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Abstract: This paper firstly introduces a wavelet-based segmentation for three-dimensional (3D) Semi-Regular (SR) meshes, 
as a pre-processing step, in a region-independent progressive coding algorithm. The proposed segmentation process aims at 
producing homogeneous regions with respect to their frequency amplitudes on the mesh surface, in other words: patches with 
different degrees of roughness. We have then studied the behavior of the wavelets, obtained during the independent coding of 
each region, especially close to the patch boundaries. The main contribution of this paper consists in considering three 
different possible wavelet decompositions, close to the region borders, and to study their influence during the patch-
independent decoding and more particularly during the view-dependent reconstruction process. To our knowledge, no 
previous work has ever considered the influence of the non-refined parts of a mesh on the more detailed ones, in a view-
dependent context. Among the three decompositions we have considered, we defined a new scheme and finally expose various 
experimentations to demonstrate that it behaves better than the other classical considerations. 
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1. Introduction  
Three-dimensional (3D) objects and scenes find their way into more and more applications, thanks to 
the ever increasing bandwidth available in modern telecommunication networks, such as the High 
Speed Internet, or 3G mobile networks. These kinds of models are not only used in medical 
applications and entertainment (video games or animation films), but also for industrial purposes like 
car industry (Computer Aided Design framework), simulation or virtual environment contexts. 

The triangular mesh, which is a piecewise approximation of a 3D object shape defined by a set of 
planar triangular facets, is actually the most common representation for these objects and scenes. This 
can be explained because it is a simple and effective model for many applications, like rendering for 
example. It includes geometry (vertex positions) and connectivity data which can be expensive in 
terms of computation, storage, transmission and rendering, even with today devices and networks. 

Consequently in literature, many progressive mesh compression and transmission schemes have 
been proposed (including [1] - [9]), to represent data with multiple Levels of Detail (LOD). With this 
representation, a coarse approximation can subsequently be further improved depending on the user’s 
devices (network channel and visualization terminal) and expectations. This scalable representation is 
commonly obtained with a wavelet transform ([4] - [9]), because it produces a good decorrelation of 
the data. The best compression rates on 3D meshes are currently obtained with a wavelet 
decomposition, also called Multi-Resolution Analysis (MRA) on Semi-Regular (SR) structures.  

MRA transforms a signal into a set of approximations and a set of "details". Hence, it allows to 
encode not the signal itself, but a coarse approximation (low-frequency signal) and a set of subbands 
of high frequency details (wavelet coefficients). The information carried by these coefficients is less 
correlated, that’s why it enhances the compression performance. A triangular mesh generally has an 
irregular connectivity. To our knowledge, only one algorithm [4] directly applies the wavelet 
transform on irregular meshes, because better compression results can be obtained on SR structures, 
like in [5] - [9]. A remeshing stage is used to resample the initial models and produce SR meshes, in 
which the valence of most vertices is equal to six. The cited SR mesh compression methods can hence 



benefit from a very compact representation of the connectivity information and usually use a zerotree 
and an entropic coding algorithms [13] to compress the geometry data (regarded as wavelet 
coefficients). 

Most of the state-of-the-art wavelet-based SR mesh compression algorithms ([5] - [8]) consider a 
global wavelet decomposition on the mesh surface. Given the perpetual increasing expectations of 
realism imposed by applications and users, increasingly complex geometric models, embedded in the 
3D Euclidean space are required. The underlying objects are consequently represented numerically 
with more and more precision and details. Consequently view-dependent compression, transmission 
and rendering methods ([9] - [12]) have recently emerged, to accelerate the huge amount of 
computations involved in this context. The principle consists in considering the user’s viewing 
frustum, to more refine the object regions or scene parts that face toward the viewer. Hoppe [12] was 
one of the first to introduce the concept of view-dependent simplification and refinement, for fast and 
efficient rendering of 3D irregular meshes (represented with the Progressive Mesh (PM) [1] structure). 
Initially, the coarsest mesh is rendered. Then the algorithm iteratively checks whether each vertex 
need to be further refined, according to the user’s viewing frustum.  

More recently, several view-dependent compression and transmission algorithms have been 
developed for SR meshes [9] - [11]. Gioia et al. [10] proposed a wavelet-based view-dependent 
transmission and visualization algorithm where the wavelet coefficients can be added or suppressed in 
real-time on a partially reconstructed mesh. Hence the reconstruction of large meshes can be optimized 
by allocating a major portion of the available bandwidth to visible parts. 

Sim et al. developed in 2005 a rate-distortion (R-D) optimized view-dependent SR mesh streaming 
method [9]. One of the key points is to add a partitioning of the SR mesh into many segments, in order 
to optimally allocate bits during the compression process. Another advantage is to give the possibility 
to progressively transmit the segments independently, according to the client’s viewing position. This 
region-based R-D optimization scheme improves the conventional wavelet-based compression 
algorithms for SR meshes ([5], [6]). The authors considered the same constrained allocation problem 
as in [7] and [8], to formulate their R-D optimization. Moreover, the server can allocate an adaptive 
bitrate to each segment (based on its visibility priority), to facilitate the interactive streaming of 3D 
data. More recently, another view-dependent geometry coding of static 3D scenes (defined by sets of 
semi-regular meshes) was proposed by Payan et al. [11]. The proposed coding scheme combines a 
segmentation for determining the visible regions, and an allocation process (detailed in [8]) for 
improving the visual quality of the encoded scene.  

These two previously cited region-based view-dependent coding methods [9] and [11] define two 
different segmentations: the first one is fixed during the encoding process, whereas the second one is 
computed for a determined viewing frustum. In this paper, we introduce a new SR mesh segmentation 
algorithm (adapted from the one detailed in [14]). We also propose to study the behavior of the 
wavelets in the created regions, during the patch-independent decoding and more particularly during 
the view-dependent reconstruction process. Our segmentation stage can be seen as a pre-processing 
step and is not dependent on the user’s viewing position. It aims at producing homogeneous regions 
which share similar frequency amplitudes on the mesh surface, in other words: regions with different 
degrees of roughness.  

