N

N

A Study on Patch-Based Progressive Coding Schemes of
Semi-Regular 3D Meshes for Local Wavelet
Compression and View-Dependent Transmission
Céline Roudet

» To cite this version:

Céline Roudet. A Study on Patch-Based Progressive Coding Schemes of Semi-Regular 3D Meshes for
Local Wavelet Compression and View-Dependent Transmission. Journal of Multimedia Processing
and Technologies, 2010, 1 (4), pp.278-297. hal-00635232

HAL Id: hal-00635232
https://hal.science/hal-00635232

Submitted on 24 Oct 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00635232
https://hal.archives-ouvertes.fr

A Study on Patch-Based Progressive Coding SchemeisSemi-Regular 3D Meshes for
Local Wavelet Compression and View-Dependent Transission

Céline Roudet

UFR Sciences et Techniques

Université de Bourgogne, LE2I

9, Avenue Alain Savary

BP 47870 - Dijon, F-21078

France

Celine.Roudet@u-bourgogne.fr

Abstract: This paper firstly introduces a wavelet-based segpation for three-dimensional (3D) Semi-Regul&®)$eshes,
as a pre-processing step, in a region-independesgnessive coding algorithm. The proposed segmiamtgirocess aims at
producing homogeneous regions with respect to fheguency amplitudes on the mesh surface, in atloeds: patches with
different degrees of roughness. We have then sttldéebehavior of the wavelets, obtained duringiidependent coding of
each region, especially close to the patch bouredarThe main contribution of this paper consistcamsidering three
different possible wavelet decompositions, closeh region borders, and to study their influenceimy the patch-

independent decoding and more particularly durimg tview-dependent reconstruction process. To owwladge, no

previous work has ever considered the influencéhefrion-refined parts of a mesh on the more detaitegs, in a view-
dependent context. Among the three decompositiohsveeconsidered, we defined a new scheme and fangllyse various
experimentations to demonstrate that it behave®bttan the other classical considerations.

Keywords: Geometric wavelets; multiresolution asaly lifting scheme; progressive coding; mesh sedgati®n; view-dependent
reconstruction.

1. Introduction
Three-dimensional (3D) objects and scenes find thiay into more and more applications, thanks to

the ever increasing bandwidth available in modetacommunication networks, such as the High
Speed Internet, or 3G mobile networks. These kiofilsnodels are not only used in medical
applications and entertainment (video games or atiom films), but also for industrial purposes like
car industry (Computer Aided Design framework), imion or virtual environment contexts.

The triangular mesh, which is a piecewise approtionaof a 3D object shape defined by a set of
planar triangular facets, is actually the most cammepresentation for these objects and scenes. Thi
can be explained because it is a simple and efteatiodel for many applications, like rendering for
example. It includes geometry (vertex positions)l @onnectivity data which can be expensive in
terms of computation, storage, transmission andenéng, even with today devices and networks.

Consequently in literature, many progressive mashpression and transmission schemes have
been proposed (including [1] - [9]), to represeatadwith multiple Levels of Detail (LOD). With this
representation, a coarse approximation can substygle further improved depending on the user’'s
devices (network channel and visualization termiaad expectations. This scalable representation is
commonly obtained with a wavelet transform ([4P})[ because it produces a good decorrelation of
the data. The best compression rates on 3D mestescuarently obtained with a wavelet
decomposition, also called Multi-Resolution Anasy@i1RA) on Semi-Regular (SR) structures.

MRA transforms a signal into a set of approximagi@md a set of "details". Hence, it allows to
encode not the signal itself, but a coarse appratan (low-frequency signal) and a set of subbands
of high frequency details (wavelet coefficientsheTinformation carried by these coefficients isles
correlated, that's why it enhances the compresg@formance. A triangular mesh generally has an
irregular connectivity. To our knowledge, only omgorithm [4] directly applies the wavelet
transform on irregular meshes, because better @ssijon results can be obtained on SR structures,
like in [5] - [9]. A remeshing stage is used toample the initial models and produce SR meshes, in
which the valence of most vertices is equal to Ehe cited SR mesh compression methods can hence



benefit from a very compact representation of thienectivity information and usually use a zerotree
and an entropic coding algorithms [13] to compréiss geometry data (regarded as wavelet
coefficients).

Most of the state-of-the-art wavelet-based SR noeshpression algorithms ([5] - [8]) consider a
global wavelet decomposition on the mesh surfadeerGthe perpetual increasing expectations of
realism imposed by applications and users, inangiscomplex geometric models, embedded in the
3D Euclidean space are required. The underlyingatbjare consequently represented numerically
with more and more precision and details. Consdatjueirew-dependent compression, transmission
and rendering methods ([9] - [12]) have recentlyemyad, to accelerate the huge amount of
computations involved in this context. The prineiptonsists in considering the user’'s viewing
frustum, to more refine the object regions or sqeemts that face toward the viewer. Hoppe [12] was
one of the first to introduce the concept of viepdndent simplification and refinement, for fastl an
efficient rendering of 3D irregular meshes (repnésé with the Progressive Mesh (PM) [1] structure).
Initially, the coarsest mesh is rendered. Thendlgerithm iteratively checks whether each vertex
need to be further refined, according to the useewing frustum.

More recently, several view-dependent compressiod &ansmission algorithms have been
developed for SR meshes [9] - [11]. Gia& al. [10] proposed a wavelet-based view-dependent
transmission and visualization algorithm wherewlaelet coefficients can be added or suppressed in
real-time on a partially reconstructed mesh. Heheaeconstruction of large meshes can be optimized
by allocating a major portion of the available baitth to visible parts.

