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Linear Control of Time-Domain
Constrained Systems

W.H.T.M. Aangenent1, W.P.M.H. Heemels1, M.J.G. van de Molengraft1,
D. Henrion2,3,4, M. Steinbuch1

October 25, 2011

Abstract

This paper presents a general framework for the design of linear controllers for
linear systems subject to time-domain constraints. The design framework exploits
sums-of-squares techniques to incorporate the time-domain constraints on closed-
loop signals and leads to conditions in terms of linear matrix inequalities (LMIs).
This control design framework offers, in addition to constraint satisfaction, also
the possibility of including an optimization objective that can be used to minimize
steady state (tracking) errors, to decrease the settling time, to reduce overshoot and
so on. The effectiveness of the framework is shown via a numerical example.

Keywords: Linear Systems; Constrained systems; Polynomial methods;
LMIs; Motion systems.

1 Introduction

The transient response to reference commands or disturbance inputs is an important per-
formance qualifier in many control systems. Unfortunately, most control design strategies
cannot cope directly with requirements on time-domain signals such as actuator amplitude
or rate limits, no output signal overshoot or undershoot, trajectory planning constraints
and so on. Especially in the continuous-time case, there are hardly any systematic con-
troller design methods to enforce time-domain constraints on e.g. tracking errors and
control inputs.

In the discrete-time case, model predictive control (MPC) (see e.g. the surveys [11,28,31])
is a widely used technique to cope with constraints on inputs and states. In MPC a control
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action is prescribed that is obtained by solving a finite or infinite horizon optimization
problem that can incorporate input, state and output constraints in a direct manner.
A drawback of predictive control concepts and online optimization-based methods in
general is that they require a high computational effort with the consequence that they
cannot be implemented on fast motion systems where high sampling rates are required,
typically in the order of several kHz. Explicit MPC [4–6, 37] might offer an appealing
solution as it precomputes a piecewise affine state feedback for discrete-time systems
off-line. Still, the explicit control law often leads to a complex description consisting
of many affine feedbacks, which also cannot realize the high sampling rates typically
needed for motion systems of considerable size, although recent research is focussed on
decreasing the implementation complexity of MPC, see for instance [15,16,20,23,26] and
the references therein. An alternative approach with strong ties to MPC is based on so-
called reference governors, see e.g. [3,12] and the references therein. A reference governor is
a nonlinear device that is added to a primal controller, which functions well in the absence
of constraints. The reference governor modifies the reference signal supplied to the primal
controller in order to enforce the input and state constraints. This approach suffers
from the mentioned drawbacks in MPC to some extent as well, but has the advantage
that the reference modifications are often needed at a lower sampling frequency than the
updates of the primal control loop. A major difference with the method presented in this
paper is that the overall control systems in case of reference governors become nonlinear
devices modifying the supplied reference, while the method in this paper aims at designing
linear controllers that satisfy the time-domain constraints without any modification of the
references or disturbances.

Besides these predictive control methods, that are typically suited for a discrete-time
context, there are only a few methods available in the literature that can directly syn-
thesize controllers incorporating time-domain constraints in the continuous-time setting.
For instance in the case of input constraints, [13, 17] consider the linear quadratic reg-
ulator problem with positivity constraints on the input, while various control problems
with amplitude and rate constraints on the input signal are solved in [33]. The latter
line of work has also been extended to stabilization and output regulation problems with
amplitude and rate constraints on certain output variables, see, e.g., [32]. Other meth-
ods exist that actually allow the control output to saturate such as, for instance, the
usage of anti-windup schemes [10, 35, 36] or LQR/LQG control methods [7, 14]. These
methods, however, do not enforce constraint satisfaction but rather guarantee stability or
recover performance despite the saturation nonlinearity in the loop. The above mentioned
techniques cannot handle time-varying constraints, and, except for [32], state or output
constraints are not considered either. In addition, all the above mentioned techniques
result in general in nonlinear controllers.

As already briefly mentioned, in this paper the objective is to derive a design method for
linear controllers that incorporate possibly time-varying time-domain constraints on all
closed-loop signals (inputs, states and outputs). Within this context, a commonly used
method to capture the essence of time-domain specifications is the reformulation into
frequency domain requirements [8]. Unfortunately, such reformulations are in general
either approximate, conservative or both.

A methodology to enforce time-domain constraints on the input and output of a continuous-
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time linear control system is presented recently in [19], where linear matrix inequality
(LMI) techniques are used to synthesize a fixed order linear controller that satisfies the
constraints. This is done in a polynomial setting in the sense that a controller is designed
according to the well-known pole placement method using the Diophantine equation.
This method allows the design of a controller that results in a closed-loop transfer func-
tion with prescribed pole locations, either exact, or within an admissible region of the
complex plane. In [19], all controllers with the prescribed pole locations are character-
ized using the Youla-Kučera parametrization [21]. Next the degrees of freedom of the
Youla-Kučera parametrization are used to enforce certain time-domain constraints, such
as bounds on the input amplitude and output overshoot, exploiting sums-of-squares tech-
niques. Unfortunately, the approach in [19] is limited to the assignment of distinct strictly
negative real closed-loop poles, which is a severe restriction in the case of many practical
situations such as, for instance, lightly damped systems. As a consequence, there is a
strong need for a general framework encompassing arbitrary closed-loop pole placement.
The development of such a framework is the main purpose of this paper.

In particular, we propose an extension to the method in [19], which leads to a general
design framework based on sums-of-squares LMI techniques and we show indeed that the
resulting linear controller satisfies the time-domain constraints on closed-loop signals, even
when complex conjugate poles are assigned. This framework is based on two relaxations.
One of these relaxations, of which a preliminary version was presented by the authors
in [1], can solve the constrained control problem at hand with arbitrary accuracy and
still lead to LMIs. In addition to constraint satisfaction, we will also include an objective
function in the convex programming problem that can be used to minimize steady state
(tracking) errors, to decrease the settling time, to reduce the overshoot and so on. As a
consequence, the ideas presented in this paper will lead to a general design framework for
optimized linear controllers with guarantees regarding constraint satisfaction.

The organization of the paper is as follows. The proposed methodology from [19] is briefly
reviewed in Section 2. The extension to complex conjugate poles is treated in Section 3,
which includes the main results. Section 4 discusses the proposed control design method,
and Section 5 provides an illustrative example. Finally, the conclusions are stated in
Section 6.