None of the two previous algorithms ([9] and [11]) and no other paper (to our knowledge) has ever 
considered the influence of the non-refined parts of a mesh on the more detailed ones, in a view-
dependent context. In the wavelet-based SR mesh compression setting, a subdivision scheme is used 



as a prediction operator during the MRA, to reduce the details lost during this coarsification process 
(regarded as wavelet coefficients). The most used prediction scheme for SR meshes is the Butterfly 
subdivision stencil [15] (illustrated in Fig. 2 (picture (b)). The main contribution of this paper consists 
in considering three different possible applications of this stencil, close to the patch borders, and to 
study their influence during the independent coding of each region. We propose various 
experimentations to demonstrate that, among these three schemes, the one we have developed can 
reduce the bandwidth requirement for 3D mesh patch-independent decoding and view-dependent 
reconstruction. 

The remainder of this paper is organized as follows. We begin by an overview of the different parts 
of our algorithm, followed by an explanation of the MRA on meshes in Section 3, which produces the 
wavelet coefficients. The wavelet-based segmentation algorithm we developed is then described in 
Section 4. The different patch-aware applications of the Butterfly prediction are detailed in Section 5. 
Experimental results are presented in Section 6, together with possible applications of our framework. 
As a conclusion, discussions and ideas for future work are given in Section 7. 

 
2. Overview of the Proposed Algorithm 
Fig. 1 illustrates the main stages of the proposed framework. The algorithm principle is described 
hereinafter. In this work, an input irregular mesh Mir is first resampled into a SR structure Msr. Our 
wavelet-based shape partitioning (whose steps are represented in purple in Fig. 1) uses the second 
generation wavelet formulation (detailed in Section 3). It aims at constructing homogeneous regions, 
regarding the wavelet coefficient amplitude. 

 

 

Figure 1:   Main features and stages of our framework which aims at locally coding and transmitting a SR mesh Msr (remesh 
of the original irregular model Mir). Our framework minimizes the reconstruction error for a given bit budget (target rate), 
with an error-driven wavelet coefficient quantization (q). This allows a flexible reconstruction Mrec at the decoder side, where 
a view-dependent rendering can, for example, be considered. To measure the quality of the reconstructed mesh at a given rate 
we use rate-distortion (r/d) curves (an example is given in Fig. 18). 

 

These coefficients are produced by a global MRA, which decomposes the SR models into n coarser 
meshes M1, M2, ... , Mn and a sequence of "details": the wavelet coefficients. This set of approximation 
meshes is called hereinafter: "wavelet decomposition hierarchy" or in a simplest way: "hierarchy". 
Each coefficient, associated to a given resolution level, reveals the high frequencies lost during the 
mesh simplification.  

The goal of our underlying segmentation is to identify the mesh parts where the wavelet 
coefficients could be further reduced thanks to different decomposition, quantization and/or coding 
schemes, which are the major steps involved in the progressive compression process. We chose to 
segment one of the coarsest mesh Mc of the produced "hierarchy".  



The segmentation criterion we considered is the averaging of all the wavelet coefficient 
amplitudes: associated to each mesh of the "hierarchy", starting with Mc (detailed in Section 3.3). 
Given the segmentation on a coarse resolution level, a fine projection is finally used to partition the 
finest mesh (the SR original mesh) with the same rule. This pre-processing step gives us the possibility 
to apply a partition-independent coding and transmission (represented in blue in Fig. 1).  

On the synthesis side (represented in green in Fig. 1), after an independent decoding, the coarsest 
patches are glued and inversely wavelet transformed. The reconstructed object Mrec can finally be 
compared to the original one, so as to evaluate the distortion. 

 

3.  MR Analysis on SR Meshes 
In this section, we first detail the theory involved to produce wavelet coefficients on SR structures, 
with a lifting scheme formulation (second generation wavelets). A SR mesh is obtained thanks to a 
remeshing stage, which consists in resampling an input model (with irregular connectivity). We 
present then the concept of the state-of-the-art SR remeshing and MRA algorithms. We finally 
describe the averaging rule we applied to represent all the details lost during this simplification 
process, in only one coarse mesh of the "hierarchy". 

3.1 Wavelet Theory and Lifting Scheme 
The MRA produces a reversible mesh decomposition into a series of approximation meshes and a 
sequence of details: the wavelet coefficients. Classical MRA methods, such as wavelet transform, 
were formerly formalized with the filter bank theory. Low-pass and high-pass filters are applied to 
obtain respectively the approximations and the details. For a discrete signal s(t), its Wavelet Transform 
is explained by this formulation :  

 (1) 

where m, n ϵ Z and correspond respectively to the scale and the translation parameters (used to analyze 
the signal in the time/frequency domain). a0 >1, b0 >0 and ψ*  corresponds to the complex conjugation 
of ψ.  

The choice of a0 and b0 produces different tilings of the time-frequency plane. The most used 
technique is the dyadic analysis, introduced by Mallat [16] in 1989 to link the wavelets and the filter 
bank theories, where a0=2 and b0=1. This MRA formulation, defined for finite energy functions, is 
formally described for a series of imbricated subspaces                          in which an orthonormal 
scaling function basis is determined. This function family {φm,n ; n ϵ Z}  is defined by dilations and 
translations of a mother scaling function φ(t) and expressed by the following formula: φ

m,n(t) = 2-m/2 
φ(2m t – n).  

