K. M. Abadir, W. Distaso, and L. Giraitis, Nonstationarity-extended local Whittle estimation, Journal of Econometrics, vol.141, issue.2, pp.1353-1384, 2007.
DOI : 10.1016/j.jeconom.2007.01.020

J. Bardet and I. Kammoun, Detecting abrupt changes of the long-range dependence or the self-similarity of a Gaussian process, Comptes Rendus Mathematique, vol.346, issue.13-14, pp.789-794, 2008.
DOI : 10.1016/j.crma.2008.05.007

URL : https://hal.archives-ouvertes.fr/hal-00195089

J. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev et al., Semiparametric estimation of the long-range dependence parameter: A survey, Theory and Applications of Long-Range Dependence, pp.557-577, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00127926

J. Beran and N. Terrin, Testing for a change of the long-memory parameter, Biometrika, vol.83, issue.3, pp.627-638, 1996.
DOI : 10.1093/biomet/83.3.627

P. Billingsley, Convergence of Probability Measures, 1968.
DOI : 10.1002/9780470316962

K. Bru?ait?-e and M. Vai?iulis, Asymptotic independence of distant partial sums of linear processes, Lietuvos Matematikos Rinkinys, vol.45, pp.479-500, 2005.

F. Busetti and A. M. Taylor, Tests of stationarity against a change in persistence, Journal of Econometrics, vol.123, issue.1, pp.33-66, 2004.
DOI : 10.1016/j.jeconom.2003.10.028

N. H. Chan and N. Terrin, Inference for Unstable Long-Memory Processes with Applications to Fractional Unit Root Autoregressions, The Annals of Statistics, vol.23, issue.5, pp.1662-1683, 1995.
DOI : 10.1214/aos/1176324318

J. Davidson and R. M. De-jong, THE FUNCTIONAL CENTRAL LIMIT THEOREM AND WEAK CONVERGENCE TO STOCHASTIC INTEGRALS II Fractionally Integrated Processes, Econometric Theory, vol.16, issue.5, pp.643-666, 2000.
DOI : 10.1017/S0266466600165028

J. Davidson and N. Hashimzade, Type I and type II fractional Brownian motions: A reconsideration, Computational Statistics & Data Analysis, vol.53, issue.6, pp.2089-2106, 2009.
DOI : 10.1016/j.csda.2008.11.008

Y. A. Davydov, The invariance principle for stationary processes. Theory of Probability and its Applications, pp.487-498, 1970.

D. Ferger and D. Vogel, Weak Convergence of the Empirical Process and the Rescaled Empirical Distribution Function in the Skorokhod Product Space, Theory of Probability and its Applications, pp.609-625, 2010.
DOI : 10.1137/S0040585X97984486

L. Giraitis, P. Kokoszka, R. Leipus, and G. Andteyssì-ere, Rescaled variance and related tests for long memory in volatility and levels, Journal of Econometrics, vol.112, issue.2, pp.265-294, 2003.
DOI : 10.1016/S0304-4076(02)00197-5

L. Giraitis, H. L. Koul, and D. Surgailis, Large Sample Inference for Long Memory Processes, 2012.
DOI : 10.1142/p591

L. Giraitis, R. Leipus, P. , and A. , A TEST FOR STATIONARITY VERSUS TRENDS AND UNIT ROOTS FOR A WIDE CLASS OF DEPENDENT ERRORS, Econometric Theory, vol.116, issue.06, pp.989-1029, 2006.
DOI : 10.1111/j.1467-9892.2005.00464.x

L. Giraitis, R. Leipus, and D. Surgailis, ARCH(???) Models and Long Memory Properties, Handbook of Financial Time Series, pp.71-84, 2009.
DOI : 10.1007/978-3-540-71297-8_3

L. Giraitis, P. M. Robinson, and D. Surgailis, A model for long memory conditional heteroscedasticity, The Annals of Applied Probability, vol.10, issue.3, pp.1002-1024, 2000.
DOI : 10.1214/aoap/1019487516

U. Hassler and B. Meller, Detecting a change in inflation persistence in the presence of long memory: a new approach, 2009.

U. Hassler and D. Nautz, On the persistence of the Eonia spread, Economics Letters, vol.101, issue.3, pp.184-187, 2008.
DOI : 10.1016/j.econlet.2008.08.004

U. Hassler and J. Scheithauer, On Critical Values of Tests against a Change in Persistence*, Oxford Bulletin of Economics and Statistics, vol.67, issue.5, pp.705-710, 2008.
DOI : 10.1111/j.1468-0084.2008.00518.x

U. Hassler and J. Scheithauer, Detecting changes from short to long memory, Statistical Papers, vol.30, issue.4, pp.847-870, 2011.
DOI : 10.1007/s00362-009-0292-y

L. Horváth, Change-Point Detection in Long-Memory Processes, Journal of Multivariate Analysis, vol.78, issue.2, pp.218-234, 2001.
DOI : 10.1006/jmva.2000.1947

L. Horváth and . Shao, Limit theorems for quadratic forms with applications to Whittle's estimate, The Annals of Applied Probability, vol.9, issue.1, pp.146-187, 1999.
DOI : 10.1214/aoap/1029962600

S. Johansen and M. Ø. Nielsen, Likelihood inference for a nonstationary fractional autoregressive model, Journal of Econometrics, vol.158, issue.1, pp.51-66, 2010.
DOI : 10.1016/j.jeconom.2010.03.006

URL : http://curis.ku.dk/ws/files/23346502/0727.pdf

J. Kim, Detection of change in persistence of a linear time series, Journal of Econometrics, vol.95, issue.1, pp.97-116, 2000.
DOI : 10.1016/S0304-4076(99)00031-7

J. Kim, J. Belaire-franch, B. Amador, and R. , Corrigendum to ???Detection of change in persistence of a linear time series??? [J. Econom. 95 (2000) 97???116], Journal of Econometrics, vol.109, issue.2, pp.389-392, 2002.
DOI : 10.1016/S0304-4076(02)00087-8

P. Kokoszka and R. Leipus, Detection and estimation of changes in regime, Theory and Applications of Long-Range Dependence, pp.325-337, 2003.