2 Methodology involving real poles

In [19] a method is presented to incorporate time-domain constraints on input and output
signals of a linear system. It is shown that finding a controller of fixed order that satisfies
these constraints boils down to solving a set of LMIs. In this section, we shortly review
this procedure for completeness and self-containedness.
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2.1 Youla-Kučera parametrization

Consider the control system depicted in Fig. 1 with a linear single-input-single-output
plant P given by the strictly proper transfer function

P (s) =
b(s)

a(s)
, (1)

where a(s) and b(s) are polynomials in the Laplace variable s. The controller C, which

�

PCΣ

r e u y

Figure 1: Block diagram of the closed-loop system with controller C, plant P , and refer-
ence signal r, control output signal u, and output signal y.

is to be designed, is described accordingly by

C(s) =
d(s)

c(s)
, (2)

resulting in the complementary sensitivity given by

T (s) =
y(s)

r(s)
=

b(s)d(s)

a(s)c(s) + b(s)d(s)
. (3)

If a(s) and b(s) are coprime (i.e., their greatest common divisor is 1), then arbitrary pole
placement can be achieved by designing the corresponding controller polynomials. This
is done by solving the polynomial Diophantine equation

a(s)c(s) + b(s)d(s) = z(s), (4)

where z(s)=(s+ p1)(s+ p2) . . . (s+ pn) is the polynomial with given roots −p1, . . . ,−pn,
which are the desired poles of the closed-loop system. There are infinitely many solutions
(c(s), d(s)) to (4), but there is a unique solution pair (c0(s), d0(s)) such that deg d0(s)<
deg a(s). In this case we have that d0(s) is of minimal degree and as such, (c0(s), d0(s))
is called the d-minimal solution pair. All possible solutions to the Diophantine equation
can then be written as

c(s) = c0(s) + b(s)q(s),

d(s) = d0(s)− a(s)q(s),
(5)

where q(s) is an arbitrary polynomial such that c0(s) + b(s)q(s) is non-zero. This poly-
nomial, called the Youla-Kučera parameter [9], creates extra freedom in the design of
the controller. While the closed-loop poles are invariant for any choice of the Youla-
Kučera parameter, the Youla-Kučera parameter enables placement of closed-loop zeros to
alter the response. Only proper controllers are considered and therefore there is a degree
constraint on q(s). Since the plant was assumed to be strictly proper, and under the
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additional assumption that deg z(s)≥ 2 deg a(s)−1 (to enable arbitrary pole placement
with proper controllers), this constraint is given as in [22] by

deg q(s) ≤ deg z(s)− 2 deg a(s). (6)

The extra freedom in the control design parameterized by q(s) satisfying (6) can now be
used to satisfy additional time-domain constraints as will be explained in the next section.

2.2 A positive polynomial formulation of time-domain constraints

We will explain the procedure in [19] using the typical example of constraints on the step
response. Hence, we consider the response y to a step input (r(s) = 1

s
). The Laplace

transform of the closed-loop system’s output (assuming zero initial conditions) is then
given by

y(s) =
1

s

b(s)d(s)

z(s)
=

1

s

b(s)d0(s)

z(s)
−

1

s

a(s)b(s)

z(s)
q(s). (7)

At this point of the control design a restrictive assumption was made [19], namely

Assumption 2.1 All the assigned poles −p1, . . . ,−pn are distinct strictly negative ratio-
nal numbers.

Using this assumption and z(s)=
∏n

i=1(s+pi) the partial fractional decomposition of (7)
leads to

y(s, q) =
n∑

i=0

yi(q)

s+ pi
, (8)

where p0=0 and yi(q), i=1, . . . , n are appropriate coefficients following from the decom-

position, which are influenced by the choice of the design parameter q(s)=
∑dq

i=0 qis
i. The

coefficients yi(q) depend in an affine manner on the parameter q = (q0, q1, . . . , qdq) in the
sense that there exist matrices A ∈ R

(n+1)×(n+1), B ∈ R
(n+1)×(qd) and a vector b ∈ R

n+1

such that

A







y0(q)
y1(q)
...

yn+1(q)







= BqT + b. (9)

This follows directly by comparing (7) and (8), and equating the coefficients of the powers
of s in the resulting numerator polynomials (see also (46) below for an example). The
corresponding time-domain signal is given by

y(t, q) =
n∑

i=0

yi(q)e
−pit. (10)

Let pi=
ni

di
be the ratios of the integers ni and di, and let m denote the smallest positive

number1 of the denominators such that pi=
p̄i
m
for some positive integers p̄i, i = 0, 1, . . . , n.

1In principle m can be chosen to be any positive number that results in integer values of p̄i. However,
it turns out that by choosing m as the smallest possible positive number the order of the resulting
polynomial optimization problem is the lowest.
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This means that the time-domain output signal at time t ∈ R+ := [0,∞) can now be
expressed as the polynomial

y(λ, q) =
n∑

i=0

yi(q)λ
p̄i (11)

in the indeterminate λ=e−t/m. Obviously, λ lies in the interval [0, 1] as t∈R+. Suppose
that the output y(t, q) of the system needs to be bounded according to

ymin ≤ y(t, q) ≤ ymax ∀ t ∈ R+. (12)

Formulation (12) is equivalent to enforcing the polynomial bound constraints

{
P1(q, λ) := y(λ, q)− ymin ≥ 0
P2(q, λ) := ymax − y(λ, q) ≥ 0

∀ λ ∈ [0, 1], (13)

where P1 and P2 are polynomials in both λ and q. This problem is a special case of the
following more general problem of minimizing a polynomial with polynomial constraints
over a basic semialgebraic set.

Definition 2.1 A set D is called a basic semialgebraic set if it can be described as

D={x∈R
n | ei(x)≥0, i=1, . . . ,Me and

fj(x)=0, j=1, . . . ,Mf}
(14)

for certain polynomials ei :R
nx →R, i=1, . . . ,Me and fj :R

nx →R, j=1, . . . ,Mf .