Simet al.developed in 2005 a rate-distortion (R-D) optirdizéew-dependent SR mesh streaming
method [9]. One of the key points is to add a parting of the SR mesh into many segments, in order
to optimally allocate bits during the compressioagess. Another advantage is to give the possibilit
to progressively transmit the segments indepengeautcording to the client’s viewing position. This
region-based R-D optimization scheme improves tbaventional wavelet-based compression
algorithms for SR meshes ([5], [6]). The authorasidered the same constrained allocation problem
as in [7] and [8], to formulate their R-D optimiizat. Moreover, the server can allocate an adaptive
bitrate to each segment (based on its visibilitpry), to facilitate the interactive streaming 8D
data. More recently, another view-dependent gegnuoetding of static 3D scenes (defined by sets of
semi-regular meshes) was proposed by Pa&yaal. [11]. The proposed coding scheme combines a
segmentation for determining the visible regionsd @n allocation process (detailed in [8]) for
improving the visual quality of the encoded scene.

These two previously cited region-based view-depahdoding methods [9] and [11] define two
different segmentations: the first one is fixedidgrthe encoding process, whereas the second one is
computed for a determined viewing frustum. In {eger, we introduce a new SR mesh segmentation
algorithm (adapted from the one detailed in [14)Je also propose to study the behavior of the
wavelets in the created regions, during the patdependent decoding and more particularly during
the view-dependent reconstruction process. Our sagtion stage can be seen as a pre-processing
step and is not dependent on the user’s viewingigosit aims at producing homogeneous regions
which share similar frequency amplitudes on thehrgsface, in other words: regions with different
degrees of roughness.

None of the two previous algorithms ([9] and [14hd no other paper (to our knowledge) has ever
considered the influence of the non-refined pafta snesh on the more detailed ones, in a view-
dependent context. In the wavelet-based SR meslkpression setting, a subdivision scheme is used



as a prediction operator during the MRA, to redtlee details lost during this coarsification process
(regarded as wavelet coefficients). The most ugedigtion scheme for SR meshes is the Butterfly
subdivision stencil [15] (illustrated iRig. 2 (picture (b). The main contribution of this paper consists
in considering three different possible applicagiani this stencil, close to the patch borders, tand
study their influence during the independent codiofy each region. We propose various
experimentations to demonstrate that, among these tschemes, the one we have developed can
reduce the bandwidth requirement for 3D mesh petdbpendent decoding and view-dependent
reconstruction.

The remainder of this paper is organized as follals begin by an overview of the different parts
of our algorithm, followed by an explanation of thRA on meshes iSection 3which produces the
wavelet coefficients. The wavelet-based segmemtadigorithm we developed is then described in
Section 4 The different patch-aware applications of thet&tity prediction are detailed iSection 5
Experimental results are presentedaction 6together with possible applications of our fraroew
As a conclusion, discussions and ideas for futweware given irBection 7

2. Overview of the Proposed Algorithm

Fig. 1 illustrates the main stages of the proposed frasnewThe algorithm principle is described
hereinafter. In this work, an input irregular medh is first resampled into a SR structuvg,. Our
wavelet-based shape partitioning (whose stepsegeesented in purple iRig. 1) uses the second
generation wavelet formulation (detailedSection 3. It aims at constructing homogeneous regions,
regarding the wavelet coefficient amplitude.
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Figure 1: Main features and stages of our frammkwdnich aims at locally coding and transmittinGB& mesh\V, (remesh
of the original irregular mode¥;,). Our framework minimizes the reconstruction effiara given bit budget (target rate),
with an error-driven wavelet coefficient quantipati(@). This allows a flexible reconstructidn,.. at the decoder side, where
a view-dependent rendering can, for example, beidered. To measure the quality of the reconstdugtesh at a given rate
we use rate-distortion/¢l) curves (an example is givenhig. 18).

These coefficients are produced by a global MRActvidlecomposes the SR models into n coarser
meshesv*, M?, ..., M'and a sequence of "details": the wavelet coefiisieThis set of approximation
meshes is called hereinafter: "wavelet decompasiti@rarchy” or in a simplest way: "hierarchy".
Each coefficient, associated to a given resolukwel, reveals the high frequencies lost during the
mesh simplification.

The goal of our underlying segmentation is to idgnthe mesh parts where the wavelet
coefficients could be further reduced thanks tdedént decomposition, quantization and/or coding
schemes, which are the major steps involved inptiogressive compression process. We chose to
segment one of the coarsest miktiof the produced "hierarchy"”.



The segmentation criterion we considered is theramieg of all the wavelet coefficient
amplitudes: associated to each mesh of the "higy3rstarting withM® (detailed inSection 3.3
Given the segmentation on a coarse resolution,l@v&he projection is finally used to partitioneth
finest mesh (the SR original mesh) with the sane fithis pre-processing step gives us the podsibili
to apply a partition-independent coding and tragsian (represented in bluefing. 1).

On the synthesis side (represented in gredrignl), after an independent decoding, the coarsest
patches are glued and inversely wavelet transforréd reconstructed objed,.. can finally be
compared to the original one, so as to evaluatdigtertion.

3. MR Analysis on SR Meshes

In this section, we first detail the theory invadveo produce wavelet coefficients on SR structures,
with a lifting scheme formulation (second genematiwavelets). A SR mesh is obtained thanks to a
remeshing stage, which consists in resampling @otimodel (with irregular connectivity). We
present then the concept of the state-of-the-artr&@Reshing and MRA algorithms. We finally
describe the averaging rule we applied to repreaéinthe details lost during this simplification
process, in only one coarse mesh of the "hierarchy"

3.1 Wavelet Theory and Lifting Scheme

The MRA produces a reversible mesh decomposititm énseries of approximation meshes and a
sequence of details: the wavelet coefficients. <ita MRA methods, such as wavelet transform,
were formerly formalized with the filter bank thgoilLow-pass and high-pass filters are applied to
obtain respectively the approximations and theildetéor a discrete signalt), its Wavelet Transform

is explained by this formulation :

WT[s(OI(m.n) = a,2 [ "s(tw * (3"t - nby)alt (1)

wherem, ne Z and correspond respectively to the scale anddnslation parameters (used to analyze
the signal in the time/frequency domaiay>1, by >0 andy* corresponds to the complex conjugation
of .

