taqqu and Utzet (2010),
and by Peccati and Zheng (2010).
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1 Introduction

1.1 Overview

A universality result is a mathematical statement implying that the asymptotic behaviour of
a large random system does not depend on the distribution of its components. Universality
results are one of the leading themes of modern probability, distinguished examples being the
Central Limit Theorem (CLT), the Donsker Theorem, or the Semicircular and Circular Laws
in random matrix theory.

In this paper, we shall prove a new class of universality statements involving homogeneous
sums based on a sequence of centered independent Poisson random variables. Homogeneous
sums (see Definition 1.1) are almost ubiquitous probabilistic objects: for instance, they provide
archetypal examples of U-statistics, and they are the building blocks of such fundamental
collections of random variables as the Gaussian Wiener chaos, the Poisson Wiener chaos or
the Walsh chaos. See e.g. [10, 12, 15, 22, 25], as well as the forthcoming Section 1.2, for an
introduction to these concepts.

Our findings extend to the Poisson framework the results of [13], by Nourdin, Peccati and
Reinert, where the authors discovered a remarkable universality property involving the normal
approximation of homogeneous sums living inside a fixed Gaussian Wiener chaos. According
to [13], the following universal phenomenon takes indeed place:

Let {F,} be a sequence of random variables such that each F, is a homogeneous
sum of a fixed order > 2 based on a sequence of i.i.d. standard Gaussian random
variables, and assume that {F,} verifies a CLT. Then, the CLT continues to hold
if one replaces the i.i.d. Gaussian sequence, inside the definition of each F,,, with a
generic collection of independent and identically distributed random variables with
mean zero and unit variance. (See Theorem 1.6 below for a precise statement).

To describe this fact, one says that homogeneous sums inside the Gaussian Wiener chaos
are universal with respect to normal approximations.
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In this paper, we shall address the following natural question: are there other examples of
homogeneous sums that enjoy the same universal property? As anticipated, our proof of the
universal character of homogeneous sums inside the Poisson Wiener chaos will yield a positive
answer. As discussed in Remark 3.5, and similarly to the Gaussian case, our conclusions do
not extend to sums of order 1.

It is important to note that [13] also contains an elementary counterexample, implying
that homogeneous sums based on Rademacher sequences are not universal. This argument is
reproduced in the proof of Proposition 1.7 below.

The findings of the present work are a continuation of the theory developed in [20, 24|,
respectively by Peccati, Solé, Taqqu and Utzet and by Peccati and Zheng, where the authors
combined two probabilistic techniques, namely the Stein’s method for probabilistic approx-
imations and the Malliavin calculus of variations, in order to compute explicit bounds in
(possibly multidimensional) CLTs involving functionals of a given Poisson field. One of our
main findings, see Theorem 3.2 below, provides a substantial refinement these results, which is
indeed an analogous for Poisson homogeneous sums of the ‘fourth moment theorem’ proved by
Nualart and Peccati in [17]. One should note that the study of normal approximations on the
Poisson space has recently gained much relevance, specifically in connection with stochastic
geometry — see [1, 5, 19, 26, 27].

Other relevant references are the paper by Mossel et al. [8], containing an invariance
principle on which [14] is based, and de Jong |2, 3], where one can find remarkable CLTs for
general degenerate U-statistics.

The subsequent Section 1.2 contains a formal introduction to the objects studied in this
paper. From now on, we assume that every random element is defined on a common probability

space (§2, F,P).

1.2 Framework and motivation
The following three objects will play a crucial role in our discussion.

— G = {G; : i > 1} indicates a collection of independent and identically distributed (i.i.d.)
Gaussian random variables such that G; ~ N(0,1);

— E = {e; : i > 1} denotes a Rademacher sequence, that is, the random variables e; are
i.i.d. and such that P(e; = 1) = P(e; = —1) = 1 for every i > 1;
— P ={P, :i> 1} stands for a collection of independent random variables such that

'la_w P()\z) _)\i

p i>1
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where P();) indicates a Poisson random variable with parameter \; € (0, 00).

(1.1)

We now formally introduce the notion of homogeneous sum.

Definition 1.1 (Homogeneous sums) Fiz some integers 1 < g < N, and write [N] for the
set {1,2,--- ,N}. Let X ={X; : 1 > 1} be a collection of independent random variables, and
let f: [N]9 = R be a symmetric function vanishing on diagonals (i.e. f(i1,--- ,iq) = 0 if
Jk # 1 : i, =14;). The random variable

Qq:Qq(Nvax): Z f(il7"'7iQ)Xi1"'Xiq

1<y, ig<N



is called the multilinear homogeneous sum, of order q, based on f and on the first N
elements of X. Plainly, a homogeneous sum of order 1 is a finite sum of the type Ziil f)X;

Remark 1.2 If, for i = 1,2,..., E[X;] = 0 and E[X?] = 1 (as e.g. for X = G, E or P), then
we deduce immediately that the mean and variance of Q, = Q4 (N, f,X) are given by:

E[Qq] =0, E[Q?]] = ¢! Z f2(i17"' 7iq)'

1<y, ig<N

The next three examples show that homogeneous sums based on G, E and P can always
be represented as ‘chaotic random variables’. The reader is referred to [10, 15] and [12],
respectively, for definitions and results concerning the Gaussian Wiener chaos and the Walsh
chaos. An introduction to the Poisson Wiener chaos is provided in Section 2 below.