Problem 2.1 (Polynomial optimization problem) Consider two variables z ∈ R
nz

and x ∈ R
nx and let polynomials gi : R

nz × R
nx → R, i = 1, . . . ,Mg, and p : Rnz → R

be given. Moreover, let a collection of basic semialgebraic sets Dl ⊆ R
nx , l = 0, . . . , N be

given. A (robust) polynomial optimization problem according to this data is given by

min
z

p(z)

s.t. gi(z, x)≥0, i=1, . . . ,Mg ∀ x∈
N⋃

l=0

Dl.
(15)

Indeed, (13) can now be written in the form of Problem 2.1 by taking z=q, x=λ, Mg=
2, N = 0, p(z) = 0, g1(z, x) = P1(q, λ), g2(z, x) = P2(q, λ), and D0 = {λ∈R | 0≤ λ≤ 1}.
Although the bounds ymin and ymax in (13) are chosen to be constants for illustrating
purposes, they can also be selected as polynomials in λ, i.e., in the form ymin(λ) and
ymax(λ) without any complications. In this case the bounds in (12) become time-varying.
Univariate positive polynomial constraints (meaning polynomials in only one variable),
such as (13) with λ ∈ D0 = [0, 1] ⊆ R, can be transformed into LMI conditions, see [19]
for the details. Once we transformed the design problem into a polynomial optimization
problem as formulated in Problem 2.1, there are appropriate tools available for solving
the problem. Therefore, we restrict ourselves to the transformation of the constrained
control problems at hand into manifestations of Problem 2.1.
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The approach discussed in this section is not restricted to bounding only the output of a
system. Indeed, by using the appropriate transfer functions, any signal in the loop can
be constrained. The control output u, for example, can be bounded using

u(s) = r(s)
a(s)d0(s)

z(s)
− r(s)

a2(s)

z(s)
q(s) (16)

in addition to, or instead of (7). Also, other Laplace transformable inputs or disturbances
can be used as long as the poles of the Laplace transform of the corresponding signal are
distinct strictly negative rational numbers and differ from the closed-loop poles pi. In case
the disturbance signal is a (filtered) random process, the method cannot be applied as
is. However, a possible extension can be to bound the infinity- or 2-norm of the suitably
weighted process sensitivity (or other relevant transfer functions) via e.g.

||V (s)
b(s)c(s)

a(s)c(s) + b(s)d(s)
W (S)||2/∞ ≤ 1 (17)

This way the knowledge of stochastic disturbances can be used to shape the relevant sen-
sitivity functions to achieve desired disturbance reduction.
A combination of requirements on different reference signals can easily be handled at the
cost of increasing the size of the set of LMIs. As for LMIs there are efficient solvers
available, e.g. [34], transforming the problem at hand into Problem 2.1 provides an ef-
fective solution. The problem derived in this section was only a feasibility problem (the
cost criterion p(z) was chosen to be 0). In Section 4 below, we will also provide relevant
choices for the cost criterion that next to satisfaction of the time-domain constraints also
provides additional desirable properties of the constructed controller.

3 Problem formulation: the complex poles case

The polynomial representation (10), as derived in [19], of the time response of a linear
system to a Laplace transformable input is unfortunately only possible when strictly
negative rational closed-loop poles are assigned (see Assumption 2.1). However, in many
cases the assignment of purely real poles can be undesirable, especially in lightly damped
systems such as most motion systems. Furthermore, many reference signals have Laplace
transforms with complex poles. If, for instance, a sinusoid is used as the reference signal
instead of a step, the Laplace transform is given by r(s) = ω

s2+ω2 resulting in complex
poles in the system’s response. Therefore, such reference signals cannot be handled by
the approach from [19]. The main objective of this paper is to present a solution to the
linear control design problem for time-domain constrained systems of which the Laplace
transforms of the closed-loop responses may contain complex roots.
When we allow both distinct real and complex poles to be present in the closed-loop
transfer function T (s) and/or the Laplace transform of the reference signal r(s), the
Laplace transform of the system’s output can be decomposed as the partial fractional
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decomposition

y(s) =
nr∑

i=0

yi
s+ pi

+

nr+nc/2+1
∑

i=nr+1

yi
s+ αi + jβi

+
y∗i

s+ αi − jβi
,

(18)

where nr and nc denote the number of real and complex poles, respectively, −pi, i =
1, . . . , nr are the locations of the real poles, −αi ± jβi, i = nr +nc/2+ 1 are the locations
of complex conjugate pairs of poles, and yi are the possibly complex coefficients (with
complex conjugate y∗i ) that affinely depend on the design parameter q, see (9) (we omitted
this dependence on q for ease of exposition). To enforce stability, we again assume that
the assigned closed-loop poles have strictly negative real part. The corresponding time-
domain signal is then described by

y(t) =
nr∑

i=0

yie
−pit +

nr+nc/2+1
∑

i=nr+1

(yie
−jβit + y∗i e

jβit)e−αit. (19)

As before, we use the following assumption

Assumption 3.1 pi, αi, and βi are rational numbers.

We denote pi=
p̄i
m
, αi=

ᾱi

m
, τ= t

m
where m is the smallest positive number (not necessarily

an integer) of pi and αi such that p̄i and ᾱi can be taken as integers. We denote βi=
θβ̄i

m

for a number θ (not necessarily an integer) such that β̄i can be taken as integer as well.
For guidelines how to choose θ, see Remark 3.1 below. Furthermore, let

λ = e−τ . (20)

Using Euler’s formula ejφ = cos(φ) + j sin(φ) and decomposing the complex coefficients
as yi=ai+jbi, y

∗

i =ai−jbi, yields

y(t) =
nr∑

i=0

yiλ
pi

+

nr+nc/2+1
∑

i=nr+1

(
ai2 cos(βiθτ) + bi2 sin(βiθτ)

)
λαi .

(21)

Obviously, the terms involving the complex poles are non-polynomial in the indetermi-
nate λ because of the presence of cos(βiθτ) and sin(βiθτ), which make it impossible to
directly use the positive polynomial approach in Section 2 to bound the output as in
(12). Although the parameters αi, βi and pi are fixed as a result of the pole placement
(and the choice of m and θ), there still is freedom in the choice for the coefficients ai, bi,
which depend on the coefficients q = (q0, . . . , qdq) in the Youla-Kučera parameter q(s).
We propose two relaxations to determine the values yi, ai, bi via polynomial optimization
problems to shape the time response y(t), thereby overcoming the limitations in [19].
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The first approach is based on an exponential bound relaxation that results in univari-
ate polynomials. This method has the advantage that it results in a simple polynomial
optimization problem, but introduces some conservatism. The second method proposes a
multivariate polynomial relaxation that leads to polynomial problems as in Problem 2.1,
while the conservatism can be made arbitrarily small. Both methods result in polynomial
optimization problems of the type as in Problem 2.1 that can be solved using LMIs.

3.1 Exponential bounds relaxation

To resolve the problem induced by the presence of the products cos(βiθτ)λ
αi and sin(βiθτ)λ

αi

in (21) we relax the problem by using the fact that

cos(βiθτ), sin(βiθτ) ∈ [−1, 1] ∀τ ∈ R, (22)

and instead of the exact time-response (21), we consider

yupper(λ) =
nr∑

i=0

yiλ
pi +

nr+nc/2+1
∑

i=nr+1

(2|ai|+ 2|bi|)λ
αi ,

ylower(λ) =
nr∑

i=0

yiλ
pi −

nr+nc/2+1
∑

i=nr+1

(2|ai|+ 2|bi|)λ
αi .