R. Kruse, Rational bubbles and changing degree of fractional integration, p.394, 2008.

M. S. Kumar and T. Okimoto, Dynamics of Persistence in International Inflation Rates, Journal of Money, Credit and Banking, vol.16, issue.4, pp.1457-1479, 2007.
DOI : 10.1111/1467-9892.00127

M. Lavielle and C. Ludeña, The Multiple Change-Points Problem for the Spectral Distribution, Bernoulli, vol.6, issue.5, pp.845-869, 2000.
DOI : 10.2307/3318759

R. Leipus and D. Surgailis, Asymptotics of partial sums of linear processes with changing memory parameter*, Lithuanian Mathematical Journal, vol.32, issue.2, 2010.
DOI : 10.1007/s10986-013-9203-y

S. Leybourne, R. Taylor, K. , and T. , CUSUM of Squares-Based Tests for a Change in Persistence, Journal of Time Series Analysis, vol.37, issue.3, pp.408-433, 2007.
DOI : 10.2307/1391541

M. Liu, ASYMPTOTICS OF NONSTATIONARY FRACTIONAL INTEGRATED SERIES, Econometric Theory, vol.14, issue.5, pp.641-662, 1998.
DOI : 10.1017/S026646669814505X

I. Macneill, Properties of Sequences of Partial Sums of Polynomial Regression Residuals with Applications to Tests for Change of Regression at Unknown Times, The Annals of Statistics, vol.6, issue.2, pp.422-433, 1978.
DOI : 10.1214/aos/1176344133

D. Marinucci and P. M. Robinson, Alternative forms of fractional Brownian motion, Journal of Statistical Planning and Inference, vol.80, issue.1-2, pp.111-122, 1999.
DOI : 10.1016/S0378-3758(98)00245-6

D. Marinucci and P. M. Robinson, Weak convergence of multivariate fractional processes, Stochastic Processes and their Applications, pp.103-120, 2000.
DOI : 10.1016/S0304-4149(99)00088-5

L. F. Martins and P. M. Rodrigues, Testing for persistence change in fractionally integrated models: An application to world inflation rates, Computational Statistics & Data Analysis, vol.76, 2010.
DOI : 10.1016/j.csda.2012.07.021

M. Peligrad and S. Utev, Central limit theorem for linear processes, The Annals of Probability, vol.25, issue.1, pp.443-456, 1997.
DOI : 10.1214/aop/1024404295

URL : http://projecteuclid.org/download/pdf_1/euclid.aop/1024404295

A. Philippe, D. Surgailis, and M. Viano, Almost periodically correlated processes with long memory, Dependence in Probability and Statistics, pp.159-194, 2006.
DOI : 10.1007/0-387-36062-X_8

A. Philippe, D. Surgailis, and M. Viano, Invariance principle for a class of non stationary processes with long memory, Comptes Rendus Mathematique, vol.342, issue.4, pp.269-274, 2006.
DOI : 10.1016/j.crma.2005.12.001

A. Philippe, D. Surgailis, and M. Viano, Time-varying fractionally integrated processes with nonstationary long memory, Theory of Probability and its Applications, pp.651-673, 2008.

D. Pollard, Convergence of Stochastic Processes, 1984.
DOI : 10.1007/978-1-4612-5254-2

P. M. Robinson, Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression, Journal of Econometrics, vol.47, issue.1, pp.67-84, 1991.
DOI : 10.1016/0304-4076(91)90078-R

P. M. Robinson, Efficient Tests of Nonstationary Hypotheses, Journal of the American Statistical Association, vol.89, issue.428, pp.1420-1437, 1994.
DOI : 10.1080/01621459.1984.10477111

K. Shimotsu, Simple (but effective) tests of long memory versus structural breaks. Queen's University, 2006.

P. Sibbertsen and R. Kruse, Testing for a break in persistence under long-range dependencies, Journal of Time Series Analysis, vol.31, issue.3, pp.263-285, 2009.
DOI : 10.1111/j.1467-9892.2009.00611.x

D. Surgailis, Non-CLTs: U-statistics, multinomial formula and approximations of multiple Itô-Wiener integrals, Theory and Applications of Long-Range Dependence, pp.129-142, 2003.

D. Surgailis, Nonhomogeneous fractional integration and multifractional processes, Stochastic Processes and their Applications, pp.171-198, 2008.
DOI : 10.1016/j.spa.2007.04.003

M. S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.7, issue.1, pp.53-83, 1979.
DOI : 10.1007/BF00535674

W. Whitt, Weak Convergence of Probability Measures on the Function Space $C\lbrack 0, \infty)$, The Annals of Mathematical Statistics, vol.41, issue.3, pp.939-944, 1970.
DOI : 10.1214/aoms/1177696970

K. Yamaguchi, Estimating a change point in the long memory parameter, Journal of Time Series Analysis, vol.52, issue.3, pp.304-314, 2011.
DOI : 10.1111/j.1467-9892.2010.00700.x