Flexible Domain Adaptation for Multimedia Indexing
Emilie Morvant, Amaury Habrard, Stéphane Ayache

To cite this version:
Emilie Morvant, Amaury Habrard, Stéphane Ayache. Flexible Domain Adaptation for Multimedia Indexing. 2011. hal-00634881

HAL Id: hal-00634881
https://hal.archives-ouvertes.fr/hal-00634881
Preprint submitted on 24 Oct 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Flexible Domain Adaptation for Multimedia Indexing

Emilie Morvant, Amaury Habrard, Stéphane Ayache
{emilie.morvant,amaury.habrard,stephane.ayache}@lif.univ-mrs.fr

INTRODUCTION, NOTATIONS AND MOTIVATION

We consider binary classification task:
- \(X \) input space, \(Y = \{-1, 1\} \) label set
- \(P_S \) source domain: distribution over \(X \times Y \)
- \(P_D \) target domain: different distribution over \(X \times Y \)
- \(h \) hypothesis
- \(h \) error of a hypothesis
- \(\nu \) supervised classification objective
- \(\nu \) target domain: different distribution over \(X \times Y \)
- \(\nu \) errors of a hypothesis

For example:
- We have labeled images from a Web image corpus, i.e., \(P_S \)
- Is there a Person in unlabeled images from a Video corpus, i.e., \(P_D \) ?

\(\nu \) The Learning distribution is different from the Testing distribution
\(\nu \) How can we learn, from the source domain, a low-error classifier on the target domain?

DOMAIN ADAPTATION

Theorem 1 ([2]). Let \(H \) an hypothesis space. If \(D_S \) and \(D_T \) are respectively the marginal distributions of source and target instances, then for all \(\delta \in [0,1] \), with probability at least \(1 - \delta \), for every \(h \in H \):

\[
\nu(h) \leq \epsilon(h) + \frac{1}{2} d_{TV}(D_S, D_T) + \nu,
\]

where \(d_{TV}(D_S, D_T) \) is the TV-distance between \(D_S \) and \(D_T \).

\(\nu \) The domination of distance helps to build a new projection space to move closer the domains.

DOMAIN ADAPTATION OF LINEAR CLASSIFIERS BASED ON GOOD SIMILARITY FUNCTIONS

Divergence: Iteration

Experimental Setup
- Similarity function: Gaussian kernel \(K(x, x') = \exp(-\|x - x'\|^2 / 2\sigma^2) \)
- Reverse Validation (together with a Gaussian kernel)
- Toy problem “into-swimming moons”
- \(P_S \): \(8 \times 8 \) according to 8 rotations
- \(P_D \): \(8 \times 8 \) according to 8 rotations
- Toy problem: Percepts
- Image Indexing: PascalVOC’07
- \(P_S \): PascalVOC’07 train \(\sim 1/3 \)
- \(P_T \): PascalVOC’07 Test \(\sim 1/3 \)

REFERENCES