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[1] Over 90% of Bangladesh’s surface water is generated
upstream of its border, yet no real-time information is
shared by India (the upstream country) with respect to two
major transboundary rivers, the Ganges and Brahmaputra.
This constraint limits operational forecasts of river states
inside Bangladesh to lead times of no more than three days.
Topex/Poseidon satellite altimetry measurements of water
levels in India, combined with in-situ measurements inside
Bangladesh allow extension of this lead time. We show that
for both rivers, it is practically feasible to forecast water
elevation anomalies during the critical monsoon season
(June to September) near the Bangladesh border with an
RMSE of about 0.40 m for lead times up to 5-days. Longer
10-day forecasts have higher errors (RMSE between 0.60 m
and 0.80 m) but still provide useful information for operational
applications. These results demonstrate the tremendous
potential of satellite altimetry for transboundary river
management. Citation: Biancamaria, S., F. Hossain, and D. P.
Lettenmaier (2011), Forecasting transboundary river water elevations
from space, Geophys. Res. Lett., 38, L11401, doi:10.1029/
2011GL047290.

1. Introduction

[2] Two hundred and fifty-six major river basins, covering
45% of the global land area exclusive of Antarctica and
Greenland, are split between two or more countries [Wolf
et al., 1999]. The absence of information sharing among
some riparian nations has led to numerous tensions in the past
[Balthrop and Hossain, 2010]. A classic case of uncoordi-
nated management of transboundary flooding occurs in the
Ganges-Brahmaputra River basins. More than 90% of surface
water flowing through Bangladesh comes from the countries
upstream - mostly India [Nishat and Rahman, 2009]. Hydro-
logical measurements on the Ganges and Brahmaputra Rivers
are viewed as sensitive by India, and no treaty provides for
sharing of such data between the two nations at operational
time scales [Balthrop and Hossain, 2010]. For this reason,
water elevation (WE) forecasts in the interior and southern
parts of Bangladesh are limited to lead times of two to three
days [Ahmad and Ahmed, 2003]. Increasing this lead time
would be very valuable both for disaster preparedness and
agricultural water management.

[3] Previous studies have shown that combination of
rainfall satellite measurements and modeling can successfully
forecast streamflow in Bangladesh [Nishat and Rahman,
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2009; Hopson and Webster, 2010; Webster et al., 2010]. In
particular, Hopson and Webster [2010] and Webster et al.
[2010] developed a daily 1-15-day flood forecasting sys-
tem for Bangladesh, based on statistically adjusted (with
satellite observations) quantitative precipitation forecasts from
the European Centre for Medium-Range Weather Forecasts
(ECMWF). This system has successfully forecasted floods
since 2004, with an accuracy of £1 day in flood onset and
retreat [ Webster et al., 2010]. However, Hopson and Webster
[2010] highlight that “if river flow measurements higher up in
the catchment were available and could be routed downriver to
the forecast location, errors in rainfall-runoff modeling ...
could be reduced”. Satellite altimetry observations have the
potential to provide such information. Birkinshaw et al. [2010]
have used both in-situ and altimetry WE time series on the
Mekong basin, combined with hydrologic modeling to forecast
discharge downstream. However, in their approach satellite
altimetry is one of several data sources, and the impact of the
lead time in the context of water management was not inves-
tigated. Here we show the potential for satellite altimetry to
extend forecast lead time in a case where it is the only source of
upstream river stage data.

2. The Brahmaputra and Ganges Rivers

[4] The locations of the Ganges and Brahmaputra rivers
and the political boundaries of the riparian countries are
shown in Figure 1. The drainage area of the Ganges basin is
about 1,065,000 km?. It is shared among China, India, Nepal
and Bangladesh. The Brahmaputra has a drainage area of
about 574,000 km? and is shared among China, India, Bhutan
and Bangladesh [Nishat and Rahman, 2009].