The choice ofa, and by produces different tilings of the time-frequendgane. The most used
technique is the dyadic analysis, introduced byl&t4l6] in 1989 to link the wavelets and the filte
bank theories, whera,=2 andby=1. This MRA formulation, defined for finite energurictions, is
formally described for a series of imbricated sategs (V™),, O L°(R) in which an orthonakm
scaling function basis is determined. This functiamily {¢™"; n € Z} is defined by dilations and
translations of a mother scaling functipft) and expressed by the following formud™\(t) = 2™
p(2"t - n)

The orthogonal projection af(t) into the scaling function family forms a set ofpagximations,
obtained by the application of a low-pass filtdidaed by a uniform subsampling (used in a cascade
algorithm launched on the sigrsgt)). To recover the high frequencies lost after thgliaation of the
low-pass filter, we have to take into account WWespace, which is the orthonormal complements of
the V' space in th&/™*one, for any approximation in the levielThe wavelets, defined hy™t) =
2™2 (2™t — n), form an orthonormal basis of the"Vgpaces and are used as high-pass filtering in
order to collect the missed details.



For compression purposes, it is interesting to fieftom wavelets which have at least one
vanishing moment, to benefit from a decrease ofsaeelet coefficients through the resolution levels
The orthogonality of the wavelets with the scalingctions is also an interesting property becatse i
allows to obtain the best approximations in a legsiare sense, which is important for visualization
and to improve coding performances. This orthogaatibn means that¢", y"*>= 0 for each pair
(i,k) € Z* (where<f,g> is defined as the inner product between the fanstf and g). Considering the
filter bank theory, it's not always possible to stmct analysis tools with such properties.
Consequently most of the methods have benefited fhe lifting scheme formulation, introduced by
Sweldens [17]. It moreover reduces computationatscand memory allocation, by first splitting the
signal G operator inFig. 2, picture (a) into even and odd components using lazy wavelgts.
following lifting steps P andU operators irfFig. 2, picture (a) produce a modification of this lazy
wavelet basis in order to add the desired propefiie referred previously). These operations are
equivalent to a factorization of the pair of thengdex filters in the filter bank theory. They caa b
simplified by the lifting formulation with finiteiters. Hence, the multi-resolution synthesis gy
obtained by an inversion of the order and sigrhefanalysis lifting operators.
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Figure 2: (a) Principle of the lifting scheme five decomposition of a fine mesk'j into a coarser oneM?). D¥*
represents the details lost during the simplifaati(b) The most used prediction operator on SR ewsthe Butterfly
subdivision stencil [15], which allows to predibetposition of each newly added (odd) vertiexréd) thanks to its coarser
(even) neighbors.

The prediction operatoiP} is used to predict odd components from even aiesptain smaller
coefficients by better approaching the higher lemeth than with a canonical quadrisection. The most
used prediction operator on SR meshes (the Buyttecfieme [15]) is illustrated #rig. 2 (picture (b).

The update operatotJf is used to preserve the mean value of the signél corresponds to the
addition of the previously cited properties, likehmgonalization of the scaling functiopswith the
waveletsy.

This latter property is applied to minimize the maof the orthogonal projection of thé' on theV!
spacesii, jLJZ , with respect to the immeduct. Hence the wavelets are expressed by:

lﬂij =¢ij+1+ Zaik¢kj (2)
kOO,
withUJ; defined as the set of vertices df M
The coefficientsy of this previous equation are the solution of &dinsystem which depends on

the desired properties. In practice, the orthogpatibn is relaxed in order to obtain finite filseror
compression purposes, the decomposition ends up avitormalization stepNj, which is used to



adjust the scale between the odd and the evenideaf, so as to decompose the surface in a
normalized basis.

One of the lifting scheme advantages is that itlma@applied to irregular point sets like meshes. In
practice, we use a resampling of the irregular mestknown as remeshing), to regularize the
connectivity and to benefit from a more compactespntation of the connectivity data.

3.2 Remeshing and Wavelets on Meshes

Even though wavelets are commonly used in imageideo processing, applying wavelets on
triangular meshes is not trivial, because of thegular sampling of most of them. MR analysis for
triangle meshes with arbitrary topology was introetl by Lounsbery [18] who demonstrated that a
subdivision scheme can serve as a scaling funtizmis to extend the wavelet theory for irregular
sampled signals like meshes. The compression peafares are then highly dependent on the quality
of the parameterization defined during the SR rdrngs

Even though wavelets for irregular meshes were ggeg in [4], the most popular technique to
overcome the problem is the semi-regular remeshihg. principle is to modify the triangulation to
make the connectivity as regular as possible.rtlEdone by resampling the shape geometryhy
moving the vertices onto the surface, while kee@irsR connectivity (constructed with a subdivision
scheme). By this way, the majority of vertices haggular neighborhood (valence is equal to six). |
improves the efficiency of the subsequent wavelelysis on the given triangulated surface, but also
highly eases the connectivity encoding, most oftiwiecomes implicit.

As a proof, Khodakovskegt al. ([5, 6]) explain that a SR remeshing followed bwavelet-based
compression stage tends to reduce the geometoaseaction error by a factor four, for one specifi
compression ratio, when compared to the stateenthconnectivity preserving methods. Hence, this
is not surprising that the best mesh coders are/éivelet-based coders for SR meshes ([5] - [9]).

All the SR remeshers for triangulated surfacesbaised on the same idea. They aim at reducing
the parametric information (tangential set of waveloefficients), to describe the surface with only
the geometric information. For that purpose, a ngsiplification is used to produce a coarse mesh
(called the base complex) on which the input maglphrameterized. The principle (illustratedfy.