(23)

In contrast to (21), these exponential bounds on the closed-loop time response are uni-
variate polynomials in the indeterminate λ= e−τ (if q is fixed) and can be bounded by
specified polynomials gu(λ) and gl(λ) via the polynomial non-negativity constraints

P3(q, λ) := gu(λ)− yupper(λ) ≥ 0
P4(q, λ) := ylower(λ)− gl(λ) ≥ 0

∀λ ∈ [0, 1], (24)

where we included the explicit dependence of yi, ai and bi on q again. The constraints
(24) cannot straightforwardly be cast in the form Problem 2.1 because of the nonlinear
operator | · |, which is present in these equations. However, each of the two nonlinear in-
equality constraints P3 and P4 can be expressed as 2nc+1 equivalent polynomial inequality
constraints P̃3 and P̃4 (2 inequalities for each absolute value expression). Enforcing non-
negativity of (24) on the interval λ ∈ [0, 1] is then again a special case of Problem 2.1 with
z=q, x=λ, Mg=2, Mh=0, N =0, p(z, x)=0, g1(z, x)= P̃3(q, λ), g2(z, x)= P̃4(q, λ), and
D0 = {λ∈R | 0≤λ≤1}. Therefore, it is possible to determine the values q = (q0, . . . , qdq)
such that the upper and lower bounds (23) of the closed-loop time response are bounded
by gu(λ) (e.g. gu(λ) = ymax) and gl(λ) (e.g. gu(λ) = ymin) via a polynomial optimization
problem. The exponential bounds relaxation does introduce some conservatism by using
relaxation (23) instead of the exact time-response (21). The second method presented
next offers the possibility to render this conservatism arbitrary small. In other words,
the second method can approximate the original time-domain constraints with arbitrary
accuracy and still lead to polynomial optimization problems.
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3.2 Multivariate polynomial relaxation

The time response (21) is equivalent to

y(t) =
nr∑

i=0

yiλ
pi+

nr+nc/2+1
∑

i=nr+1

[
(ai+jbi)

(
cos(βiθτ)−j sin(βiθτ)

)

+(ai−jbi)
(
cos(βiθτ)+j sin(βiθτ)

)]
λαi .

(25)

De Moivre’s formula, which is closely related to Euler’s formula and (ejφ)n = ejnφ, states
that for any φ ∈ R and any integer n∈Z

(cos(φ) + j sin(φ))n = cos(nφ) + j sin(nφ), (26)

and hence (25) is equal to

y(t) =
nr∑

i=0

yiλ
pi+

nr+nc/2+1
∑

i=nr+1

(

(ai + jbi) [cos(θτ)− j sin(θτ)]βi +

(ai − jbi) [cos(θτ) + j sin(θτ)]βi

)

λαi .

(27)

Appropriate polynomial functions wi : R
2 → R and ri : R

2 → R, i = nr + 1, . . . , nr +
nc/2 + 1 in two variables can now be defined such that (27), and thus the time response
(21), can be written as

y(t) =
nr∑

i=0

yiλ
pi+

nr+nc/2+1
∑

i=nr+1

(ai2wi(cos(θτ), sin(θτ))

+bi2ri(cos(θτ), sin(θτ)))λ
αi .

(28)

This proves the following theorem.

Theorem 3.1 Consider the closed-loop system (3) and let y be the response to a reference
input r and assume that the Laplace transform y(s) of y has only distinct poles such that
(18) and Assumption 3.1 hold. Then we have that

{y(t) | t ∈ R
+} = {y(u, v, λ) | (u, v, λ) ∈ Foriginal}, (29)

where y(u, v, λ) is given by the multivariate polynomial

y(u, v, λ) =
nr∑

i=0

yiλ
p̄i

+

nr+nc/2+1
∑

i=nr+1

(ai2wi(u, v) + bi2ri(u, v))λ
ᾱi

(30)

10



with wi : R
2 → R and ri : R

2 → R, i = nr + 1, . . . , nr + nc/2 + 1 polynomials as in (28)
and

Foriginal :=
{
(u, v, λ) ∈ R

3 | u = cos(θτ), v = sin(θτ),

λ = e−τ for some τ ∈ R
+
}
.

(31)

Proof: The reasoning before the formulation of the theorem revealed that y(t) under
the given assumptions is equal to (19), which can equivalently be written as (28), where
λ = e−τ and τ = t

m
.

Due to Theorem 3.1, bounding the output as in (12) to the interval [ymin, ymax] is equivalent
to enforcing the polynomial non-negativity constraints

P5(q, u, v, λ) := y(u, v, λ)− ymin ≥ 0,
P6(q, u, v, λ) := ymax − y(u, v, λ) ≥ 0

(32)

for all (u, v, λ) ∈ Foriginal. Recall that y(u, v, λ) depends on q via yi, ai and bi. As we
mentioned before, it is of interest to transform the linear constrained control problem
into Problem 2.1. The conditions (32) are not in this form due to the fact that Foriginal

is not a (finite union of) basic semialgebraic set(s) as in Definition 2.1. However, this set
can be overapproximated by a finite union of basic semialgebraic sets in an arbitrarily
close manner.

Definition 3.1 We call a set Fapprox an ε-close overapproximation of Foriginal for some
ε > 0, if it satisfies the following three properties:

1. Fapprox =
⋃N

l=0 Fl for a finite collection of basic semialgebraic sets F0, . . . ,FN ;

2. Foriginal ⊆ Fapprox;

3. Fapprox ⊆ Foriginal + Bε, where Bε := {(0, 0, z) | −ε ≤ z ≤ ε.

Hence, an ε-close overapproximation of Foriginal contains the set Foriginal as drawn by the
white line in Figure 2 (for θ=1), but it is ε-close in the sense of property 3. Hence, for
small ε > 0, replacing Foriginal by Fapprox only results in small errors and all guarantees on
Fapprox also apply to Foriginal due to property 2. Moreover, due to property 1 an ε-close
overapproximation Fapprox of Foriginal can be used to embed the polynomial constraints
in (32) for all (u, v, λ) ∈ Foriginal into a version of the constraints in Problem 2.1, where
Dl = Fl, l = 0, . . . , N .