Example 1.3 (Homogeneous sums based on G) Let G = {G; : i > 1} be defined as
above. Without loss of generality, we can always assume that G; = I (h;) = G(h;) , for some
isonormal Gaussian process G = {G(h) : h € $} based on a real separable Hilbert space £,
where {h; : i > 1} is an orthonormal system in $), and I denotes a Wiener-Ito integral of
order 1 with respect to G. With this representation, one has that Q,(N, f, G) belongs to the
so-called g-th Gaussian Wiener chaos of G. Indeed, we can write

Qq(N, f,G) = I{(h),
where

N
= Y fli,ighiy ® - @ hy, (1.2)

and the symbol ® is a usual tensor product. It is a classic result that random variables of
the type Ig(h), where h is as in (1.2), are dense in the gth Wiener chaos of G (see e.g. [15,
Chapter 1]).

Example 1.4 (Homogeneous sums based on E) Fix ¢ > 1, let f : N? — R be a symmet-
ric function vanishing on diagonals. We consider the Rademacher sequence E = {e; : i > 1}
defined above. Random variables with the form

q— E lea Zq €iy " Cig,

where the series converge in L%(P), compose the so-called qth Walsh chaos of E. (See [7,
Chapter IV], or Remark 2.7 in [12].) In particular, let f: [N]? — R be a symmetric function
vanishing on diagonals, then homogeneous sums of the type

Q Nf, Z flla Zq €iy " iy

are elements of ¢g-th Walsh chaos of E. Recall that the Walsh chaos enjoys the following de-
composition property: for every F' € L?(o(E)) (that is, the set of square integrable functional



of the sequence E), there exists a unique sequence of square-integrable symmetric functions
vanishing on diagonals {f; : ¢ > 1}, such that

F=E[F]+) ¢ > folin,....igei, e,

q>1  1<i2<...<iq

where the double series converges in L?.

Example 1.5 (Homogeneous sums based on P) Let P = {P; : i > 1} be defined as
above. Without loss of generality, we can always assume that, for every ¢« > 1, P, = I1(g;) =
If’ (9i), where I = If’ indicates a single Wiener-It6 integral with respect to a compensated
Poisson measure 77 on some measurable space (Z, Z), with o-finite and non-atomic control
measure p. Here, g = {g; : i > 1} is a collection of functions in L?(Z, Z,u) such that
gi = 14,/ \i, where the {4; : i > 1} are disjoint measurable sets such that u(4;) = \;. For
instance, one may take Z = R, u = Lebesgue measure, g; = L(x, {..fx;_y A 42 fOT @ > 2,
and g1 = 1y ,). It follows that the homogeneous sum Q4(N, f,P) belongs to g-th Poisson
Wiener chaos of 7, since

QQ(N’ f’P) = Iq(g) = Ig(g),

where

N
g= Z f(ila""iq)gh@”'@giq' (13)
i1, g

and [, = Ig indicates a multiple Wiener-1t6 of order g with respect to 7. It is well-known that
random variables of the type I,(g), where g is as in (1.3), are dense in the gth Wiener chaos
of 7 (see e.g. |22, Chapter 5]),

Concerning the ‘universal nature’ of homogeneous sum based on G, the following result
was proved in [13] (see also |10, Chapter 11]).

Theorem 1.6 (Theorem 1.10 in [13]) Homogeneous sums based on G are universal with
respect to normal approximations, in the following sense: fix ¢ > 2, let {N(") :n > 1} be a
sequence of integers going to infinity, and let {f(") :n > 1} be a sequence of mappings, such
that each function f : [N(")]q — R is symmetric and vanishes on diagonals. Assume that
E[Qq(N("),f("),G)Q] — 1 as n — oo. Then, the following four properties are equivalent as
n — oo.

(1) The sequence {Qu(N™, f™) G):n > 1} converges in distribution to Y ~ N(0,1);
(3) for every sequence X = {X; :i > 1} of independent centered random variables with unit

variance and such that sup; E|X;|*7¢ < oo, the sequence {Qu(N™, f) X) : n > 1}
converge in distribution to Y ~ N(0,1);

(4) for every sequence X = {X; :i > 1} of independent and identically distributed centered
random variables with unit variance, the sequence {Qq(N("), f™.X):n > 1} converge
in distribution to'Y ~ N(0,1).