3) is the following:i) an irregular mesM; is first simplified to obtain a coarse base comdg on
which the original vertices d¥l;, are projected during the parameterization stageach triangle of

S is then subdivided by triangle quadrisection, aadh new regular vertex added by subdivision is
moved on the original surface by using the pararizetiion previously determined.
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(a) (b) (c)
Figure 3: Overview of a semi-regular remeshing.rEaertex in the area bounded by white curves (grdgected in one

triangle of the base complex (black dots on (blle BR mesh (c) is then obtained by iterative subidiniand by mapping
the new vertices onto the surface using the paexmation. Image of [9].



By iterating several times this second step, akatore and more detailed approximatiogs S,
S,, ... is created. This refinement step is stoppkdnithe surface modeled by an approximation is fine
enough to be geometrically or visually similar toetsurface modeled b;,. The resulting
approximation is the output SR mddlg. Even though the two meshigls andMg, represent the same
surface, a remeshing error remains, obviously geaig if the remeshing stage is efficient.

During the simplification stage, two approachesgeeerally proposed to obtain the base complex
with a topology similar to the original shape: eitfby constructing on the initial object a mesh
chartification followed by a patch simplificatiodq, 20, 21, 22] or by applying topology-preserved
progressive decimations [23, 24, 25]. During thigps a parameterization function is defined to
minimize the distortion when mapping each curvediese to its associated coarse triangle in the base
complex. The challenge consists in minimizing tistaition produced during the parameterization of
the input model, when mapping each curved surfacést associated coarse triangle in the base
complex.

The Normal Mesh algorithm [24] we considered tcagbtmost of the SR models presented in this
work belongs to the second class and uses iteratilffeedge collapses to decimate the vertices. The
main contribution of this method lies in the refiment step. The authors first propose to subdivhde t
triangles of the base complex using the interpaojpButterfly scheme [15, 26]. Once positioned with
this technique, the new vertices are then movedgatbeir normal direction until they "pierce" the
original surface. This refinement step is repeatceral times until we get a final SR output waiv|
distortion, called a Normal Mesh.

The Normal Meshes are particularly relevant for pogssion ([27, 6, 8]). Indeed, if the unlifted
Butterfly wavelet transform is applied during arsady the wavelet coefficients produced are
guaranteed to be in the local normal directionser&fore thex andy coordinatesi(e. the tangential
components) of the coefficients are equal to zand, the geometry information is fully representgd b
thez coordinatei(e. the normal component). Hence, only one singleasqar vertex must be encoded
instead of three. That's why this algorithm curlgnproduces one of the best remeshes for
compression purposes, but only for closed surfadésh have uniform triangles.

Since the Lion Head original model has non unifdrmangles (as illustrated ifrig. 4), we
considered another remeshing algorithm to obtagoed SR model. One of the most recent SR
remesher, developed in 2010 by Kammetiral. [22], includes a pre-processing step to resantyge t
irregular mesh and solve the problem of non uniftiiangles. Their SR remesher belongs to the first
class and creates a coarse Voronoi partition omtiggnal mesh in order to simplify it and form the
base complex with the dual construction: the Dedgunriangulation. At the same time, a
parameterization function is defined to minimize thistortion when mapping each curved surface to
its associated coarse triangle in the base congidxs used to refine it after applying a subdonsi
step.

Given SR meshes with the fewest connectivity andhrpatric data to encode, efficient data
structures and processing algorithms are usedttolgser to the methods used for data sampled on
regular grids. The application of the MRA on SR hess resulting from these latter algorithms, and
mainly used for progressive compression purposas,be based on various subdivision schemes.
Most of the existing methods have benefited froterjpolating subdivision filters (and in the most
cases from the Butterfly stencil) for the low-rag@n versions to be good approximations of the
original object (in a least-squares sense). Inrotads, to provide numerical stability of the ifitg



operation and to have a more stable wavelet cartiiru for practical applications than with
approximating schemes.

(a) (b) (©)

Figure 4: (a) Original irregular Lion Head modelth€r views are proposed to better appreciate the-uniform
triangulation, where big triangles can be seerhertap (b) and on the bottom (c) of the head.

Each mesh refinement, processed during the MR egighis based on canonical quadrisections
applied on every facet. This one-to-four triangbastruction consists in adding three new vertices i
the middle of each coarse edge. The predictionabioer, followed by the wavelet coefficient additjon
enables to recover the real position of these neadgled vertices. Consequently the common
representation of the wavelets consists in assogigdhiem with their corresponding coarse edges, as
we can see ifrig. 5, on the first three decompositions of the Horseleho

e
RS

e,

@ (b)

Figure 5: (@) Original Normal Horse model; (bWilavelet coefficients represented as 3D vectorse() linked to the edges
of the first three decompositions (multiplicatiacfor used to emphasize them: 10).

Most of the actual state-of-the art mesh compressiethods ([5] - [9]) apply a global wavelet
decomposition (same lifting filters on the entingface). Since the considered prediction schemes
generate smooth finite surfaces, another kind efiption, quantization and/or coding could be
examined for the non-smooth parts of the mesh. eldped our segmentation process in this sense



and considered only Normal Meshes in our studycesiiney have been proven to provide the best
compression rates.

3.3 Wavelet Coefficients seen as a Segmentation &rion

We propose to study the wavelet coefficient amgétdlistribution in the "hierarchy" produced by a
global MRA. Our goal is to create regions on thesimeurface with different degrees of roughness:
reflected by the wavelet coefficient amplitude. \Wastrate in Fig. 6, 7 and 8the normalized
distribution of the coefficient amplitude, on varoresolution levels of the Horse and Venus models

(remeshed by the Normal Mesh [24] algorithm).
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Figure 6: Distribution of the wavelet coefficiemdirm, on the first resolution level of the Normvanus model. (a) Original
model; (b) Histogram of the normalized coefficiembrms associated to every resolution level; (c) Thaussian
normalization method we used to define a confidentaval (in red); (d) Color scale used in thisufig and the next ones.

Figure 7: Gaussian normalized distributions efwavelet coefficient norm, on the first four regain levels of the Normal
Horse model.



(d)

Figure 8: Gaussian normalized distributions efwavelet coefficient norm, on the first four regain levels of the Normal
Venus model.