The following algorithm provides an algorithm that constructs for each desirable level of
approximation ε an ε-close overapproximation of Foriginal. The basic idea of the algorithm
is to overapproximate the Foriginal-set by the union of basic semialgebraic sets Fl, which
are obtained by splitting the set Foriginal in the τ -direction by considering intervals Il :=
[τl, τl+1), l = 0, . . . , N , where 0 = τ0 < τ1 < . . . < τN+1 = ∞. On each of these
subintervals Il we approximate e−τ by ψl(cos(θτ), sin(θτ)) using Fourier series, where
ψl : R

2 → R is a polynomial such that |e−τ −ψl(cos(θτ), sin(θτ))| ≤ ε for all τ ∈ Il. Next
to ε, the algorithm uses another parameter 0<T < 2π

θ
, which indicates the desired length

of the intervals Il, l = 0, . . . , N − 1 (although it will be modified such that all intervals
have the same length).

11



Figure 2: Foriginal (white line) drawn inside the cylinder given by u2+v2 = 1 and 0 ≤ λ ≤ 1.

Algorithm 1 Let 0<ε<1 and 0<T < 2π
θ

be given.

Step 1: Define N :=⌈− ln ε
T

⌉ and τN :=− ln ε and τN+1 :=∞.

FN := {(u, v, λ) ∈ R
3 | u2 + v2 = 1 and 0 ≤ λ ≤ ε}. (33)

Step 2: Divide the remaining interval [0, τN) in N subintervals of length T̄ := τN
N

≤ T <
2π
θ
. Il :=[τl, τl+1) with τl= lT̄ , l=0, . . . , N−1.

Step 3: For each l=0, . . . , N−1 define a function φl : R → R that satisfies:

• φl is at least continuously differentiable, but preferably m times continuously
differentiable (Cm) for m ∈ N large;

• φl is periodic with period 2π
θ
;

• φl(τ) = e−τ for all τ ∈ Il.

Step 4: For each l = 0, . . . , N − 1 compute the Fourier series approximation of φl of
sufficiently high degree Kl such that

|φl(τ)−

Kl∑

k=0

[ak cos(kθτ) + bk sin(kθτ)]| ≤ ε for all τ ∈ Il, (34)

where ak, bk, k=0, . . . , Kl are the Fourier coefficients of φl.

Step 5: For each l=0, . . . , N−1 use De Moivre’s formula to rewrite
∑Kl

k=0[ak cos(kθτ)+
bk sin(kθτ)] obtained in the previous step as

Kl∑

k=0

k∑

i=0

cki(cos(θτ))
k(sin(θτ))l =: ψl(cos(θτ), sin(θτ)),

where ψl : R
2 → R is a polynomial of degree equal to the degree of the Fourier series.

12



Step 6: For each l=0, . . . , N−1, define

Fl := {(u, v, λ) ∈ R
3 | −ε ≤ λ− ψl(u, v) ≤ ε∧

u2+v2=1 ∧ (Sl−Sl+1)u+ (Cl+1−Cl)v+

Sl+1Cl−Cl+1Sl ≤ 0}, (35)

where Cl := cos(θτl), Sl := sin(θτl).

Step 7: Take Fapprox =
⋃N

l=0 Fl.

Theorem 3.2 For each 0 < ε < 1 and 0 < T < 2π
θ

Algorithm 1 produces an ε-close
overapproximation Fapprox of Foriginal in the sense of Definition 3.1.

Proof: First of all, we write Foriginal as
⋃N

l=0 Foriginal,l with Foriginal,l := {(cos θτ, sin θτ, e−τ ) |

τ ∈ Il} for l = 0, 1, . . . , N as
⋃N

l=0 Il = [0,∞). Step 1 considers the interval IN :=
[τN , τN+1) = [− ln ε,∞) for which it holds that 0 ≤ e−τ ≤ ε. Hence, clearly Foriginal,N ⊆
FN and FN ⊆ Foriginal,N + Bε. The construction of functions φl in step 3 is possible
as e−τ is continuous and the fact that 0 < T̄ ≤ T < 2π

θ
. Hence, step 3 can always be

taken, while the function φl can still be made 2π
θ
-periodic and continuously differentiable.

Step 4 can be realized, because the Fourier series converges uniformly to a continuously
differentiable periodic function, see, e.g., [2, 29]. Therefore, uniform convergence proves
the existence of a finite Kl such that (34) holds. Note now that for (u, v, λ) ∈ Foriginal,l it
holds that u2+v2=1. Obviously, (cos(θτ), sin(θτ)) for τ ∈ Il = [τl, τl+1) lies in one of the
half spaces generated by the straight line in R

2 through the points (cos(θτl), sin(θτl)) and
(cos(θτl+1), sin(θτl+1) given by

[sin(θτl)− sin(θτl+1)] cos(θτ)
︸ ︷︷ ︸

u

+[cos(θτl+1)− cos(θτl)] sin(θτ)
︸ ︷︷ ︸

v

+ sin(θτl+1) cos(θτl)− cos(θτl+1) sin(θτl) = 0, (36)

see Figure 3. In particular, for all (u, v, λ) ∈ Foriginal,l it holds that

(Sl − Sl+1)u+ (Cl+1 − Cl)v + Sl+1Cl − Cl+1Sl ≤ 0 (37)

where Cl :=cos(θτl), Sl :=sin(θτl). Due to (34), step 5, and using the above observations, it
holds that Foriginal,l⊆Fl. Moreover, similar reasoning using (34) shows that Fl⊆Foriginal,l+

Bε. Hence, by taking Fapprox as the union of the resulting sets, i.e. Fapprox=
⋃N

l=0 Fl, an
ε-close overapproximation Fapprox of Foriginal is obtained. This completes the proof.

For instance, for θ=1, ε=e−1.5π≈0.009 and T = T̄ =0.75π the ε-close overapproximation
Fapprox of Foriginal can be generated with τ0 = 0, τ1 = 0.75π, τ2 = 1.5π and τ3 = ∞ and
polynomials

ψ0(u, v)=0.398u−0.971v+0.616u2−0.192uv+1.179v2

−0.015u3+0.184u2v,

ψ1(u, v)=0.033u+0.096v+0.0760u2+0.0534uv+0.094v2

+0.013uv2−0.011v3.

(38)
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3 | (36)} (dashed), and the resulting part of the cylinder given
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3 | u2+v2=1, (37), 0 ≤ λ ≤ 1} (solid black).

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

2

2.5

3

2TT

τ

Figure 4: Functions e−τ (solid black), ψ0 (solid grey), and ψ1 (dashed grey).