[5] Theupstream-most in-situ gauges in Bangladesh used in
this study are located at Hardinge Bridge on the Ganges and at
Bahadurabad on the Brahmaputra (Figure 1). WE (referenced
to the Public Work Department, PWD datum of Bangladesh
Government) have been collected by the Bangladesh Water
Development Board (BWDB) and Institute of Water Modeling
(IWM, Bangladesh). They are daily (some days missing) and
are available from January 2000 to September 2005. Figure 2
shows in-situ WE time series measured at the Bahadurabad
(Figure 2a) and Hardinge Bridge (Figure 2b) gauges for all
years available in the period of record. The Brahmaputra can be
considered unregulated with no major hydraulic structures,
whereas the Ganges is highly regulated with at least 34 dams
and diversion points in India and Nepal [Hopson and Webster,
2010]. The hydraulic structures are intended primarily for use
during the dry season and do not act as a control structure to
regulate flow during the monsoon season [Jian et al., 2009]. At
Bahadurabad and at Hardinge Bridge, the mean annual
(monsoon season) discharges are around 16,800 m’s!
(39,400 m>.s ") and 7,100 m’.s ' (24,300 m>.s "), respec-
tively. The transboundary region of Meghna is relatively
smaller than Ganges and Brahmaputra to have a significant
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Figure 1. Map of the study domain. Ganges basin (red hatched area) and Brahmaputra basin (magenta hatched area)
boundaries come from HYDROI1k. Locations of measurements from the satellite nadir altimeter Topex/Poseidon on the
Ganges and the Brahmaputra rivers (available on HydroWeb) are represented, respectively, by red and purple dots (yellow
lines correspond to the satellite ground tracks). Green dots correspond to the furthest upstream in-situ gauges in Bangladesh.
The background topography used in this map is the ETOPO1 topography dataset. Lakes, rivers and political boundaries

come from the CIA World Data Bank II.

impact on forecasting of WE inside Bangladesh and has not
been considered in this study.

3. Methodology

[6] We used estimates of WE in India derived from the
Topex/Poseidon (T/P) satellite nadir altimeter to forecast
WE at Bahadurabad and Hardinge Bridge. T/P WE were
computed by the Laboratoire d’Etudes en Géophysique et

a.Brahmaputra (Bahadurabad)

Océanographie Spatiales (LEGOS) and were downloaded
from the HydroWeb data base (http://www.legos.obs-mip.
fr/en/soa/hydrologie/hydroweb/). T/P was a joint National
Aecronautics and Space Administration (NASA) and Centre
National d’Etudes Spatiales (CNES) satellite mission laun-
ched in August 1992, with a 10-day repeat period. In
September 2002, the T/P orbit was changed due to the launch
of a new satellite altimeter (JASON-1), which defines the T/P
HydroWeb period of record from 1993 to mid-2002. Nadir

b.Ganges (Hardinge Bridge)
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Figure 2. In-situ water elevation time series measured on the Brahmaputra at (a) Bahadurabad and (b) on the Ganges at

Hardinge Bridge.
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Table 1. Distance From the In-Situ Gauge, Number of Observations, Mean and Median Time Between Two Consecutive Observations
and River Drainage Area, From HYDROI1k, for Each Topex/Poseidon Virtual Station, From HydroWeb, on the Ganges and Brahmaputra

Rivers®
Distance to the Number of Mean/Median Time Between Drainage
T/P Virtual Station River Gauge (km) Observations Observations (days) Area (km?)
166_1 Brahmaputra 250 58 16/10 408,500
242 1 Brahmaputra 550 71 14/10 345,100
014_1 Ganges 530 25 22/20 756,900
116_2 Ganges 1560 49 12/10 38,400

“Forecasts using time series from virtual stations in bold are shown in Figure 3.

altimeters like T/P measure WE only in a vertical plane, i.e.
along the satellite’s ground track (shown in Figure 1);
therefore, relatively few locations on each river are observed.
The locations (referred as “virtual stations”) of the T/P
measurements on the Ganges and the Brahmaputra in India
are shown in Figure 1. The overlapping time period of T/P
with in-situ WE measurements is January 2001 to August
2002 at Hardinge Bridge and January 2000 to August 2002 at
Bahadurabad. Table 1 shows the distance between each T/P
virtual station (VS) used in this study and the in-situ gauge on
the river, along with the number of observations available in
the T/P time series, the mean time between two consecutive
observations, and the river drainage area at the VS. These four
VS were selected to span a range of distances from the in-situ
gauges and to have a maximum number of observations.
Temporal gaps in T/P time series arise from instrument errors,
inaccurate atmospheric corrections, and errors due to the re-
tracking of the data and interaction with the surrounding land.

[7] Correlations between the in-situ WE anomalies (hjygiw)
measured at the gauge locations and the upstream T/P WE
anomalies in India (h,y;) k days earlier were computed as
follows:

Cov[hinsitu ([)7 halti(t + k)}

Corr (k) = stdev [Rinsin (¢)] - stdev [ (t + k)]

(1)

where k is the lead time, t corresponds to the date for which
h,i(t + k) is available (for the few days when hj,gw(t) is
missing, it was linearly interpolated from the closest mea-
surement in time), cov is the covariance, stdev is the standard
deviation and Corry, is the correlation coefficient between the
two time series. The lead time k was allowed to vary from 0 to
40 days. For each of these lead times, a linear fit was com-
puted to relate the water surface elevation at the in-situ gauge
and the water level at the VS k days earlier.