We applied a Gaussian normalization on the ammitidtributions (represented kig. 6, picture
(c)), whose goal is to narrow extreme values. It healmvs to easier classify and segment a mesh
with the considered criterion, since we can retaily the most represented samples. The application
of this statistical technique (known as a confideimterval) is possible because the related hiatagr
(depicted for the Venus model Fig. 6, picture (b) has a Gaussian-like normal distribution. Given
the distribution averagingX) and the standard deviatios),( 95% of the population is kept in the
chosen confidence interval.

On the globally smooth models we studied, the dciefit amplitude distributions allow to identify
high curvatures characterizing the eyes, nose, Imoutars, and also the object tips (neck or feet).
This spreading emphasizes also the textured psutsh as the hair of the Venus head. These
experimental amplitude distributions corroborate ptevious hypothesis about the faculty of the
subdivision surfaces to well predict the mesh simgairts. Moreover even in globally smooth models,
there remain some areas where other consideratiungd be employed.

In the Horse and Venus first four resolution lev@tgy. 7 and §, the same main features are
underlined, but the fineness of these highlightigth frequencies is quite different in each levéhcs
we aim at producing a segmentation that identite=arly the high frequencies lost during the
coarsification process, a global considerationliatha coefficient amplitudes in the entire "hiestay"
is required. The segmentation algorithm we usetthisrcontext was conceived to apply on one mesh
at a time. Consequently instead of segmentingha&ll approximations, we propose to compute an
averaging of all the wavelet coefficient amplitudes

We chose to segment one of the coarsest resoletefs, for each coarse triangle to be assigned a
unique region number. It gives us the opporturdtindependently treat each produced region, without
being forced to remesh them, in the case wherédi\gsion connectivity is not encountered. Hence
the chosen coarse level determines the numbersofution levels involved in the patch-independent
MRA. Considering this setting, the averaging ruke adopted is illustrated iig. 9. Each edge of the
coarse level is then associated to two childreregdgalledfae in Fig. 9) in the immediately finer
mesh. We applied a weighted averaging where eaefiicent norm is multiplied by, to take into
account the decrease of the wavelets in the "lueyar(explained inSection 3.1 - d=0 for the
coarsest edges and increasing integer valuesddirthr decompositions.



Figure 9: Wavelet "fine averaging associatiordr Bn edges, in a coarse decomposition, we compute an averagfiitg
wavelet norm and the norms of its finer associatdges fae) in all the existing resolution levels.

4. Wavelet-based Classification and Segmentation

Given the wavelet norms, averaged on one of thesesadecompositions, we used an extension of the
algorithm developed by Lavowt al.[28], to create mesh segmentation. This methdésed on a K-
Mean classification [29].

4.1 Mesh Classification and Segmentation Algorithms

In the past twenty years, much work has been dorshape decomposition because of its utility in
many computer graphic applications. These methoelsisually designed to solve specific problems
and are difficult to compare. Some applicationssesgmentation principles to simplify treatmentg lik
texture mapping, parameterization, mesh editindordeation or compression on complex meshes
with a high genus, for example. They are genertdster and more simple on surface patches
homeomorphic to a disc. The partitioning criteriganerally used in this setting is the discrete
curvature or the planarity information. Our segménh process uses a different criterion together
with an adaptation of the classification and segat@n algorithms implemented by Lavoeé al.
[28].

They used a curvature tensor estimation [30] tomdm the principal curvature values in each
vertex. The produced segmentations delimit smoetfions surrounded by sharp edges on CAD
objects. Our adaptation replaces this curvatureergsn by our previously defined wavelet norm
averaging.

The K-Mean classification algorithm was first udedcreate two groups of vertices (referred as
clusters): one with the smallest amplitudes (regrtedd in dark blue in next figures, and referrethas
smooth cluster) and the other with the highest dmesight green). After several iterations, stagfi
with two randomly determined centroids, each veitexhen associated to a clustér and a
"roughness valuet;. Homogeneous connex patches are then deducedawidgion growing and
labeling algorithm adapted from [28]. More precgyse¢he studied measure is transmitted from vertices
to triangles, starting from seed triangles whosddient three vertices belong to the same cluster.
Thanks to this framework, a mesh decomposition small number of regions can be created at any
given resolution level.

4.2 Segmentation results

We illustrate inFig. 10 to 12the different steps involved in our segmentatiarcpss, respectively for
the Horse 113K verticey Venus (64K verticesand Skull {31K vertices Normal models and also
for the Lion Head modeb{6K vertice remeshed uniformly by the recent algorithm deped by
Kammounet al.[22]. Colors used for the patches illustratedrig. 10 and 11were randomly chosen.
The arrows in the pictures serve to indicate whiggion will be further studied in the rest of the



paper. The result of our averaging rule is depictedneshes which have a various number of vertices
(because different numbers of resolution levelsewaonsidered). It has a tendency to stump the
isolated details (which can be considered as Igeaimetric noise) and sharpen the very important
ones (highlighted in various resolutions and closthe mesh saliency concept of lateal.[31]). The
number of created patches is fully dependent orchioéce of the coarse level. We examined different
choices, to study the influence of the chosen eolassel, on the further detailed experimentations.

Figure 10: lllustration of the different stepsafved in our classification and segmentation psses, on the'5level of the
Normal Horse model. (a) Averaging of the waveletnm®in the # level followed by (b) the K-Mean classificationdafc)
segmentation in 5 regions; (d) Fine projectionta segmentation on the SR original model whose ffeatcan be better
appreciated with a Phong shading (e).