This overapproximation and the polynomials are illustrated in Figure 4. If one is sat-
isfied with an overapproximation accuracy of ε = e−1.5π ≈ 0.009, then one can use this
precomputed overapproximation (for the case θ = 1). If it is desired to have a simpler
overapproximation (with less regions and polynomials of lower degree) or an even tighter
approximation with ε < 0.009, one can run Algorithm 1 to obtain it.

Remark 3.1 A few comments are in order:

• The reason to take the functions φl in step 3 as smooth as possible (m in Cm as large
as possible) is that a lower degree Kl is needed to satisfy (34). Indeed, when φl ∈ Cm

then the Fourier coefficients satisfy kmak → 0, kmbk → 0 when k→∞ and thus the
approximation error |

∑Kl

k=0[ak cos(kθτ)+bk sin(kθτ)]−e
−τ | = |

∑
∞

k=Kl
[ak cos(kθτ)+

bk sin(kθτ)]| on Il is smaller than ε for smaller values of Kl.

• A sufficiently high degree of Kl such that (34) holds can be obtained by increasing Kl

incrementally until (34) is satisfied. If one is satisfied with an overapproximation
accuracy of ε = e−1.5π, then the precomputed overapproximation (38) with N = 2
and Kl = 3 can be used in case θ=1.

14



• Instead of selecting T a priori, we can also select a maximal degree K of the approx-
imation functions ψl in the sense that Kl ≤ K for all l = 0, 1, . . . , N − 1. Instead
of increasing the degrees of the approximation functions ψl, one now can split the
time interval [0,− ln ε) into smaller pieces until |ψl(cos θτ, sin θτ)− e−τ | ≤ ε for all
τ ∈ Il is satisfied for the fixed (low) degree K. This might lead to more regions
(a larger N). This indicates that there is a trade-off between N (number of basic
semialgebraic sets in the overapproximation Fapprox) and K (the maximal degree of
the Fourier series approximation). The smaller N the higher K and vice versa.
However, note that the example of the overapproximation with N = 2 and K = 3
already provides a very tight approximation of ε=e−1.5π≈0.009 in case θ=1.

• The reason for splitting the set Foriginal in the τ = t
m

direction is that the exponential
function λ= e−τ can generally not be ε-close approximated with the basis functions
cos(θτ) and sin(θτ) in the interval [0,− ln ε] (unless ε is chosen relatively large or θ
is very small and thus T can be selected larger). The additional scaling θ can be used
to adjust the period of cos(θτ) and sin(θτ) thereby offering a trade-off between the
required amount of intervals N and the order of the polynomial y(u, v, λ) (provided
the integer requirement on βi is fulfilled). Indeed, N = 1 in Definition 3.1 can be
obtained by choosing θ sufficiently small such that e−τ can be ε-close approximated
using u=cos(θτ) and v=sin(θτ) in the interval [0,− ln ε] for any ε. However, this

implies that the polynomial order βi (see (27)) increases due to the relation βi=
θβ̄i

m
,

which is undesirable from a computational point of view. On the other hand, if θ
is chosen as large as possible (while respecting the integer requirement on βi), the
order of the polynomial y(u, v, λ) in (27) is minimal but a large amount of regions
N could be required.

Using the ε-close overapproximation Fapprox, the conditions (32) again are a special case
of Problem 2.1 with z= q, x= (u, v, λ), ℓ=2, m=0, p(z, x) = 0, g1(z, x) =P5(q, u, v, λ),
g2(z, x)=P6(q, u, v, λ), and Dl=Fl, l=0, . . . , N . However, since the polynomial positivity
constraints (32) are now multivariate (meaning polynomials in more than one variable)
instead of univariate, the equivalent LMI expression from [19] is not applicable. In gen-
eral, checking positivity of a multivariate polynomial on a basic semialgebraic set is a hard
problem, but it can often be approximated as closely as desired by a hierarchy of con-
vex relaxations [24,25]. In this case, to make Problem 2.1 computationally tractable, the
inequality conditions from (15) are replaced by stronger conditions in terms of primal mo-
ment and dual sums-of-squares (SOS) problems to formulate a hierarchy of upper bounds
on the minimum in Problem 2.1 that converge in the limit to the real minimum. We refer
the reader to [24,25] for the conversion techniques to obtain the LMIs and further details.
There exist software packages, such as GloptiPoly [18], SOSTOOLS [30] or YALMIP [27],
that automatically build up a hierarchy of LMI relaxations, whose associated monotone
sequence of optimal values converges to the global optimum. Numerical certificates of op-
timality are also available, in terms of ranks of embedded moment matrices, see [24, 25].
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4 Control design procedure

To summarize the previous design setup, suppose that the d-minimal controller (2) for
system (1) has been designed via the Diophantine equation (4) such that the desired
closed-loop pole locations are achieved. Also suppose that more closed-loop poles are
assigned than twice the number of poles of the plant. Then, according to (6) there is ad-
ditional control design freedom parameterized in the form of the Youla-Kučera parameter,
which can be used to shape the closed-loop time response. Time-domain constraints can
be imposed using one of the proposed relaxations in Section 3, which yield the polynomial
constraints in (15). Next to constraint satisfaction, (15) allows also the minimization of
an objective function p(z). This minimization can be exploited to obtain additional de-
sired properties of the response in terms of the design parameters q and thus yi, ai and
bi. Consider the step response for example, which can be written as (18) with p0=0 and
where y0 is the steady-state solution. Desirable properties of the unit step response are,
for instance, a zero steady-state error, a small settling-time and small overshoot. These
properties can be accommodated in p(z) as follows

Small steady-state error: Set p(z)=(1−y0)
2 to minimize the steady-state error.

Short settling-time: Set p(z) = a2i +b
2
i , where index i corresponds to a slow mode in

(21), to minimize the contribution of this mode, which improves the settling time.
Alternatively, exponentially decreasing constraints can be specified that directly
impose a certain desired settling behavior.

Overshoot minimization: In case one is interested in constraining the response by a
fixed constant, e.g. constraining the overshoot, the exponential bounds relaxation
is not suitable. This is due to the fact that the peak values of the systems response
often occur in the time interval where the exponential upper and lower bounds are
still very far from the actual signal. As opposed to the exponential bounds relax-
ation, the multivariate polynomial relaxation from Section 3.2 is typically suited
to minimize the overshoot of a step response by constraining the response (30) as
y(u, v, λ)≤γ and specify p(z)=γ to minimize the overshoot.