The orthogonal projection of s(t) into the scaling function family forms a set of approximations, 
obtained by the application of a low-pass filter followed by a uniform subsampling (used in a cascade 
algorithm launched on the signal s(t)). To recover the high frequencies lost after the application of the 
low-pass filter, we have to take into account the Wi space, which is the orthonormal complements of 
the Vi space in the Vm-1 one, for any approximation in the level i. The wavelets, defined by ψm,n(t) =    
2-m/2 ψ(2m t – n), form an orthonormal basis of the Wm spaces and are used as high-pass filtering in 
order to collect the missed details. 

dtnbtatsanmtsWT m
m

)(*)(),)](([ 00
2

0 −= −∞+

∞−

−
∫ ψ

)()( 2 RZ LV m
m ⊂∈



For compression purposes, it is interesting to benefit from wavelets which have at least one 
vanishing moment, to benefit from a decrease of the wavelet coefficients through the resolution levels. 
The orthogonality of the wavelets with the scaling functions is also an interesting property because it 
allows to obtain the best approximations in a least square sense, which is important for visualization 
and to improve coding performances. This orthogonalization means that <φj,i, ψj,k>= 0  for each pair 
(i,k) ϵ Z2 (where <f,g>  is defined as the inner product between the functions f and g). Considering the 
filter bank theory, it’s not always possible to construct analysis tools with such properties. 
Consequently most of the methods have benefited from the lifting scheme formulation, introduced by 
Sweldens [17]. It moreover reduces computational costs and memory allocation, by first splitting the 
signal (S operator in Fig. 2, picture (a)) into even and odd components using lazy wavelets. The 
following lifting steps (P and U operators in Fig. 2, picture (a)) produce a modification of this lazy 
wavelet basis in order to add the desired properties (we referred previously). These operations are 
equivalent to a factorization of the pair of the complex filters in the filter bank theory. They can be 
simplified by the lifting formulation with finite filters. Hence, the multi-resolution synthesis is simply 
obtained by an inversion of the order and sign of the analysis lifting operators. 

 

 

Figure 2:   (a) Principle of the lifting scheme for the decomposition of a fine mesh (Mk) into a coarser one (Mk-1). Dk+1 
represents the details lost during the simplification. (b) The most used prediction operator on SR meshes: the Butterfly 
subdivision stencil [15], which allows to predict the position of each newly added (odd) vertex (in red) thanks to its coarser 
(even) neighbors. 

 

The prediction operator (P) is used to predict odd components from even ones, to obtain smaller 
coefficients by better approaching the higher level mesh than with a canonical quadrisection. The most 
used prediction operator on SR meshes (the Butterfly scheme [15]) is illustrated in Fig. 2 (picture (b)). 
The update operator (U) is used to preserve the mean value of the signal and corresponds to the 
addition of the previously cited properties, like orthogonalization of the scaling functions φ with the 
wavelets ψ.  

This latter property is applied to minimize the norm of the orthogonal projection of the ψj,i on the Vj 
spaces,                 , with respect to the inner product. Hence the wavelets are expressed by:  

 (2) 

with       defined as the set of vertices of Mj.  

The coefficients αik of this previous equation are the solution of a linear system which depends on 
the desired properties. In practice, the orthogonalization is relaxed in order to obtain finite filters. For 
compression purposes, the decomposition ends up with a normalization step (N), which is used to 
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adjust the scale between the odd and the even coefficients, so as to decompose the surface in a 
normalized basis.  

One of the lifting scheme advantages is that it can be applied to irregular point sets like meshes. In 
practice, we use a resampling of the irregular meshes (known as remeshing), to regularize the 
connectivity and to benefit from a more compact representation of the connectivity data. 

 

3.2 Remeshing and Wavelets on Meshes 
Even though wavelets are commonly used in image or video processing, applying wavelets on 
triangular meshes is not trivial, because of the irregular sampling of most of them. MR analysis for 
triangle meshes with arbitrary topology was introduced by Lounsbery [18] who demonstrated that a 
subdivision scheme can serve as a scaling function basis to extend the wavelet theory for irregular 
sampled signals like meshes. The compression performances are then highly dependent on the quality 
of the parameterization defined during the SR remeshing. 

Even though wavelets for irregular meshes were proposed in [4], the most popular technique to 
overcome the problem is the semi-regular remeshing. The principle is to modify the triangulation to 
make the connectivity as regular as possible. It can be done by resampling the shape geometry, i.e. by 
moving the vertices onto the surface, while keeping a SR connectivity (constructed with a subdivision 
scheme). By this way, the majority of vertices has a regular neighborhood (valence is equal to six). It 
improves the efficiency of the subsequent wavelet analysis on the given triangulated surface, but also 
highly eases the connectivity encoding, most of which becomes implicit. 

As a proof, Khodakovsky et al. ([5, 6]) explain that a SR remeshing followed by a wavelet-based 
compression stage tends to reduce the geometric reconstruction error by a factor four, for one specific 
compression ratio, when compared to the state of the art connectivity preserving methods. Hence, this 
is not surprising that the best mesh coders are the wavelet-based coders for SR meshes ([5] - [9]). 

All the SR remeshers for triangulated surfaces are based on the same idea. They aim at reducing 
the parametric information (tangential set of wavelet coefficients), to describe the surface with only 
the geometric information. For that purpose, a mesh simplification is used to produce a coarse mesh 
(called the base complex) on which the input model is parameterized. The principle (illustrated by Fig. 
3) is the following: i) an irregular mesh Mir is first simplified to obtain a coarse base complex S0, on 
which the original vertices of Mir are projected during the parameterization stage; ii)  each triangle of 
S0 is then subdivided by triangle quadrisection, and each new regular vertex added by subdivision is 
moved on the original surface by using the parameterization previously determined.  

 
Figure 3: Overview of a semi-regular remeshing. Each vertex in the area bounded by white curves (a) is projected in one 
triangle of the base complex (black dots on (b)). The SR mesh (c) is then obtained by iterative subdivision and by mapping 
the new vertices onto the surface using the parameterization. Image of [9]. 



By iterating several times this second step, a set of more and more detailed approximations S0, S1, 
S2, ... is created. This refinement step is stopped when the surface modeled by an approximation is fine 
enough to be geometrically or visually similar to the surface modeled by Mir. The resulting 
approximation is the output SR mesh Msr. Even though the two meshes Mir and Msr represent the same 
surface, a remeshing error remains, obviously negligible if the remeshing stage is efficient. 