For several applications of Theorem 1.6 in random matrix theory, see [11|. The following
negative result concerns homogeneous sums based on E.



Proposition 1.7 Homogeneous sums inside the Walsh chaos are not universal with respect
to normal approrimations.

Proof. To show this assertion, we present the counterexample described in [13, p. 1956]. Let
G and E be defined as above. Fix ¢ > 2. For each N > ¢, we set

Falinsi i)= 1/(g'V/N —q+1), if {i1,ia,...,iq}={1,2,...,¢— 1,5} for ¢ < s < N;
NUL 20 %)= otherwise.

The homogeneous sum thus defined is

Qq(N, fn,E) =eje e EN S
q s JIN = €162 Cg—1 )
= VN —qg+1

with E[Q,(N, fn,E)] = 0 and Var[Q,(N, fn,E)] = 1. Since ejez---e4—1 is a random sign

law

independent of {e; : i > ¢}, we have that Q,(N, fn,E) — N(0,1), as N — oo, by virtue of

the usual CLT. However, for every N > 2, one has that Q4(N, fn, G) faw G1Gy---Gy. Since
G1G3 - - - G4 is not Gaussian for every ¢ > 2, we deduce that Qq(N, fn, G) does not converge
in distribution to a normal random variable.

|

The principal aim of this paper is to provide a positive answer to the following question.

Problem 1 Are homogeneous sums based on P universal with respect to normal approzima-
tions? In other words: can we replace G with P inside the statement of Theorem 1.67

We will see in Section 3 that the answer is positive both in the one-dimensional and multi-
dimensional cases. Our techniques are based on the tools developed in [20, 24], that are in
turn recent developments of the so-called ‘Malliavin-Stein method’- given by the combination
of Stein’s method and Malliavin calculus.

As a by-product of our achievements, we will also prove some new CLTs on the Poisson
Wiener chaos. Indeed, in the forthcoming Theorem 3.2 and Theorem 3.8, we shall show that,
in the special case of elements of the Poisson Wiener chaos that are also homogeneous sums,
the sufficient conditions for normal approximations established in [20, 24] turn out to be also
necessary. As anticipated, this yields some new examples of ‘fourth moment theorems’ — such
as the ones proved by Nualart and Peccati in [17] (see also Chapter 5 in [10]). Other ‘fourth
moment theorems’ in a Poisson setting can be found in [19].

The paper is organized as follows. In Section 2, we discuss some preliminaries, including
multiple Wiener-1t6 integrals on the Poisson space, product formulae and star contractions.
In Section 3 we present the main results, in both the one-dimensional and multi-dimensional
cases, and demonstrate the universal nature of homogeneous sums inside the Poisson Wiener
chaos. Section 4 is devoted to an important technical proposition as well as to the proofs of
our main results.

2 Some preliminaries

2.1 Poisson measures and integrals

Let (Z,Z,u) be a measure space such that Z is a Borel space and p is a o-finite non-
atomic Borel measure. We set Z, = {B € Z : u(B) < oo}. In what follows, we write



n={n(B): B e Z,} to indicate a compensated Poisson measure on (Z,Z) with control p. In
other words, 7 is a collection of random variables defined on some probability space (2, F,P),
indexed by the elements of Z,, and such that: (i) for every B,C € Z, such that BNC = @, the

law

random variables 7(B) and 7(C') are independent; (ii) for every B € Z,, 7(B) = n(B)—u(B),
where 7(B) is a Poisson random variable with paremeter u(B). A random measure verifying
property (i) is customarily called ‘completely random’ or, equivalently, ‘independently scat-
tered’ (see e.g. the monograph [22] for a detailed discussion of these concepts).

In order to simplify the forthcoming discussion, we shall make use of the following conven-
tions:

N
We shall write interchangeably > and ) .
1<t ,ig<N 11, ,ig

— For every k> 1and f € LF(Z9, 29, %) := L*(u9), we write || f||;» to indicate the norm
£l 2k (-

— For every q > 2, the class L¥(u9) as defined is the subspace of L*(u?) of functions that
are pd-almost everywhere symmetric; also, one customarily writes L¥(u!) = LF(u') =

Li(n) = L*(n).
— For any positive integer N, [N] stands for the set {1,2,--- , N}.

— For any two functions f,g € L?(u), f ® g is the tensor product of f and g, that is,

f®g(x,y) = f(x)g(y). Iterated tensor products of the type f1® fo®---® fy(z1,...,24)
are defined by recursion.

Definition 2.1 For every deterministic function h € L?(u), we write

R =it = | i)
to indicate the Wiener-I1td integral of h with respect to 7. For every q > 2 and every
f € L2(u9), we denote by 1,(f) the multiple Wiener-Itd integral, of order q, of f with
respect to 7. We also set I,(f) = Iq(f), for every f € L2(u?), and Io(C) = C for every
constant C'. Here, [ is the symmetrization of the function f. For every q > 1, the collection
of all random variables of the type I,(f), f € L2(u?), is denoted by C, and is called the qth
Wiener chaos of 7.