Of course, one can combine the above objectives in p(z) using suitable weighting factors.
Furthermore, the proposed relaxations enable the incorporation of the extensions that
were mentioned in Section 2.2 (e.g. related to responses to disturbances) in case the
poles of the Laplace transform of the corresponding signal are complex. Setting up the
optimization problem (15) by including the time-domain constraints on closed-loop signals
using one of the proposed relaxations and defining the objective function p(z) provides a
systematic manner for obtaining linear controllers with desirable properties. This design
framework will be illustrated in the next section.
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5 Numerical example

We start with a simple simulation example to illustrate the efficiency of the proposed
design method. Consider the simple model given by

P (s) =
y(s)

u(s)
=

1

s+ 1
. (39)

The control objective is to let y track a step reference from 0 to 1 as close as possible.
Moreover, the controller (2) will be designed such that the assigned complex closed-loop
poles are p1,2=−1± 2j, p3,4=−2± 4j. This is done by solving the Diophantine equation
(4) leading to the d-minimal controller

C(s) =
d0(s)

c0(s)
=

68

s3 + 5s2 + 28s+ 32
, (40)

resulting in the closed-loop system given by the complementary sensitivity function

T (s) =
68

s4 + 6s3 + 33s2 + 60s+ 100
. (41)

Using the Youla-Kučera parameter q(s) and realizing that according to (6) we have
deg q(s) ≤ 2, i.e., q(s) = q0+ q1s+ q2s

2, the set of allowable controllers assigning the
specified closed-loop poles is parameterized as

C(s) =
d(s)

c(s)
=
d0(s)− a(s)q(s)

c0(s) + b(s)q(s)

=
68− (q0 + (q0 + q1)s+ (q1 + q2)s

2 + q2s
3)

s3 + 5s2 + 28s+ 32 + (q0 + q1s+ q2s2)
,

(42)

resulting in the set of closed-loop transfer functions

T (s) =
68− (q0 + (q0 + q1)s+ (q1 + q2)s

2 + q2s
3)

s4 + 6s3 + 33s2 + 60s+ 100
. (43)

The Laplace transform of the time response of (43) to a step input is then parameterized
as

y(s) =
1

s
T (s) =

68− (q0 + (q0 + q1)s+ (q1 + q2)s
2 + q2s

3)

s(s+ 1 + 2j)(s+ 1− 2j)(s+ 2 + 4j)(s+ 2− 4j)
.

(44)

The corresponding partial fractional decomposition is equal to

y(s) =
y0
s
+

a1 + jb1
s+ 1 + 2j

+
a1 − jb1
s+ 1− 2j

+
a2 + jb2
s+ 2 + 4j

+
a2 − jb2
s+ 2− 4j

(45)
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where y0, a1, b1, a2, b2 can be solved from the linear system of equations
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

 , (46)

where q0, q1, q2 are the free variables in the Youla-Kučera parameter to shape the time
response. The goal is to determine values of y0, a1, b1, a2, b2 (via q0, q1, q2) such that the
closed-loop time response to the step input has a favorable shape. The LMI problems
were modeled with YALMIP [27] and solved with SeDuMi [34].

5.1 Using the exponential bounds relaxation

The exponential bounds on the step response of the closed-loop system (43) are given by

ȳupper(t) = y0 + (2|a1|+ 2|b1|)e
−t + (2|a2|+ 2|b2|)e

−2t,

ȳlower(t) = y0 − (2|a1|+ 2|b1|)e
−t − (2|a2|+ 2|b2|)e

−2t,
(47)

where y0, a1, b1, a2, b2 are related to q0, q1, q2 via (46). The goal of this relaxation is to
determine q0, q1, q2 such that

P3(λ) = gu(λ)− yupper(λ) ≥ 0,
P4(λ) = ylower(λ)− gl(λ) ≥ 0,

(48)

for appropriately chosen time-varying bounds related to gu(λ) and gl(λ). Note that λ=e
−t

and

yupper(λ) = y0 + (2|a1|+ 2|b1|)λ+ (2|a2|+ 2|b2|)λ
2,

ylower(λ) = y0 − (2|a1|+ 2|b1|)λ− (2|a2|+ 2|b2|)λ
2.

(49)

To define the time-varying bounds, we first consider suitable upper and lower bounds on
the step response that correspond to the d-minimal controller (40) (with q = 0). These
are given by

guoriginal
(λ) = 0.68 + 1.58λ+ 0.38λ2,

gloriginal(λ) = 0.68− 1.58λ− 0.38λ2,
(50)

respectively. Based on these bounds, we now define tighter bounds gu(λ) and gl(λ) that
are specified to be

gu(λ) = guoriginal
(λ) + cu = 1.01 + 1.58λ+ 0.38λ2

gl(λ) = gloriginal(λ) + cl = 0.99− 1.58λ− 0.38λ2.
(51)

where cu=0.33 and cl=0.31 to guarantee a small steady-state error (smaller than 0.01).
The dominant term in the upper and lower bound in (49) corresponds to the slow mode
e−t with coefficient (2|a1| + 2|b1|). To minimize the contribution of this term and to
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bring the steady-state error close to zero, we specify the objective function according to
Section 4 as

p(q0, q1, q2) = 10(1− y0)
2 + 2(a21 + b21), (52)

where y0, a1 and b1 depend on q0, q1, q2 as in (46). This results in the optimization problem

min
q0,q1,q2

p(q0, q1, q2)

s.t. (46)
(48) ∀ λ ∈ [0, 1].

(53)

The Youla-Kučera parameter resulting from the minimization problem (53) is

q(s) = −32.0− 23.0s− 3.0s2, (54)

which yields the controller and closed-loop

C(s) =
3s3 + 26s2 + 55s+ 100

s3 + 2s2 + 5s
, (55)

T (s) =
3s3 + 26s2 + 55s+ 100

s4 + 6s3 + 33s2 + 60s+ 100
, (56)

together with the new bounds

gunew
(t) = 1.00 + 1.25e−2t,

glnew(t) = 1.00− 1.25−2t.
(57)

This shows that the steady-state error is zero and the contribution of the slow mode
has been completely eliminated. The step responses together with their bounds of the
original closed-loop system (41) and of the new, optimized closed-loop system (56) are
depicted in Fig. 5(a), while the Bode diagrams of the original controller (40) and the new
controller (55) are shown in Fig. 5(b). From Fig. 5(a) it is obvious that the step response
of the designed closed-loop system satisfies the specified bounds and additionally results
in zero steady-state tracking error. Upon examination of Fig. 5(b) this can be explained
by the fact that controller (55) exhibits an overall higher gain and hence results in a
higher bandwidth of the closed-loop system resulting in a faster response, while it also
implements integrating action providing the steady-state accuracy. Although there is some
conservatism introduced by the fact that upper and lower bounds are used, this example
demonstrates that a significant increase of the performance can be obtained using this
method.