During the simplification stage, two approaches are generally proposed to obtain the base complex 
with a topology similar to the original shape: either by constructing on the initial object a mesh 
chartification followed by a patch simplification [19, 20, 21, 22] or by applying topology-preserved 
progressive decimations [23, 24, 25]. During this step, a parameterization function is defined to 
minimize the distortion when mapping each curved surface to its associated coarse triangle in the base 
complex. The challenge consists in minimizing the distortion produced during the parameterization of 
the input model, when mapping each curved surface to its associated coarse triangle in the base 
complex. 

The Normal Mesh algorithm [24] we considered to obtain most of the SR models presented in this 
work belongs to the second class and uses iterative half-edge collapses to decimate the vertices. The 
main contribution of this method lies in the refinement step. The authors first propose to subdivide the 
triangles of the base complex using the interpolating Butterfly scheme [15, 26]. Once positioned with 
this technique, the new vertices are then moved along their normal direction until they "pierce" the 
original surface. This refinement step is repeated several times until we get a final SR output with low 
distortion, called a Normal Mesh. 

The Normal Meshes are particularly relevant for compression ([27, 6, 8]). Indeed, if the unlifted 
Butterfly wavelet transform is applied during analysis, the wavelet coefficients produced are 
guaranteed to be in the local normal directions. Therefore the x and y coordinates (i.e. the tangential 
components) of the coefficients are equal to zero, and the geometry information is fully represented by 
the z coordinate (i.e. the normal component). Hence, only one single scalar per vertex must be encoded 
instead of three. That’s why this algorithm currently produces one of the best remeshes for 
compression purposes, but only for closed surfaces which have uniform triangles.  

Since the Lion Head original model has non uniform triangles (as illustrated in Fig. 4), we 
considered another remeshing algorithm to obtain a good SR model. One of the most recent SR 
remesher, developed in 2010 by Kammoun et al. [22], includes a pre-processing step to resample the 
irregular mesh and solve the problem of non uniform triangles. Their SR remesher belongs to the first 
class and creates a coarse Voronoï partition on the original mesh in order to simplify it and form the 
base complex with the dual construction: the Delaunay triangulation. At the same time, a 
parameterization function is defined to minimize the distortion when mapping each curved surface to 
its associated coarse triangle in the base complex and is used to refine it after applying a subdivision 
step. 

Given SR meshes with the fewest connectivity and parametric data to encode, efficient data 
structures and processing algorithms are used to get closer to the methods used for data sampled on 
regular grids. The application of the MRA on SR meshes, resulting from these latter algorithms, and 
mainly used for progressive compression purposes, can be based on various subdivision schemes. 
Most of the existing methods have benefited from interpolating subdivision filters (and in the most 
cases from the Butterfly stencil) for the low-resolution versions to be good approximations of the 
original object (in a least-squares sense). In other words, to provide numerical stability of the fitting 



operation and to have a more stable wavelet construction for practical applications than with 
approximating schemes. 

 
Figure 4: (a) Original irregular Lion Head model. Other views are proposed to better appreciate the non-uniform 
triangulation, where big triangles can be seen on the top (b) and on the bottom (c) of the head. 

 

Each mesh refinement, processed during the MR synthesis, is based on canonical quadrisections 
applied on every facet. This one-to-four triangle construction consists in adding three new vertices in 
the middle of each coarse edge. The prediction operation, followed by the wavelet coefficient addition, 
enables to recover the real position of these newly added vertices. Consequently the common 
representation of the wavelets consists in associating them with their corresponding coarse edges, as 
we can see in Fig. 5, on the first three decompositions of the Horse model. 

  

 

Figure 5:   (a) Original Normal Horse model; (b-d) Wavelet coefficients represented as 3D vectors (in red) linked to the edges 
of the first three decompositions (multiplication factor used to emphasize them: 10).  

 

Most of the actual state-of-the art mesh compression methods ([5] - [9]) apply a global wavelet 
decomposition (same lifting filters on the entire surface). Since the considered prediction schemes 
generate smooth finite surfaces, another kind of prediction, quantization and/or coding could be 
examined for the non-smooth parts of the mesh. We developed our segmentation process in this sense 



and considered only Normal Meshes in our study, since they have been proven to provide the best 
compression rates. 

 
3.3 Wavelet Coefficients seen as a Segmentation Criterion 
We propose to study the wavelet coefficient amplitude distribution in the "hierarchy" produced by a 
global MRA. Our goal is to create regions on the mesh surface with different degrees of roughness: 
reflected by the wavelet coefficient amplitude. We illustrate in Fig. 6, 7 and 8 the normalized 
distribution of the coefficient amplitude, on various resolution levels of the Horse and Venus models 
(remeshed by the Normal Mesh [24] algorithm).  

 

 
 

Figure 6:   Distribution of the wavelet coefficient norm, on the first resolution level of the Normal Venus model. (a) Original 
model; (b) Histogram of the normalized coefficient norms associated to every resolution level; (c) The Gaussian 
normalization method we used to define a confidence interval (in red); (d) Color scale used in this figure and the next ones.  
 

 
 

Figure 7:   Gaussian normalized distributions of the wavelet coefficient norm, on the first four resolution levels of the Normal 
Horse model.  



 
 

Figure 8:   Gaussian normalized distributions of the wavelet coefficient norm, on the first four resolution levels of the Normal 
Venus model.  
 

We applied a Gaussian normalization on the amplitude distributions (represented in Fig. 6, picture 
(c)), whose goal is to narrow extreme values. It hence allows to easier classify and segment a mesh 
with the considered criterion, since we can retain only the most represented samples. The application 
of this statistical technique (known as a confidence interval) is possible because the related histogram 
(depicted for the Venus model in Fig. 6, picture (b)) has a Gaussian-like normal distribution. Given 
the distribution averaging (  ) and the standard deviation (σ), 95% of the population is kept in the 
chosen confidence interval. 