We recall the following chaotic decomposition of L?(o(7))) (that is, the space of all square-
integrable functionals of 7}):

LX) =Re P,
q=1

where the symbol @ denotes a direct sum in L?(P). The reader is referred e.g. to Peccati
and Taqqu [22], Privault [25] or Nualart and Vives [18] for a complete discussion of multiple
Wiener-1t6 integrals and their properties. The following proposition contains two fundamental
properties that we will use in sequel.



Proposition 2.2 The following equalities hold for every q,m > 1, every f € L2(u4) and
every g € L2(u™):

L. E[I,(f)] =0,
2. E[I,()Im(9)] = ¢\, >L2(Mq 1(g=m) (isometric property).

Remark 2.3 For every ¢ > 1 and every f € L?(u%), we shall also denote by IqG (f) the
multiple Wiener-It6 integral, of order ¢, of f with respect to an isonormal process G over
the Hilbert space $§ = L*(Z, Z, ). A detailed introduction to these objects can be found in
[10, 15, 22].

2.2 Product formulae

In order to give a simple description of the Product formulae for multiple Poisson integrals
(see formula (2.6)), we (formally) define a contraction kernel f . g on ZP+9="=! for functions
f € L?(uP) and g € L2(u9), where p,g>1,r=1,...,pAgand [ =1,...,r, as follows:

f*i, g(’yl, e ,’)/T,l,tl, yooon ,tp_r,sl,,. .. 7Sq—7") (24)
= /l Ml(dzl,. .. ,dzl)f(zl,,. e Ry Y1y e ,’yr,l,tl,. .. 7tp—7")
Z
XG(Z15s oo s 2V oy Yl S1y+ - - 3 Sq—r)-

[4 )

In other words, the star operator ‘..’ reduces the number of variables in the tensor product

of fand g fromp+qtop+qg—1r— l : this operation is realized by first identifying r variables
in f and g, and then by integrating out  among them. We also use the notation

Forf=f* 91, tp—r,S155.--,Sq—r) (2.5)
= / Ml(dzl,...,dzr)f(tl,...,tp_r,zl,...,z,n)><g(sl,...,sq_r,zl,...,zr).

The operator f ®, f and its symmetrization f®, f play a fundamental role in the derivation
of limit theorems inside the Gaussian Wiener-Ito chaos, see e.g. [10, 17].

We present here an important product formula for Poisson multiple integrals (see e.g.
[6, 22, 28] for a proof).

Proposition 2.4 (Product formula) Let f € L2(u?) and g € L?(p9), p,q > 1, and suppose
moreover that f+..g € L?(puPta= =Y for everyr =1,...,pAqandl =1,... 1 such that | # r.

Then,
WD) =S () () () rars (7479). (26)

r=0 =0

with the tilde ~ indicating a symmetrization, that is,

/ *£~ g(xl, R ,xp-l-q—?"—l) (p Tq— Z / * g xo(erqfrfl))a

where o runs over all (p 4+ q —r —1)! permutations of the set {1,...,p+q—r —1}.



Fix integers p,¢ > 0 and |¢ — p| < k < p + ¢, consider two kernels f € L2(uP) and
g € L?(u%), and recall the multiplication formula (2.6). We will now introduce an operator
Gi’q, transforming the function f, of p variables, and the function g, of ¢ variables, into a
function GZ’q( f,9), of k variables. More precisely, for p, q, k as above, we define the function

(21, 21) = GPAU(f, 9) (21, ..., 2k), from Z* into R, as follows:
Nqg T ,
GZ’q(f,g)(zl,---,Zk):Z L(prqer—i=k)T" < f ) < g > < ; >f*£ g(z1,- -y 2),  (2.7)
r=0 [=0

where the tilde ~ means symmetrization, and the star contractions are defined in formula
(2.4) and the subsequent discussion. Observe the following three special cases: (i) when
p=q =k =0, then f and g are both real constants, and Gg’o(f, g9) = [ x g, (ii) when
p=g¢>1and k=0, then GH*(f,g) = pl{[, 9) L2 (ur), (ili) when p =k =0 and ¢ > 0 (then, f
is a constant), Gg’p(f, 9)(z1,...,2¢) = fxg(z1,...,24). By using this notation, (2.6) becomes

p+q
L(HI(9) = > L(GYU(f,9)). (2.8)

k=|q—p|

The advantage of representation (2.8) (as opposed to (2.6)) is that the RHS of (2.8) is an
orthogonal sum, a feature that will simplify the computations to follow.