Figure 11: lllustration of the different stepsafved in our classification and segmentation psses, on the™(left) and
the 4" (right) levels of the Normal Venus model. (a,)cAferaging of the wavelet norms in a coarse Idokbdwed by (b, d)
the K-Mean classification and (g) segmentation ime§ions (on the % level). Three regions are obtained in tH& 6
decomposition (left). (e) Fine projection of tH&ldvel segmentation on the SR original model.
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Figure 12: lllustration of the different stepsafved in our classification and segmentation psses, on the'5level of the
Normal Skull model (top) and of the Lion Head mo(@wdttom). (a) Averaging of the wavelet norms ie 8l level. The
non-smooth region is depicted in green in the SBral model (b, d), whose features can be betteremjated with a Phong
shading (c, e).

Given the segmentations of the Normal models oroase level, the final stage of our pre-
processing consists in projecting the coarse reganthe original SR model. This stage is simply
realized incrementally, resolution per resolutiomere the four children facets associated to each
coarse triangle are assigned the same clusteregimhrnumber as their father triangle. The resgltin
fine segmentations can now be the input of ourtpatdependent MRA, detailed in the following.

5. Region-based MRA for Patch-Independent Reconstation

As a preliminary step of the development of a llpebbsed R-D optimized coding scheme, we
propose to detail in this section the three diffier@pplications of the Butterfly stencil we exantne
close to the patch borders, during the region-b&d4ed and coding. In the next section, experiments
are presented to study the influence of the nonedfparts of a mesh on the more detailed ones,
considering each of these three rules for patcegeddent decoding and more specifically in a view-
dependent reconstruction context.

5.1 Butterfly stencil adaptations for region-basedViRA

In our first consideration (designed later by "NB"Pfor No Patch Borders taken into account), the
unlifted Butterfly wavelet decomposition is realizas if any patch was defined. This rule is aceurat
if each region is quantized and/or reconstructeformly (with approximately the samg’ error
orders, in each region). In other cases, an alveraf the quality of some regions can appear due t
the influence of the "poor" quantization or recomstion of their neighbors, for example.

For these other cases (which don't necessarily mevdahe same kind of quantization and
reconstruction in each patch, like adaptive quatibn or view-dependent reconstruction), we propose
to examine two different adaptations of the Bulyestencil close to the patch borders. These two
adaptations (designed later by "PB") will be applehen each patch is seen as an independent non-
closed surface. With this latter setting, any ragaan influence its neighbors during the "non-
uniform" region-based reconstructions.



Fig. 13 shows the amplitude and polar angle (the anglevdmt each coefficient and its related
surface normal vector) distributions for each & three rules. We can deduce that the two preditio
associated to the "PB" consideration (histogramthermiddle and on the bottom) are not as good as
the classical ("No PB") one (on the top), becahgewavelet amplitude and polar angle distributions
are generally more dispersed. The first rule wesimred (close to the patch borders) uses two
extensions of the classical Butterfly stencil @liuated inFig. 14) to predict the new vertices situated
on the borderspfcture (a) or surrounded by extraordinary verticpgcfure (b), as it can appear close
to the patch borders.
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Figure 13: Amplitude (left) and polar angle (tigdistributions in every resolution level of theMus Normal segmented
model (right segmentation dfig. 11 considered). The red boxes highlight the diffeemnaoticed in the two "PB"
distributions (middle: classical rule - bottom: awew rule), in comparison with the distributions fehich the classical
Butterfly stencil was used, without taking into agabthe patch borders (top).

The goal of our new rule (designed later by "PB SYd to recreate the "missing coarse vertices"
in the classical Butterfly stencil (illustratedfig. 2). These vertices are missing because we take into
account the patch borders in the MRA. The positibthese created "ghost vertices" is deduced from
the other real coarse vertices involved in the @flit stencil. We illustrate in detail iRig. 15 the
concept we used for deducing them, with a tenddncyavor the diagonal symmetry. We also



enumerate all the possible cases we can encoumdefoa the ones for which a diagonal symmetry
cannot be computed, we define an equivalent rlilssiiated with colors in the middle &fg. 15).

ST
S, s
5§ =% (1/4+ cos(2mj/K)
-1/16 -1/16 +1/2cos(4nj/K))
*——o—0—o —9© S
9/16 9/16 0 For K — 3
33 Sqg = 5/12 51,2 = *1/12
S, For K = 4.
(@ ®) o =3/8 5 — —1/8, 513 =0

Figure 14: (a) Special Butterfly stencil used tedict the red vertex, situated on the mesh borfdernon-closed 3D
meshes); (b) Extension of the classical Butter#@netl for extraordinary vertices (scheme proposeddrin et al.[26]).
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Figure 15: Definition of our new scheme, used nveeme of the coarse vertices are missing in theeBlytstencil, due to
patch borders (illustrated with big dashed lin@®)p left: classical Butterffly stencilfop right: method used to recreate the
"missing coarse vertices" in the Butterfly stenéile favor the diagonal symmetry (computed thank&éored vertices in the



next pictures), but for the cases where it is roEsble, we define an equivalent rule (illustratéth colors in the middle of
this figure). The different configurations are Highted with big rectangles, when only a coarsdesertop in red, two
coarse verticesifiddle in blug or three coarse verticdsattom in greepare missing.

In Fig. 13 we can observe that our new rule distributiomstf® bottom) are closer to the classical
("No PB") ones (on the top). Moreover we have thssibility to perfectly decode some regions of a
mesh while other are at the same time "poorly" mstoicted.

5.2 Patch-Independent Wavelet Encoding and R-D optiization

Fig. 16 presents the main steps of a wavelet-based caieBER meshes. The principle is the
following: i) the original irregular surfadd;, is semi-regularly remesheii, the wavelet transform is
applied to decompose the SR mééh until we obtain the coarsest approximation (whiepresents
the "low-frequency” subband); during this coarsifion, many high-frequency details (the 3D wavelet
coefficient subbands) are lost and must be keplidav the reconstruction of the mesii); concerning
the high-frequency subbands, we first quantize tlagich then apply an entropic encoder (Huffman,
arithmetic, ...) to obtain a binary informationsealar quantization is considered, so there areeithd
three independent encoders (one for each coefficieordinate);jv) the coarse mesh connectivity is
then losslessly encoded separately with a singgeeracoder (like the Touma and Gotsman [32] one).