4. Forecasting Brahmaputra River WE
Anomalies

[8] On the Brahmaputra River, correlations between in-situ
and upstream T/P WE anomalies are quite high (>0.9) for
lead time up to 25 days over the entire time period; however,
this is somewhat misleading as much of the correlation is due
to the high and almost concurrent seasonality of WE. For
this reason, we computed correlations, for various lead times,
only over the monsoon period (June to September) when
floods occur. For this period, all correlations for lead times
below 10 days are highly significant (p < 0.05). As expected,
the highest correlations are for VS n°166 1, which is the
closest to Bahadurabad. In-situ and upstream T/P WE
anomalies remain significantly correlated (above 0.9 for VS

n°166 1 and 0.8 for VS n°242 1 during the monsoon period)
for a lead time around 5 days. Correlations for lead times less
than 10 days, correlations remain above 0.8 for VS n°166 1,
but decrease substantially for lead times greater than 5 days.

[s] For each VS and for lead times less than 5 days, the
RMSE between the T/P forecasts and the in-situ measure-
ments for the monsoon period is lower than or near 0.40 m
with a minimum around 3 days (which corresponds to the
maximum correlation). At lead times greater than 5 days,
RMSE increases significantly and tends to stabilize for lead
times above 10 days at around or slightly above 0.50 m for
VS n°166 1 and 0.70 m for VS n°242 1.

[10] Figures 3a and 3b show the in-situ (blue curve) and
forecasted WE anomalies at the gauge location from T/P
VS n°166 1 (red triangles) for a 5-day and a 10-day lead
time, respectively. Linear fits between time-lagged T/P and
in-situ time series used to compute these forecasts are
included in the auxiliary material.' These results are very
encouraging as the forecast is quite close to the observation.
On the other hand, it should be noted that some local
maxima (like the one in August 2000) are slightly under-
estimated in the forecasted time series. This might be due
to satellite measurement errors, errors in the T/P-in situ WE
regression and the fact that the methodology used does not
explicitly account for inflows between the location of the
virtual and real gauges.

5. Forecasting Ganges River WE Anomalies

[11] During the monsoon, the correlation for VS n°014 1
(located 530 km upstream of the gauge, Table 1) is maxi-
mum for lead time around 5 days and then decreases (it is
below 0.9 for lead times above 10 days). As VS n°116 2 is
farther upstream from the gauge (1560 km, Table 1), the
correlation is lower (still above 0.9 for lead times between
8 and 13 days) and is highest for a 10-day lead time. For
lead times greater than 14 days, the correlation decreases
and is similar to that for VS n°014_1. The different timing in
the occurrence of the maximum correlation between the two
VS is due to the large distance (above 1000 km) between
them. As for the Brahmaputra River, RMSE during the
monsoon period between in-situ and forecast WE anomalies
from T/P data has a minimum around the same lead time
that maximizes the correlation. For VS n°014 1 the RMSE
is minimum at around 0.40 m for a 5-day lead time and
remains between 0.40 m and 0.60 m for lead times below
10 days, beyond which, RMSE increases significantly. For
VS n°116 2, the RMSE is higher, and its minimum value

'Auxiliary materials are available in the HTML. doi:10.1029/
2011GL047290.

3o0f5



L11401

a.Brahmaputra (Bahadurabad)

BIANCAMARIA ET. AL.: RIVER WATER HEIGHT FORECAST FROM SPACE

L11401

b.Brahmaputra (Bahadurabad)
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Figure 3. (a) Measured water elevation anomaly time series at Bahadurabad (blue) and the T/P virtual station n°166 1
forecasted water elevation anomalies at the gauge location for a 5-day lead time (red triangles). (b) Similar plot for 10-day lead
time T/P virtual station n°166 1 forecasted water elevation anomalies. (c) Measured water elevation anomaly time series at
Hardinge Bridge (blue) and the T/P virtual station n°014 1 forecasted water elevation anomalies at the gauge location for
a 5-day lead time (red triangles). (d) Similar plot for 10-day lead time T/P virtual station n°014_1 forecasted water elevation
anomalies. Plots of the linear fit between time-lagged T/P and in-situ time series used to compute these forecasts are included

in the auxiliary materials.

is around 0.90 m for a 14-day lead time. This was expected
due to the greater distance to the gauge.

[12] Figures 3c and 3d show the in-situ and forecasted
WE anomalies at the gauge location from T/P VS n°014 1
for a 5-day and a 10-day lead time, respectively (see the
auxiliary material Figure S1 for the linear fits between time-
lagged T/P and in-situ time series used to compute these
forecasts). As for the Brahmaputra River, the forecasts
remain very close to the in-situ measurements.