3 Main results

3.1 One-dimensional case: fourth moments and universality

We recall the following theorem, first proved in [17], stating that the convergence in law of a
sequence of Gaussian Wiener integrals towards a normal distribution can be characterized by
their variances and fourth moments. See [10, Chapter 5| for a detailed discussion, as well as
examples and bibliographic remarks.

Theorem 3.1 (See [16, 17]) Fiz ¢ > 2, let k(™) € L2(u9), n > 1, and let
n) _ 7G13(n
Z™ = 1%(hM), n>1,

be a sequence of random variables having the form of a multiple Wiener-1to integral of order q,
of h™ with respect to an isonormal Gaussian process G over the Hilbert space §) = L2(u). As-

sume that lim,,_ys Var(Z(")) = lim, o E [(Z("))Q} = 1. Then, the following three assertions

are equivalent as n — 00:
(1) 2™ 2%y A0, 1);
(2) E|(2™)"] > BN =3

(3) Vr = 1,...,q — 1, [|h™ @, h™| 2 — 0, where the contraction @, = . is defined
according to (2.5).



Extending Theorem 3.1 to multiple integrals with respect to a Poisson measure is a de-
manding task, since the product formula (2.6) (which is more involved than in the Gaussian
case) quickly leads to some inextricable expressions for moments of order four. A partial
‘fourth moment theorem’ can be found in [21, Theorem 2|, in the special case of double Pois-
son integrals. We now present an exact analogous of Theorem 3.1 for homogeneous sums inside
a fixed Poisson Wiener chaos. Its proof, together with the one of the subsequent Theorem 3.4,
is deferred to Section 4.

Theorem 3.2 (Fourth moment theorem for Poisson sums) Let {\; : ¢ > 1} be a col-
lection of positive real numbers, and assume that 11>1£ Ai=a>0. Let P ={PF :i>1}
(2

be a collection of independent random wvariables ver_ifyz'ng (1.1). Fiz an integer ¢ > 1. Let
{N®_ ) . n > 1} be a double sequence such that {N™ :n > 1} is a sequence of integers
diverging to infinity, and each f : [N(”)]q — R is symmetric and vanishes on diagonals. We

set
N ()

) — Qq(N(n)’f(n)7p) — Z f(n)(ih... yig)Piy - Py, = Iq(g(”)),

i1, ylq

where
N(n)

g™ =" (i, iggn ® - ® gy, n>1,

ily"'vlq

and the representation of F™) s a multiple Wiener-Ito integral is the same as in Example 1.5.

Suppose that E [(F("))Q} — 0% € (0,00). Then, the following two statements are equivalent,
asn — 00:

(1) F™ 2%y N(0,02);

(2) E [(FW)‘*] S E[YY] = 30,

When q = 1, either one of conditions (1)—(2) is equivalent to
(8a) XX £ 0

Finally, when q > 2, either one of conditions (1)—(2) is equivalent to either one of the following
two equivalent conditions (3b)—(3b”)

3b g™ Y50 and¥r =1,--- ¢, ¥l=1,--- ,rA(g—1), ||g" «. g™ | ;2 — 0, where
Z4 T

the star contractions . are defined according to (2.4);

(8b%) Vr=1,--,q—1, [lg" « g™ 12 = g™ @ g™ 2 — 0.

Remark 3.3 The assumption 1r>1{ Ai > 0 is necessary for proving the two implications: (1)
Z_

= (2) and (3b’) = (3b).

The next statement, that will be proved by means of Theorem 3.2, establishes the universal
nature of Poisson homogeneous sums of order ¢ > 2.



Theorem 3.4 (Universality of the Poisson Wiener chaos) Let the sequence P verify the
same assumptions as in Theorem 3.2. Fixz q > 2, let {N(") :n > 1} be a sequence of
integers going to infinity, and let {f(") :n > 1} be a sequence of mappings, such that
each function f™ : [N(")]q — R is symmetric and vanishes on diagonals. Assume that
E[QQ(N("),f(”),P)Q] — 1 as n — oo. Then, the following four properties are equivalent, as
n — oo.

(1) The sequence {Q(N™, f(M) P) :n > 1} converges in distribution to Y ~ N(0,1);
(2) E[Qq(N™, f™,P)'] = 3;

(3) for every sequence X = {X; : i > 1} of independent centered random variables with unit
variance and such that sup; E|X;|**¢ < oo, the sequence {Qu(N™, f™ X) : n > 1}
converge in distribution to'Y ~ N(0,1);

(4) for every sequence X = {X; :i > 1} of independent and identically distributed centered
random variables with unit variance, the sequence {Qq(N("), f™.X):n > 1} converge
in distribution to'Y ~ N(0,1).

Remark 3.5 Theorem 3.4 is false in general for ¢ = 1, as one can see by considering the case
N® =n_ X\ =i, and f, such that f,(n) =1 and f,(i) = 0 for i # n. On the other hand, one
can prove an equivalent of Theorem 3.4 for ¢ = 1, by assuming in addition that sup; \; < oo
and by applying the standard Lindberg’s CLT (see e.g. [4, Theorem 9.6.1]). The details are
left to the reader.