On the globally smooth models we studied, the coefficient amplitude distributions allow to identify 
high curvatures characterizing the eyes, nose, mouth or ears, and also the object tips (neck or feet). 
This spreading emphasizes also the textured parts, such as the hair of the Venus head. These 
experimental amplitude distributions corroborate our previous hypothesis about the faculty of the 
subdivision surfaces to well predict the mesh smooth parts. Moreover even in globally smooth models, 
there remain some areas where other considerations should be employed. 

In the Horse and Venus first four resolution levels (Fig. 7 and 8), the same main features are 
underlined, but the fineness of these highlighted high frequencies is quite different in each level. Since 
we aim at producing a segmentation that identifies clearly the high frequencies lost during the 
coarsification process, a global consideration of all the coefficient amplitudes in the entire "hierarchy" 
is required. The segmentation algorithm we used in this context was conceived to apply on one mesh 
at a time. Consequently instead of segmenting all the approximations, we propose to compute an 
averaging of all the wavelet coefficient amplitudes.  

We chose to segment one of the coarsest resolution levels, for each coarse triangle to be assigned a 
unique region number. It gives us the opportunity to independently treat each produced region, without 
being forced to remesh them, in the case where a subdivision connectivity is not encountered. Hence 
the chosen coarse level determines the number of resolution levels involved in the patch-independent 
MRA. Considering this setting, the averaging rule we adopted is illustrated in Fig. 9. Each edge of the 
coarse level is then associated to two children edges (called fae in Fig. 9) in the immediately finer 
mesh. We applied a weighted averaging where each coefficient norm is multiplied by 2d, to take into 
account the decrease of the wavelets in the "hierarchy" (explained in Section 3.1) - d=0 for the 
coarsest edges and increasing integer values for the finer decompositions. 

 

x



 
 

Figure 9:   Wavelet "fine averaging association". For an edge en in a coarse decomposition, we compute an averaging of its 
wavelet norm and the norms of its finer associated edges (fae) in all the existing resolution levels.  

 

4. Wavelet-based Classification and Segmentation 
Given the wavelet norms, averaged on one of the coarsest decompositions, we used an extension of the 
algorithm developed by Lavoué et al. [28], to create mesh segmentation. This method is based on a K-
Mean classification [29].  

4.1 Mesh Classification and Segmentation Algorithms 
In the past twenty years, much work has been done in shape decomposition because of its utility in 
many computer graphic applications. These methods are usually designed to solve specific problems 
and are difficult to compare. Some applications use segmentation principles to simplify treatments like 
texture mapping, parameterization, mesh editing, deformation or compression on complex meshes 
with a high genus, for example. They are generally faster and more simple on surface patches 
homeomorphic to a disc. The partitioning criterion generally used in this setting is the discrete 
curvature or the planarity information. Our segmentation process uses a different criterion together 
with an adaptation of the classification and segmentation algorithms implemented by Lavoué et al. 
[28].  

They used a curvature tensor estimation [30] to compute the principal curvature values in each 
vertex. The produced segmentations delimit smooth regions surrounded by sharp edges on CAD 
objects. Our adaptation replaces this curvature criterion by our previously defined wavelet norm 
averaging. 

The K-Mean classification algorithm was first used to create two groups of vertices (referred as 
clusters): one with the smallest amplitudes (represented in dark blue in next figures, and referred as the 
smooth cluster) and the other with the highest ones (in light green). After several iterations, starting 
with two randomly determined centroïds, each vertex is then associated to a cluster Ci and a 
"roughness value" r i. Homogeneous connex patches are then deduced with a region growing and 
labeling algorithm adapted from [28]. More precisely, the studied measure is transmitted from vertices 
to triangles, starting from seed triangles whose incident three vertices belong to the same cluster. 
Thanks to this framework, a mesh decomposition in a small number of regions can be created at any 
given resolution level.  

4.2 Segmentation results 
We illustrate in Fig. 10 to 12 the different steps involved in our segmentation process, respectively for 
the Horse (113K vertices), Venus (164K vertices) and Skull (131K vertices) Normal models and also 
for the Lion Head model (676K vertices), remeshed uniformly by the recent algorithm developed by 
Kammoun et al. [22]. Colors used for the patches illustrated in Fig. 10 and 11 were randomly chosen. 
The arrows in the pictures serve to indicate which region will be further studied in the rest of the 



paper. The result of our averaging rule is depicted on meshes which have a various number of vertices 
(because different numbers of resolution levels were considered). It has a tendency to stump the 
isolated details (which can be considered as local geometric noise) and sharpen the very important 
ones (highlighted in various resolutions and close to the mesh saliency concept of Lee et al. [31]). The 
number of created patches is fully dependent on the choice of the coarse level. We examined different 
choices, to study the influence of the chosen coarse level, on the further detailed experimentations. 

 

 
 

Figure 10:   Illustration of the different steps involved in our classification and segmentation processes, on the 5th level of the 
Normal Horse model. (a) Averaging of the wavelet norms in the 5th level followed by (b) the K-Mean classification and (c) 
segmentation in 5 regions; (d) Fine projection of the segmentation on the SR original model whose features can be better 
appreciated with a Phong shading (e).  

 

 
 

Figure 11:   Illustration of the different steps involved in our classification and segmentation processes, on the 6th (left) and 
the 4th (right) levels of the Normal Venus model. (a, c, f) Averaging of the wavelet norms in a coarse level followed by (b, d) 
the K-Mean classification and (g) segmentation in 6 regions (on the 4th level). Three regions are obtained in the 6th 
decomposition (left). (e) Fine projection of the 4th level segmentation on the SR original model.  