6. Discussion

[13] Our results clearly show that T/P forecasts follow well
the rising and receding trends in observed water surface
elevation with modest bias. The persistence of high correla-
tions between upstream and downstream WE anomalies for a
range of practically useful lead times and the relatively low
RMSE, compared to the differences in WE between low and
high flows (around 6 m at Bahadurabad and 8 m at Hardinge
Bridge, Figure 2), are encouraging. We believe that the rel-
atively high forecast skill is due to the fact that even though
the VS are far upstream (see Table 1), most of the runoff that

reaches Bangladesh is generated far upstream, and the rela-
tionship between upstream and downstream water levels is
affected primarily by channel processes. The Brahmaputra
drainage area is around 506,000 km” at Bahadurabad and
345,000 km? at the 550 km upstream T/P VS n°242 1 (Table 1).
On the Ganges, the drainage area is 944,000 km? at Hardinge
Bridge and 756,900 km? at T/P VS n°014_1 530 km upstream
(Table 1). Therefore, WE are less sensitive to local and short-
term precipitation events and remain correlated over long
distances. Combined with the higher impact of human activity,
this could also explain higher RMSE on the Ganges: as its
mean annual discharge is two times lower than that of the
Brahmaputra, it is more affected by high frequency variations.
For each VS, the ratio between the distance to the in-situ gage
and the lead time which gives the maximum correlation is
around 1 m.s™", the same order as the rivers’ velocity [Jian
et al., 2009]. Because T/P data are not available after 2006,
data from the new nadir altimeter Jason-2, launched in 2008 on
the same orbit than T/P, would need to be used for real time
forecast observations. The time latency of Jasonn-2 Interim
Geophysical Data Record is around 2 days and the retracking
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of this product can be done immediately, which means that
near real time forecast is feasible.

[14] The current good quality of the forecast might even be
improved using ancillary satellite data, such as precipitation
or river width estimates. In addition, more accurate satellite-
based WE measurements would help to better detect peaks in
WE. This could be done by retracking altimeter measure-
ments as suggested by Lee et al. [2009]. Moreover, the low
time resolution in the T/P time series could be addressed by
combining forecasts from different VS and using multiple
satellite altimeters. Errors on these multi-source forecasts will
vary in time depending on the altimeter and the VS used.

[15] The future Surface Water and Ocean Topography
(SWOT) wide swath altimeter (a NASA/CNES mission,
planned for 2019), will provide much improved forecast
coverage (in both geographic extent, and the size of rivers
for which coverage will be provided) and accuracy. SWOT
will provide 2-D maps of WE along a 120 km wide swath
with a 100 m horizontal resolution and a 10 cm minimum
vertical accuracy (usually better) [Rodriguez, 2009], pro-
viding 2 to 4 observations on the study domain per repeat
period (22 days), allowing a much more precise forecast of
flooding or low flow events.

[16] Furthermore, the approach presented in this paper can
augment alternative approaches, like that of Webster et al.
[2010], that seek to improve forecast lead times by incor-
porating long lead probabilistic precipitation forecast infor-
mation into streamflow forecasts. We also foresee a future
pathway by which altimetric information from planned
satellites like SWOT can be incorporated into hydrody-
namic models.

7. Conclusions

[17] For both the Ganges and Brahmaputra rivers, it is
possible to forecast WE anomalies during the monsoon sea-
son from upstream nadir altimeter measurements of WE
anomalies with a lead time at least 5 days longer than is
currently feasible, with RMSE around 0.40 m. 10-day fore-
casts during the monsoon season are also feasible, although
with RMSE between 0.60 m and 0.80 m, depending on the
river and the VS used. Our results demonstrate that satellite
altimeter data have a huge potential to improve forecasting of
WE anomalies at the Bangladesh borders and, therefore,
could provide valuable information for flood forecast systems
needed for downstream nations in large transboundary river
basins more generally. Combining satellite altimetry mea-
surements with weather, hydrological, and hydrodynamic
forecast methods offers the potential to further extend fore-
cast lead times. The use of multiple altimeter measurements,
along with ancillary satellite observations can help to con-
strain forecast errors. We also emphasize the limitations of
current generation satellite altimeters, which were primarily
designed for oceanographic applications and are limited by
their relatively infrequent repeat periods (10 days for Topex/
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Poseidon) and relatively inaccurate measurements of river
heights. The proposed wide swath SWOT mission is expected
to improve greatly both forecast accuracy and time sampling
of rivers and may well represent a major breakthrough in the
ability of downstream countries to manage riverine hazards.
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