We conclude this section with a result implying that the Wasserstein distance metrizes
the convergence to Gaussian for any sequence of homogeneous sums based on a Poisson field.
Recall that, given random variables X,Y € L!(P), the Wasserstein distance between the law
of X and the law of Y is defined as the quantity

dw(X,Y) = sup [E[f(X)] - E[f(Y)],
f€Lip(1)

where Lip(1) indicates the class of Lipschitz real-valued function with Lipschitz constant < 1.
It is well-known that the topology induced by dy, on the class of probability measures on the
real line, is strictly stronger than the one induced by the convergence in distribution.

Proposition 3.6 Let the sequence of homogeneous sums {F(”) :n > 1} satisfy the assump-
tions of Theorem 3.2. If F™ converges in distribution to Y ~ N(0,1), as n — oo, then
necessarily dy (F™,Y) — 0.

Proof. Using Corollary 3.4 (for the case ¢ = 1) and Theorem 4.1 (for the case ¢ > 2) in [20],
we see that, if conditions (3a)-(3b) are verified, then dy (F(™,Y) — 0, so that the conclusion
follows from Theorem 3.2. m

3.2 Multi-dimensional case

We now present some multidimensional extensions of the results presented in the previous
section: the proofs are similar to those of the results in the previous section, and are mostly
left to the reader. Our starting point is the following multi-dimensional extension of Theorem
3.1, first proved by Peccati and Tudor in [23|. For details and generalizations, see [14, 16].
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Theorem 3.7 Let G be an isonormal Gaussian process over the Hilbert space $ = L*(u1). Fix
d>2andlet C ={C(i,j) :i,j = 1,...,d} be a d x d positive definite matriz. Fiz integers
1< <---<qq. Foranyn>1andi=1,...,d, let hgn) belong to L2(pd%). Assume that

)

FO = FM L EYY = G ), 1G R e

’7qq

15 such that
lim E[F" Y] =C@,5), 1<ij<d.

n—oo

Then, as n — oo, the following four assertions are equivalent:

(1) The vector F™ converges in distribution to a d-dimensional Gaussian vector Ny(0,C);
(2) foreveryl <i<d, E {(Fi(n))‘l] — 30(i,1)%;
(8) foreveryl1 <i<dandeveryl <r <gqg —1, th(n) ®r hz(n)HLz — 0;

(4) for every 1 < i < d, Fi(n) converges in distribution to a centered Gaussian random
variable with variance C (i,1).

Combining the previous Theorem 3.2 with [24, Theorem 5.8] we deduce the following analogue
of Theorem 3.7 for homogeneous sums inside the Poisson Wiener chaos.

Theorem 3.8 Let {\; : i > 1} be a collection of positive real numbers, and assume that
infA; = a >0. Let P = {P, : i > 1} be a collection of independent random variables
S’ZI.LCh that Vi, P; wverifies relation (1.1). Fiz integers d > 1 and q4 > -+ > ¢ > 1. Let
{N;n),f;n) :j=1,---,d;n > 1} be such that for every fized j, {N;n) :n > 1} is a sequence
of integers going to infinity, and each f](n) : [N;n)]qf — R is symmetric and vanishes on

diagonals. We consider a sequence of random vectors F) — (Fl(n), “ee ,Fén)), n > 1, where
for every 1 < j <d,

N
J
= Qu (N 1P R = T [ i, g )P Py = Ty ()

01, ’iqj

with

N

(n) - (n); ;

9= Z fi s g )90 @ ® gy
117'"7211]'

)

and the representation of F](n as a multiple integral is the same as in Fxample 1.5. Given

a d x d positive definite matriz C = (C’(i,j))' '

 suppose that lim,, oo E[Fi(")Fj(")] —
C(i,j), foreveryi,j =1,...,d. Then, the following fo,ur statements are equivalent, asn — oco:

(1) F law, (Y1,...,Yy) ~ Ng(0,C), where Ng(0,C) indicates a d-dimensional Gaussian
distribution with covariance matriz C;

(2) fOT‘ each ] = 17 e 7d7 E[(Fj(n))4] - 30(]73)2;

11



(3) forea/Chjzl,"' ,d Such thatq]ZQ’ V’["Zl,-.. ’qj_l’

g\ #2612 = 11g\™ @ g [l 12 — 0,

and, for every j such that q; =1,
N(n) 1
Y 0l o
i=1 Ai

(4) for cach j=1,--- ,d, F" 2% A(0,C(j, ).