Remark 5.1 In this example the ability of the method to minimize the contribution of the
slow mode using an additional objective function p(z) in Problem 2.1 was demonstrated.
Because of the specific objective function (52) the slow mode was completely cancelled
within the controller. Therefore, for this specific example another way to arrive at con-
troller (55) is to specify only two closed-loop poles p3,4=−2± 4j (without p1,2=−1± 2j),
resulting in C(s) = 3s+20

s
, which indeed is the minimal form of (55). Interestingly, the

optimization problem results in this controller in an automated and systematic manner.
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Figure 5: Results exponential bounds relaxation. (a) New (solid black) and original (solid
grey) step responses, original bounds (dashed grey), and new bounds (dashed black),
(b) Bode diagrams of the original (grey) and the new (black) controller.

5.2 Using the multivariate polynomial relaxation

In this section, the multivariate polynomial relaxation from Section 3.2 is used to obtain
suitable values of q0, q1, q2 to improve the step response of closed-loop system (43). We
have that m=1, nr =0, nc=2, α1=−1, α2=−2, β1=2 and β2=4. Let θ=1 such that
u=cos(τ) and v=sin(τ) so that (27) yields

y(t) =
(
(a1 + jb1) (u+ jv)2 + (a1 − jb1) (u+ jv)2

)
λ

+
(
(a2 + jb2) (u+ jv)4 + (a2 − jb2) (u+ jv)4

)
λ2

=
(
2a1

(
u2−v2

)
+ 2b12uv

)
λ

+
(
2a2

(
u4+v4−6u2v2

)
+ 2b1

(
4vu3−4uv3

))
λ2.

(58)

As a consequence, for this example we obtain

w1(u, v) = u2 − v2, r1(u, v) = 2uv

w2(u, v) = u4 + v4 − 6u2v2, r2(u, v) = 4vu3 − 4uv3.
(59)

yielding the time response

y(u, v, λ) =y0 + (2a1(u
2 − v2) + 4b1uv)λ

+ (2a2(u
4 + v4 − 6u2v2) + 8b2(vu

3 − uv3))λ2,
(60)

which is a multivariate polynomial with 3 independent variables (u, v, λ) and three decision
variables (q0, q1, q2). Note that (u, v, λ)∈Foriginal. Since Foriginal is not the finite union of a
basic semialgebraic set, we can use Algorithm 1 or use the precomputed overapproximation
in Section 3.2 to obtain an ε-close overapproximation Fapprox of Foriginal. We use here the
precomputed overapproximation Fapprox with ε = e−1.5π ≈ 0.009. In accordance with
Section 4, we formulate the problem as to find q such that the overshoot γ is small and
that the steady-state error of the step response is minimized. Therefore, the problem is
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posed as
min

q0,q1,q2
10(1− y0)

2 + γ

s.t. (46)
γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ Fapprox.

(61)

Rewriting this optimization problem gives

min
q0,q1,q2

10(1− y0)
2 + γ

s.t. (46)
γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ F0

γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ F1

γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ F2,

(62)

with F0,1 as in (35) and F2 as in (33). This optimization problem is then solved with
a hierarchy of LMI relaxations, as explained at the end of Section 3.2. The size of the
resulting LMI problem depends on the order of the relaxation, and this can be used as a
tuning knob to adjust the trade-off between the desired accuracy and the computational
complexity, see Section 2. Although it is a priori not clear what is the order of the
relaxation to arrive at the global minimum of γ, a heuristic method is to increase the
order until not much improvement in the relaxed optimum γ̃ is observed anymore or
until one is satisfied with the obtained value of γ̃. The obtained minimum values of γ̃
for various orders of relaxation are given in Table 1. We used this heuristic approach
for illustration purposes only. It is recommended to use the more systematic approach
that is implemented in GloptiPoly [18] to arrive at the global minimum, and certify it
numerically. Based on the figures in this table we expect that the global minimum of γ

order of LMI relaxation
1 2 3 4 5 10

γ̃ 297.170 1.235 1.235 1.0718 1.0718 1.0718

Table 1: Upper bound γ̃ for various orders of LMI relaxation.

is equal to 1.0718, representing an overshoot of 7.18%. The corresponding Youla-Kučera
parameter is given by

q(s) = −32.0− 17.0607s− 3.0227s2, (63)

which yields the controller

C(s) =
3.0s3 + 20.0s2 + 49s+ 100

s3 + 2.0s2 + 10.9s
. (64)

The step responses of both the original closed loop with the d-minimal controller (40) and
of the closed loop with controller (64) are depicted in Fig. 6, which shows a significant
improvement as expected. The maximum of the step response y(t) equals 1.0714 (i.e.,
7.14% overshoot), which indeed is ε-close to γ̃=1.0718.

This example showed that after controller design by pole placement it is possible to shape
the transient time response of the system by assigning zeros to the closed-loop system
through a suitable extension of the controller under pole invariance.
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Figure 6: New (black) and original (grey) step responses.

6 Conclusions

In this paper we provided a generally applicable design framework to obtain linear con-
trollers for linear systems subject to time-domain constraints. In order to arrive at this
design framework we extended recent results in [19] that applied only in case of real
closed-loop poles and external signals (e.g. references or disturbances) having Laplace
transforms with real poles. The design method is based on synthesizing linear controller
via a closed-loop pole placement method in which the additional design freedom in terms
of the Youla-Kučera parameter is used to satisfy time-domain constraints on the closed-
loop signals based on sum-of-square techniques. In order to extend the method to the
practically relevant case where both inputs and closed-loop systems with complex conju-
gate poles are allowed, we proposed two relaxations.

The first relaxation, called the exponential bounds relaxation, exploited exponential up-
per and lower bounds on the response to any Laplace transformable input. Although
this gives rise to potential conservatism, an example showed that by prescribing poly-
nomial time-domain bounds, the system’s performance to a step input can be improved
with respect to the settling-time and the steady-state error. The second relaxation, the
multivariate polynomial relaxation, removed the potential conservatism completely as we
formally proved that it can approximate the original problem with arbitrary accuracy.
Using these relaxations, we indicated how a polynomial optimization problem could be
set up, in which next to constraint satisfaction, we could also optimize certain important
closed-loop properties such as overshoot, settling-time and steady-state error. The result-
ing optimization problem can be solved using sum-of-squares and convex programming
methods. As a consequence, the provided design framework is systematic in nature, as
was also illustrated using a numerical example.
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