 
 

Figure 12:   Illustration of the different steps involved in our classification and segmentation processes, on the 5th level of the 
Normal Skull model (top) and of the Lion Head model (bottom). (a) Averaging of the wavelet norms in the 5th level. The 
non-smooth region is depicted in green in the SR original model (b, d), whose features can be better appreciated with a Phong 
shading (c, e).  

 
Given the segmentations of the Normal models on a coarse level, the final stage of our pre-

processing consists in projecting the coarse regions on the original SR model. This stage is simply 
realized incrementally, resolution per resolution, where the four children facets associated to each 
coarse triangle are assigned the same cluster and region number as their father triangle. The resulting 
fine segmentations can now be the input of our patch-independent MRA, detailed in the following. 

 
5. Region-based MRA for Patch-Independent Reconstruction 
As a preliminary step of the development of a locally-based R-D optimized coding scheme, we 
propose to detail in this section the three different applications of the Butterfly stencil we examined 
close to the patch borders, during the region-based MRA and coding. In the next section, experiments 
are presented to study the influence of the non-refined parts of a mesh on the more detailed ones, 
considering each of these three rules for patch-independent decoding and more specifically in a view-
dependent reconstruction context. 

5.1 Butterfly stencil adaptations for region-based MRA 
In our first consideration (designed later by "No PB": for No Patch Borders taken into account), the 
unlifted Butterfly wavelet decomposition is realized as if any patch was defined. This rule is accurate 
if each region is quantized and/or reconstructed uniformly (with approximately the same L2 error 
orders, in each region). In other cases, an alteration of the quality of some regions can appear due to 
the influence of the "poor" quantization or reconstruction of their neighbors, for example.  

For these other cases (which don’t necessarily involve the same kind of quantization and 
reconstruction in each patch, like adaptive quantization or view-dependent reconstruction), we propose 
to examine two different adaptations of the Butterfly stencil close to the patch borders. These two 
adaptations (designed later by "PB") will be applied when each patch is seen as an independent non-
closed surface. With this latter setting, any region can influence its neighbors during the "non-
uniform" region-based reconstructions. 



Fig. 13 shows the amplitude and polar angle (the angle between each coefficient and its related 
surface normal vector) distributions for each of the three rules. We can deduce that the two predictions 
associated to the "PB" consideration (histograms on the middle and on the bottom) are not as good as 
the classical ("No PB") one (on the top), because the wavelet amplitude and polar angle distributions 
are generally more dispersed. The first rule we considered (close to the patch borders) uses two 
extensions of the classical Butterfly stencil (illustrated in Fig. 14) to predict the new vertices situated 
on the borders (picture (a)) or surrounded by extraordinary vertices (picture (b)), as it can appear close 
to the patch borders.  

 
 

Figure 13:   Amplitude (left) and polar angle (right) distributions in every resolution level of the Venus Normal segmented 
model (right segmentation of Fig. 11 considered). The red boxes highlight the differences noticed in the two "PB" 
distributions (middle: classical rule - bottom: our new rule), in comparison with the distributions for which the classical 
Butterfly stencil was used, without taking into account the patch borders (top).  

 
The goal of our new rule (designed later by "PB SYM") is to recreate the "missing coarse vertices" 

in the classical Butterfly stencil (illustrated in Fig. 2). These vertices are missing because we take into 
account the patch borders in the MRA. The position of these created "ghost vertices" is deduced from 
the other real coarse vertices involved in the Butterfly stencil. We illustrate in detail in Fig. 15 the 
concept we used for deducing them, with a tendency to favor the diagonal symmetry. We also 



enumerate all the possible cases we can encounter and for the ones for which a diagonal symmetry 
cannot be computed, we define an equivalent rule (illustrated with colors in the middle of Fig. 15).  

 

 
 

Figure 14:  (a) Special Butterfly stencil used to predict the red vertex, situated on the mesh border (for non-closed 3D 
meshes); (b) Extension of the classical Butterfly stencil for extraordinary vertices (scheme proposed by Zorin et al. [26]).  

 

 
 

Figure 15:   Definition of our new scheme, used when some of the coarse vertices are missing in the Butterfly stencil, due to 
patch borders (illustrated with big dashed lines). Top left: classical Butterffly stencil; Top right: method used to recreate the 
"missing coarse vertices" in the Butterfly stencil. We favor the diagonal symmetry (computed thanks to the red vertices in the 



next pictures), but for the cases where it is not possible, we define an equivalent rule (illustrated with colors in the middle of 
this figure). The different configurations are highlighted with big rectangles, when only a coarse vertex (top in red), two 
coarse vertices (middle in blue) or three coarse vertices (bottom in green) are missing.  

 
In Fig. 13, we can observe that our new rule distributions (on the bottom) are closer to the classical 

("No PB") ones (on the top). Moreover we have the possibility to perfectly decode some regions of a 
mesh while other are at the same time "poorly" reconstructed.  

 
 

5.2 Patch-Independent Wavelet Encoding and R-D optimization 
Fig. 16 presents the main steps of a wavelet-based coder for SR meshes. The principle is the 
following: i) the original irregular surface Mir is semi-regularly remeshed; ii)  the wavelet transform is 
applied to decompose the SR mesh Msr until we obtain the coarsest approximation (which represents 
the "low-frequency" subband); during this coarsification, many high-frequency details (the 3D wavelet 
coefficient subbands) are lost and must be kept to allow the reconstruction of the mesh; iii)  concerning 
the high-frequency subbands, we first quantize them and then apply an entropic encoder (Huffman, 
arithmetic, ...) to obtain a binary information; a scalar quantization is considered, so there are indeed 
three independent encoders (one for each coefficient coordinate); iv) the coarse mesh connectivity is 
then losslessly encoded separately with a single rate encoder (like the Touma and Gotsman [32] one). 

 

 
 

Figure 16:   Main steps of a wavelet-based coder for SR meshes. Q stands for the Quantization step. The geometry encoding 
is generally done under a constraint which can be user-defined or automatic. This parameter can be a file size [5], a rate [8, 
33], a reconstruction quality, etc.  
 