- Connectivity
Q‘?ﬂ[‘:’:‘.’f‘!‘.’tlt!.‘.’f.:.:.‘.‘?., encoding |-
coarsest mes (losslessly)
PN P Wavelet Binary
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Figure 16: Main steps of a wavelet-based codeBR meshes. Q stands for the Quantization stepg&bmetry encoding
is generally done under a constraint which candse-defined or automatic. This parameter can hile aize [5], a rate [8,
33], a reconstruction quality, etc.

For wavelet coefficient quantization, we considetieel Rate-Distortion (R-D) optimized coding
scheme developed by Payeanh al. [8] and based on a Lagrangian optimization. THgorthm
minimizes the reconstruction error for a given lmitdget, with an error-driven wavelet coefficient
guantization. More specifically, we used their adtipn for region-based wavelet-encoding [11] so as
to optimally quantize the wavelets and allocate ltite in each partition, considering each region
distortion contribution with respect to the entreesh surface. In this adaptation, little additional
information need to be added: the number of creptatitions, the coarse vertices situated in the
borders, each partition cluster affiliation and thgtimized quantization steps computed for each
region.

We also used the EBCOT encoding Pagaal. have adapted for SR meshes [8], before applying
the arithmetic encoding. It allows to reduce theairand inter-resolution correlation. Combined with
their R-D optimization, it improves the encodingfpemance up ter2.5 dBin comparison with the
original zerotree coder of Khodakovséyal.[5].



Given all these encoding treatments, the data ibomow ready to be transmitted over the network
and reconstructed on the client’s side. The armlytsiges we have just described are reversed during
the partition-based MR synthesis (and detaile&igq 1). It produces a more flexible reconstruction
than with a global decoding.

6. Experimental Results and Applications

We present in this section, various experimentgllte we obtained with our application implemented
in C++. It uses the Computational Geometry Algarithibrary (CGAL [34]) and more specifically
the polyhedral surface package. These experimengatvere obtained on the meshes we segmented
with our wavelet-based partitioning algorithm, bty other kind of SR mesh segmentation could also
have been considered, like the ones implemente&irhet al.[9] or by Payaret al.[11].

We first propose a visual comparison §#g. 17) of the mesh distortion involved when we
consider different wavelet decompositions closdhi® patch borders (detailed in tBection 5.1
Indeed the compression scheme we used (illustiatéidy. 16) produces reconstructed meshes with a
distortion, in comparison with the original irregulmesh. First an approximation error is involved
during the remeshing step, moreover the geometnding introduces also losses during the
guantization stage. State-of-the-art mesh commessiethods generally interpret this distortion as a
geometric distance between the original irregulashivl;, and the compressed SR mesk| o

The Mean Square ErroMSE) for meshes (inspired from th¢ausdorffdistance) is generally used
to evaluate this geometric distance. It correspaindan average of the point to surface distance
between two surfaceéandy, given by this formula:

d(X,Y) = ( a(X) J'd(x,Y) dx)2 (3)

whered(x,Y)is the Euclidean distance from a poinbn X to the closest point oM. Since thisL?
distance is not symmetric, we symmetrize it byrigkthe max ofi(X,Y)andd(Y,X) In our context the
MSEis hence given by the following equation (compuigith the Meshsoftware [36]):

MSE=max@d(M,M_),d(M_,M)). 4)

In Fig. 17 we compare two different "view-dependent" recargtons of the segmented Skull
model (produced by the "No PB" consideration). Hemee computed th&ISE with the Mesh
software [36], on the entire Skull model (in compan with the irregular original model), and also o
its non-smooth cluster. In the left part, any pcadn operator nor wavelets (only canonical
guadrisections) were considered on the smootheslustence it can be interpreted as a non-visible
part in a view-dependent consideration, whereasother cluster is perfectly decoded. The only
difference in the right part is that the Buttenfisediction was used in the smooth cluster. As ebgokc
these pictures show that a less important distotén be obtained with the Butterfly prediction.enh
patch borders are not taken into account durindiR& ("No PB").
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Figure 17: Mesh distortion on two different "vielgpendent" reconstructions, presented on thecemiésh (top) and on the
non-smooth cluster (bottom) of the Skull segmemtexdiel (illustrated irFig. 12). Patch borders are not taken into account
during the MRA (referred as the "No PB" considergtiand any wavelets are added on the smooth clusighe left
pictures any prediction operator is considered,reé® in the right ones the Butterfly prediction s&d. The colors depend
on the magnitude of the locBISE from the minimal lflue) to the maximalred) value. These pictures were realized thanks
to the Mesh software [36].

This assumption is also confirmed by theble 1 It results from a computation of tiMSEfor the
"No PB" and "PB" considerations, with or withouBatterfly prediction on the smooth region(s). The
distortion is presented for all the segmented nsda previously commented, only for one of their
non-smooth regions (indicated with an arrowFig. 10 to 12. In each studied mesh region, the
smallestL? errors ISB are emphasized with bold characters. The saroesetre obtained in the last
two columns, because we used a "PB" consideratlinhadoesn’t depend on the prediction used in
the neighboring smooth cluster and thus gives thallest distortions. For each model, the "No PB"
consideration associated with a Butterfly predittio the smooth cluster always gives the better
results than without any prediction.

Table 1: 12 errors for the "No PB" and "PB" considerations, ba tegions indicated with an arrow fiig. 10 to 12 No
prediction operator or the Butterfly prediction amal wavelets were considered on the smooth clustegreas the other
cluster was decoded perfectly.