Finally, we present a multi-dimensional analogous of the universality statement contained
in Theorem 3.4: it is deduced by combining Theorems 3.7 and 3.8 above with [13, Theorem
7.1]

Theorem 3.9 (Multi-dimensional Universality) Let the assumptions and notations of
Theorem 3.8 prevail. Then, the following two assertions are equivalent as n — oo:

(1) The sequence {F™ :n > 1} converges in distribution to (Y1,...,Yy) ~ Ny(0,1);

(2) for every sequence X = {X; :i > 1} of independent centered random variables with unit
variance and such that sup; E|X;|> < oo, the sequence of d-dimensional vectors

{Qu(NM, M X)j=1,....d}, n>1,

converges in distribution to (Y1,...Yy).

4 Proofs

4.1 A technical result

The following technical statement is the key to our main results.

Proposition 4.1 Let the notation and assumptions of Theorem 3.2 prevail, and fix ¢ > 2. If
Vp=1,2,...,q— 1, one has lim,_ .« [|g"™ +5 g2 = 0, then, as n — oo:

(a) fzq (g(n))4 — 0

(b) Vr = 17 4, Vil = 17 7TA(q_1)7 Hg(n) ‘kg’g(n)HL2 — 0.

12



N®)
iy 1O indicate ), i1, i

Proof. In the following proof, we shall write ),
Forp=1,2,...,9q—1,

g(")*gg(") — Z Z FP g, i) ™ G, 5 dg)

i1, ZQle 'Jq

(gz'l®-"®9zq)*”(9j1®"'®9jq)

= Y (X Il e i i)
a1, 5ap 41, ig—p J1, s Jq—p I=1
an (a17"' 7ap’j17... 7jq_p)gi1®...®giq—p®gj1®...®gjq—p)
= Z Z f(n a17 a/p7k17"' 7kq—p)f(n)(a17'” 7ap7kq—p+17”' 7k2q—2p)
k1, ,kaq— 2pa17' yap

X H ||gal HL2 X gki1 - ® gk‘gqup

= Z Z FD(ag, - ap k- kg p) F™(ar, - ap kgpits - kag_op)

k1, kag—2p G1,**,0p

Xk R ® Gkog—2p >

from which we deduce that

g™ +2 g™ 2, = 3 < S F O ar, e ap ke k)
ki, kog_op A1, ,ap
2
XSO ar, s ap kg ko)) - (49)

We first prove (a). Using the definition of the functions {g; : i > 1},

(g(n))4 — Z Z Z Z FO iy, ig) FP G, g F™ e k) F™ (51,5 59)

i1, ig 1, g ki kg 108

X(giy @+ ®giy) X (9, @ ®gj,) X (G @ D gr,) X (s, @ -+ @ gs,)

q
1
= E (f(n))4(21’... 72q) gll &R .- ®gzq X H—A3/27
=1 A

i1, ﬂ'q

yielding

/( Y au = 37 (™) G -,2}1)1—1%§ai S () i ).

il,"',lq =1 L ily"'yiq

13



Now, specializing formula (4.9) to the case p = ¢ — 1, we deduce

g™ gl = 3 (3 e sa)

ki,ko  a1,,a9-1

2
Xf(n)(ah' o aaqflyk@))

(f("))Q(al,--- ,aq_l,k:)>2

- Z Z (Z(f(n))z(al"” ’aqflak)(f(n))Q(bl,“‘ abqflyk:)>
b

e
M

Y%
TN .,
o
2.
SN—
I
—
S

S

)

s}
S~—

v
\ .
A~

Q/\

2
~—

S
=

=

Q

X

Q

“Q

which proves (a), since @ = inf A; > 0 by assumption.
1

The proof of (b) consists of two steps.
(bl) Let r =¢q. For any [ € {1,--- ,q — 1}, we have,
g™ *51 (n)

ilv"' 7’iq j17... 7jq

q
= Z Z gbl ®...®gbq7l X f2(a1’... 7al7b1,"' 7b(I*l)H)\b_t1/2

a1, ,ay by, by t=1
q—1
—-1/2 2
= Z gb1®"'®gbq_lH)‘bt ( Z f (al,"‘,(Zl,bl,"‘,bq_l)>.
b1, byt t=1 ai,,a

These equalities lead to the estimate

q—1

T IEED VIS | El (D DF S USSR

bl,"'ybq—l t=1 Ay, ,ag

1 ! 2
= FHQ(") *] g(n)HL?’

yielding (since o > 0) that ||g™ % g2 — 0 implies ||g(™ *h g™ |2 — 0.
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(b2) Forany r=1,--- ,¢g—1,and [ = 1,--- ,r, we see that

g™ 4L gm)

r—l
_ Z Z H)\;}mgbl@'”@gbr—l Z Z 9, ® @G, DGy @D G,

at, - ,ag b17"'7br—l u=1 il?"'ﬂ"]*”‘ jlv"'vjqf"‘

Xf(ala"' alabla"' br l,ily"' iq T)f(ala"' ,al,bla"' ,br—l?jla"' 7jq*7')