 

For wavelet coefficient quantization, we considered the Rate-Distortion (R-D) optimized coding 
scheme developed by Payan et al. [8] and based on a Lagrangian optimization. This algorithm 
minimizes the reconstruction error for a given bit budget, with an error-driven wavelet coefficient 
quantization. More specifically, we used their adaptation for region-based wavelet-encoding [11] so as 
to optimally quantize the wavelets and allocate the bits in each partition, considering each region 
distortion contribution with respect to the entire mesh surface. In this adaptation, little additional 
information need to be added: the number of created partitions, the coarse vertices situated in the 
borders, each partition cluster affiliation and the optimized quantization steps computed for each 
region.  

We also used the EBCOT encoding Payan et al. have adapted for SR meshes [8], before applying 
the arithmetic encoding. It allows to reduce the intra and inter-resolution correlation. Combined with 
their R-D optimization, it improves the encoding performance up to +2.5 dB in comparison with the 
original zerotree coder of Khodakovsky et al. [5]. 



Given all these encoding treatments, the data flow is now ready to be transmitted over the network 
and reconstructed on the client’s side. The analysis stages we have just described are reversed during 
the partition-based MR synthesis (and detailed in Fig. 1). It produces a more flexible reconstruction 
than with a global decoding.  

 

6. Experimental Results and Applications 
We present in this section, various experimental results we obtained with our application implemented 
in C++. It uses the Computational Geometry Algorithm Library (CGAL [34]) and more specifically 
the polyhedral surface package. These experimentations were obtained on the meshes we segmented 
with our wavelet-based partitioning algorithm, but any other kind of SR mesh segmentation could also 
have been considered, like the ones implemented by Sim et al. [9] or by Payan et al. [11]. 

We first propose a visual comparison (in Fig. 17) of the mesh distortion involved when we 
consider different wavelet decompositions close to the patch borders (detailed in the Section 5.1). 
Indeed the compression scheme we used (illustrated in Fig. 16) produces reconstructed meshes with a 
distortion, in comparison with the original irregular mesh. First an approximation error is involved 
during the remeshing step, moreover the geometric coding introduces also losses during the 
quantization stage. State-of-the-art mesh compression methods generally interpret this distortion as a 
geometric distance between the original irregular mesh Mir and the compressed SR mesh        . 

The Mean Square Error (MSE) for meshes (inspired from the Hausdorff distance) is generally used 
to evaluate this geometric distance. It corresponds to an average of the point to surface distance 
between two surfaces X and Y, given by this formula:  

 

  (3) 

where d(x,Y) is the Euclidean distance from a point x on X to the closest point on Y. Since this L2 
distance is not symmetric, we symmetrize it by taking the max of d(X,Y) and d(Y,X). In our context the 
MSE is hence given by the following equation (computed with the Mesh software [36]):  

  (4) 

In Fig. 17 we compare two different "view-dependent" reconstructions of the segmented Skull 
model (produced by the "No PB" consideration). Hence we computed the MSE with the Mesh 
software [36], on the entire Skull model (in comparison with the irregular original model), and also on 
its non-smooth cluster. In the left part, any prediction operator nor wavelets (only canonical 
quadrisections) were considered on the smooth cluster. Hence it can be interpreted as a non-visible 
part in a view-dependent consideration, whereas the other cluster is perfectly decoded. The only 
difference in the right part is that the Butterfly prediction was used in the smooth cluster. As expected, 
these pictures show that a less important distortion can be obtained with the Butterfly prediction, when 
patch borders are not taken into account during the MRA ("No PB").  
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Figure 17:   Mesh distortion on two different "view-dependent" reconstructions, presented on the entire mesh (top) and on the 
non-smooth cluster (bottom) of the Skull segmented model (illustrated in Fig. 12). Patch borders are not taken into account 
during the MRA (referred as the "No PB" consideration) and any wavelets are added on the smooth cluster. In the left 
pictures any prediction operator is considered, whereas in the right ones the Butterfly prediction is used. The colors depend 
on the magnitude of the local MSE, from the minimal (blue) to the maximal (red) value. These pictures were realized thanks 
to the Mesh software [36].  

 

This assumption is also confirmed by the Table 1. It results from a computation of the MSE for the 
"No PB" and "PB" considerations, with or without a Butterfly prediction on the smooth region(s). The 
distortion is presented for all the segmented models we previously commented, only for one of their 
non-smooth regions (indicated with an arrow in Fig. 10 to 12). In each studied mesh region, the 
smallest L2 errors (MSE) are emphasized with bold characters. The same errors are obtained in the last 
two columns, because we used a "PB" consideration which doesn’t depend on the prediction used in 
the neighboring smooth cluster and thus gives the smallest distortions. For each model, the "No PB" 
consideration associated with a Butterfly prediction in the smooth cluster always gives the better 
results than without any prediction. 

 
Table 1: L2 errors for the "No PB" and "PB" considerations, on the regions indicated with an arrow in Fig. 10 to 12. No 
prediction operator or the Butterfly prediction and no wavelets were considered on the smooth cluster, whereas the other 
cluster was decoded perfectly.  
 

 ’nb lev’ = number of resolution levels. 

’# Vsr’ = number of vertices in the SR mesh. 

’Butt’ = the Butterfly prediction was used in the smooth cluster.  

 
 nb lev # Vsr No PB No PB Butt PB PB Butt 

 Venus part. 6 21,545 9.053.10
−4

 4.107.10
−4

 8.301.10
−7

 8.301.10
−7

 

 Venus part. 4 76,193 1.345.10
−4

 1.015.10
−4

 1.456.10
−6

 1.456.10
−6

 

 Horse part. 5 7,857 6.414.10
−5

 5.616.10
−5

 7.775.10
−8

 7.775.10
−8

 

 Skull part. 5 56,865 5.260.10
−4

 3.433.10
−4

 5.990.10
−7

 5.990.10
−7

 

 Lion Head part. 5 239,054 2.094.10
−4

 1.582.10
−4

 7.630.10
−7

 7.630.10
−7

 

 



We finally present the bitrate-PSNR curves in Fig. 18 and 19, computed by only taking into 
account the non-smooth region of the segmented Skull and Lion Head models (the Butterfly prediction 
is used -without any wavelets- in the smooth region). The bitrate is reported with respect to the 
number of vertices in the semi-regular (SR) mesh. These curves were obtained with the view-
dependent geometry coding (developed by Payan et al. [11]), which we adapted to our segmentation 
process. 