’nb lev’ = number of resolution levels.
"# V' = number of vertices in the SR mesh.
'Butt’ = the Butterfly prediction was used in the smooth cluster.

nb lev #V, No PB No PB Butt PB PB Butt
Venus part. 6 21,545 | 9.053.10™ 4.107.107 8.301.107 8.301.107
Venus part. 4 76,193 | 1345107 1.015.10™* 1.456.10™° 1.456.10°°
Horse part. 5 7,857 | 6.414.107 5.616.107° 7.775.10°8 7.775.10°8
Skull part. 5 56,865 | 5.260.107 3.433.10™ 5.990.107 5.990.10"
Lion Head part. 5 239,054 || 2.094.10™ 1.582.107™* 7.630.107 7.630.1077




We finally present the bitrateSNRcurves inFig. 18 and 19 computed by only taking into
account the non-smooth region of the segmented SkdlLion Head models (the Butterfly prediction
is used -without any wavelets- in the smooth regidrhe bitrate is reported with respect to the
number of vertices in the semi-regular (SR) meshesg curves were obtained with the view-
dependent geometry coding (developed by Pa&yaal. [11]), which we adapted to our segmentation
process.

For a comparison of the compression performancesbpects with different sizes, we use the
PSNR(Peak Signal to Noise Ratio) measured in decitis It computes the ratio between the signal
dynamic and the reconstruction error: the lowerdaher is, the higher thESNRis. ThePSNRfor
triangulations is given by the following formula:

PSNR= 20l0g,, £20139 (5)

whereBBdiagis the original mesh Bounding Box diagonal.

The results we deduced from thable 1are confirmed by the repartition of the curves (tRB"
consideration gives the best results at any bjtrdlereover we can notice that our new prediction
scheme (associated to the "PB SYM" considerati@rjopms better than the other "PB" rule, for
patch-independent reconstruction purposes. FofNleePB" consideration, we can see that the two
curves inFig. 18reach quickly their asymptotic value which is kukto thel? errors illustrated in the
bottom part of théig. 17.
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Figure 18: Bitratd?SNRcurves for the non-smooth region of the segme8tadl model, where the Butterfly prediction is
used (without any wavelets) in the smooth regidme bitrate (reported in bits/SR vertex) correspadihe bit allocation
after quantization, with respect to the numberesftiges in the SR non-smooth patch.
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Figure 19: Bitratd(®SNRcurves for the non-smooth region of the segmemied Head model, where the Butterfly
prediction is used (without any wavelets) in theoeth region. The bitrate (reported in bits/SR vérmresponds to the bit
allocation after quantization, with respect to tlvenber of vertices in the SR non-smooth patch.

For image and video lossy compression, M8E is most often chosen as a quality measure
because it is well adapted to these data and teflee visual quality even at low compression rates
But it is more complex for 3D meshes, since a digtio metric cannot consider only the mesh
geometry, because the visual quality also dependbhe mesh connectivity, curvature, smoothing, ...
Fig. 20 illustrates this problematic where the two objelcts/e the sam®SE (e;), but the first
reconstruction (in the middle) better preservesstharp features (feet and head of the Horse model).
This latter reconstruction has been produced byfraumework, where a more important number of
bits were allocated in the identified "non-smootégions than for the rest of the body. On the other
hand, the second reconstruction (on the right) prasuced by a global encoding of the mesh. The
Horse head was zoomed in, to better appreciate it.

In the figure we also mention a second distorticgasure &), called MSDM and introduced by
Lavoué et al [37] in 2006. MSDM uses geometric msfrbased on curvature analysis computed on
local spherical windows in the analyzed mesh. Simdbjects have a distortion close to zero. The
score obtained by our patch-based reconstructiemseo better reflect the perceptual distance, the
MSE cannot reveal. In 2010, Benhabiles et al [38] haveposed an extensive experimental
comparison of existing similarity metrics for 3D shes. This comparative study includes a subjective
experiment with human observers, to evaluate theeacs according to several criteria.
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Figure 20: Comparison of two different reconstiuts of the Horse Normal model based on a locafidie) and a global
(right) wavelet decomposition. The reconstructiaesgnted in the middle, was produced with our fraamk on the
segmented Horse model. Here the Butterfly predicisofollowed by a wavelet addition only in non-srttogegions. We
have reported the corresponding distortion errpend @, which correspond respectively to tM&E (in units of 10% and to
Lavouéet al!'s MSDM metric [37].

7. Conclusion and Future Work

A new wavelet-based segmentation algorithm for SRRhmas was introduced as a pre-processing step
in a patch-independent progressive decoding of 3&shms. Our segmentation process aims at
constructing regions with different degrees of tougss, reflected by the wavelet coefficient
amplitudes (associated to each resolution leved)aAreliminary step of the development of a lgeall
based R-D optimized coding scheme, we have stutiethehavior of the wavelet decompositions in
the created regions, during the patch-independettding and more specifically the view-dependent
reconstruction process. We particularly investigataee different possible wavelet decompositions,
close to the patch borders. One of them is a newideration and has given the best results for two
3D objects remeshed by two different algorithms.

As an extension of the current work, some futuseaech can be performed in the following areas.
First, we may consider the patch-independent R-moped compression and coding, which could
benefit from our new rule, because an independeantigation in each partition will probably allow
to reduce the global distortion. New predictionesoles and coding techniques could be proposed for
the non-smooth regions (where the predictions aittual subdivision schemes can be improved),
together with more subjective distortion metricaséd on human vision and emphasized at the end of
the previous section. Our goal will be to improlie tompression bitrates on natural objects, which
can be composed of non-smooth textured parts. Ailplesissue could consist in conceiving a
statistical analysis model of the surface. Theaalitelements could hence serve to regenerateathe s
visual aspects and high frequencies of the stusliefce. Another interesting consideration would be
to take into account the surface anisotropy, téebgtredict shapes with features like sharp creases
corners or rough textures. Moreover, a fractal yslcould also be adopted in noisy regions. We
could also conceive our segmentation process diffbr, by better analyzing the decrease of the
wavelets and their relation to the surface disammtighness or saliency.



Finally other applications could benefit from owatgh-based MRA, like watermarking. It would
allow to apply different marks according to theudk aspect of the surface, given the fact that a
textured (or rough) region is able to hide geometistortions much better than a smooth one.
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