= > > X HA”Q%I @G By B DGy, B B OG5,

17"' b'r llh' Zq 7‘.]17 '7.7(1 r U= 1

X Z f atg,:-- ,al,bla"' ,br—l,ila"' ,Z.qfr)f((ll,"‘ ,al,bla"' ,br—l?jla"' 7jq77')-

Consequently,

g™ x g™Za = > > > HA

17" br l217 Zq 1".717 '7.](1 r U= 1

Z f(ala"' 7al7b17"' 7b7“7l72‘17"' 7iq—r)f(a17"' 7al7b17"' 7b7“7l7j17"' 7jq—7")

1 I
< ——llg™ =t g™ 3.

Since a > 0, this relation yields the desired implication: if ||g(™ *é g™ 2 — 0, then
g™« g™z = 0. =

4.2 Proofs of the main results
Proof of Theorem 3.2.

We shall first prove the implication (1) = (2) for a general ¢ > 1. For every A > 0, let
P()) be a Poisson random variable with parameter A. For every integer k£ > 0, we introduce
the mapping

A= TN =E[(P(A) = A, A >0,

so that, for instance, To(A) = 1 and Ti(A\) = 0. It is well-known (see e.g. [22, Proposition
3.3.4]) that the following recursive relation takes place: for every k > 1,

k—1
- E\ ~
Ten) =A% )z

Elementary considerations now yield that, for every k > 1, the mapping Tvk() is a polynomial
of degree (k—1)/2 if k is odd, and of degree k/2 is k is even. As a consequence, for every real
q > 1 the mapping

E[lP(A) — A[7]

A= e
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is bounded on the set [a,00). Using (1.1) together with the assumption « = inf; \; > 0, we
infer that sup;>, E[|F;|7] < oo for every ¢ > 1. Standard hypercontractivity estimates (see for

instance [13, Lemma 4.2|) yield therefore that, since E[(F(™)?] — o2, then SUP;,>1 E[|F(M]] <

oo, for every ¢ > 1. As a consequence, if (1) is in order, then necessarily E[(F ()] — E[Y*]
for every integer k > 1; in particular, (2) is verified.

Now assume that ¢ = 1 and (2) is verified. A quick computation reveals that

N ()
E[(F™)"] = 3E[(F™)*)? = [lg™|7. = fn(i)“%,
i=1 v

thus yielding the implication (2) = (3a). On the other hand, if (3a) is verified, then one has
that (by the Cauchy-Schwarz inequality)

l™ s < g™ Nz llg™ N2 0, as n oo,
so that the implication (3a) = (1) follows from [20, Corollary 3.4], thus concluding the proof
for g = 1.

We now fix ¢ > 2. The implication (3b) = (1) is a direct consequence of [20, Theorem 5.1],
whereas the equivalence between (3b) and (3b’) follows from Proposition 4.1. In view of the
first part of the proof, we need only to show that (2) = (3b’). We start by exploiting formula
(2.8) in order to write the chaotic decomposition of Iq(h(”)), namely:

2q

I(g™)? = L(GEi(g™, g™)).
k=0

As a consequence, by exploiting the orthogonality of multiple integrals with different orders,

2q
E[L(¢™)Y] = > KIGE (g™, 9™
k=0

= IG5 (9™, g")I1Z2 + 0G5 (6™, g7 (4.10)
2q—1
+ > KIGE (9™, ") 7,
k=1

where
IGE1 (g™, g"™N)7> = 19" 1135,
and
COUGLH g™, "7 = (20)! g™ *§ g7 (4.11)
AR IVINR < SN 1) G
= 929! n + 1y n) , P o ,

where we have used [22, formula (11.6.30)]. Since ¢!2[|g(™ ||1, — o* by assumption, we deduce
that, if (2) is verified, then [|g™ +b (™| ;2 — 0 for every p = 1,...,¢ — 1, and the desired
implication follows from Proposition 4.1. m
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Proof of Theorem 3.4.

By virtue of Theorem 1.6, it suffices to show that, if condition (1) in Theorem 3.4 is in order,
then the sequence {Q,(N™, f() G):n > 1} converges in distribution to Y. Using the same
notation as in Example 1.3, with $ = L?(x) and h; = g;, one has that the homogeneous sum
Qq(N (n) f(n), G) can be represented as a multiple Wiener-Ito integral as follows:

N(n)

Qq(N™, f G) = Z FO ir, ig)Gay - Gy = IF(h™),

where
N®)

h(n _g(n Z f(n 117 iq)gil®"'®giq-

Now, if condition (1) in Theorem 3.4 holds, then for every r = 1,...,q—1, [|¢" x5¢"™ || ;2 = 0,
and we immediately deduce the conclusion by combining Theorem 3.2 and Theorem 3.1. =
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