For a comparison of the compression performances on objects with different sizes, we use the 
PSNR (Peak Signal to Noise Ratio) measured in decibels (dB). It computes the ratio between the signal 
dynamic and the reconstruction error: the lower the error is, the higher the PSNR is. The PSNR for 
triangulations is given by the following formula:  

  (5) 

where BBdiag is the original mesh Bounding Box diagonal. 

The results we deduced from the Table 1 are confirmed by the repartition of the curves (the "PB" 
consideration gives the best results at any bitrate). Moreover we can notice that our new prediction 
scheme (associated to the "PB SYM" consideration) performs better than the other "PB" rule, for 
patch-independent reconstruction purposes. For the "No PB" consideration, we can see that the two 
curves in Fig. 18 reach quickly their asymptotic value which is linked to the L2 errors illustrated in the 
bottom part of the Fig. 17.  

 

 

 
 

Figure 18:   Bitrate-PSNR curves for the non-smooth region of the segmented Skull model, where the Butterfly prediction is 
used (without any wavelets) in the smooth region. The bitrate (reported in bits/SR vertex) corresponds to the bit allocation 
after quantization, with respect to the number of vertices in the SR non-smooth patch.  
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Figure 19:   Bitrate-PSNR curves for the non-smooth region of the segmented Lion Head model, where the Butterfly 
prediction is used (without any wavelets) in the smooth region. The bitrate (reported in bits/SR vertex) corresponds to the bit 
allocation after quantization, with respect to the number of vertices in the SR non-smooth patch.  
 
 
 

For image and video lossy compression, the MSE is most often chosen as a quality measure 
because it is well adapted to these data and reflects the visual quality even at low compression rates. 
But it is more complex for 3D meshes, since a distortion metric cannot consider only the mesh 
geometry, because the visual quality also depends on the mesh connectivity, curvature, smoothing, ... 
Fig. 20 illustrates this problematic where the two objects have the same MSE (e1), but the first 
reconstruction (in the middle) better preserves the sharp features (feet and head of the Horse model). 
This latter reconstruction has been produced by our framework, where a more important number of 
bits were allocated in the identified "non-smooth" regions than for the rest of the body. On the other 
hand, the second reconstruction (on the right) was produced by a global encoding of the mesh. The 
Horse head was zoomed in, to better appreciate it. 

In the figure we also mention a second distortion measure (e2), called MSDM and introduced by 
Lavoué et al [37] in 2006. MSDM uses geometric metrics, based on curvature analysis computed on 
local spherical windows in the analyzed mesh. Similar objects have a distortion close to zero. The 
score obtained by our patch-based reconstruction seems to better reflect the perceptual distance, the 
MSE cannot reveal. In 2010, Benhabiles et al [38] have proposed an extensive experimental 
comparison of existing similarity metrics for 3D meshes. This comparative study includes a subjective 
experiment with human observers, to evaluate these metrics according to several criteria.  

 



 
 

Figure 20:   Comparison of two different reconstructions of the Horse Normal model based on a local (middle) and a global 
(right) wavelet decomposition. The reconstruction presented in the middle, was produced with our framework on the 
segmented Horse model. Here the Butterfly prediction is followed by a wavelet addition only in non-smooth regions. We 
have reported the corresponding distortion errors e1 and e2, which correspond respectively to the MSE (in units of 10-4) and to 
Lavoué et al.’s MSDM metric [37].  
 

 

7. Conclusion and Future Work 
A new wavelet-based segmentation algorithm for SR meshes was introduced as a pre-processing step 
in a patch-independent progressive decoding of 3D meshes. Our segmentation process aims at 
constructing regions with different degrees of roughness, reflected by the wavelet coefficient 
amplitudes (associated to each resolution level). As a preliminary step of the development of a locally-
based R-D optimized coding scheme, we have studied the behavior of the wavelet decompositions in 
the created regions, during the patch-independent decoding and more specifically the view-dependent 
reconstruction process. We particularly investigated three different possible wavelet decompositions, 
close to the patch borders. One of them is a new consideration and has given the best results for two 
3D objects remeshed by two different algorithms. 

As an extension of the current work, some future research can be performed in the following areas. 
First, we may consider the patch-independent R-D optimized compression and coding, which could 
benefit from our new rule, because an independent quantization in each partition will probably allow 
to reduce the global distortion. New prediction schemes and coding techniques could be proposed for 
the non-smooth regions (where the predictions with actual subdivision schemes can be improved), 
together with more subjective distortion metrics, based on human vision and emphasized at the end of 
the previous section. Our goal will be to improve the compression bitrates on natural objects, which 
can be composed of non-smooth textured parts. A possible issue could consist in conceiving a 
statistical analysis model of the surface. The critical elements could hence serve to regenerate the same 
visual aspects and high frequencies of the studied surface. Another interesting consideration would be 
to take into account the surface anisotropy, to better predict shapes with features like sharp creases, 
corners or rough textures. Moreover, a fractal analysis could also be adopted in noisy regions. We 
could also conceive our segmentation process differently, by better analyzing the decrease of the 
wavelets and their relation to the surface discrete roughness or saliency. 



Finally other applications could benefit from our patch-based MRA, like watermarking. It would 
allow to apply different marks according to the visual aspect of the surface, given the fact that a 
textured (or rough) region is able to hide geometric distortions much better than a smooth one.  
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