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2Faculty of Mathematics and Informatics, Vilnius University, Lithuania,

3Institute of Mathematics and Informatics, Vilnius University, Lithuania

October 23, 2011

Abstract This article deals with detection of non-constant long memory parameter in time series. The

null hypothesis includes stationary or nonstationary time series with constant long memory parameter,

in particular I(d) series, d > −.5. The alternative corresponds to a change in the long memory

parameter and gathers in particular an abrupt or gradual change from I(d1) to I(d2), −.5 < d1 < d2.

Various test statistics are considered. They are all based on the ratio of forward and backward

sample variances of the partial sums. The consistency of the tests is proved under a very general

setting. Moreover, the behavior of the test statistics is studied for some models with changing memory

parameter. A simulation study shows that our testing procedures have good finite sample properties

and turn out to be more powerful than the KPSS-based tests considered in some previous works.

Keywords: Long memory; change in persistence; ratio test; change point; V/S statistic; fractional integration.

1 Introduction

The present paper discusses statistical tests for detection of non-constant memory parameter of time

series versus the null hypothesis that this parameter has not changed over time. As a particular

case, our framework includes testing the null hypothesis that the observed series is I(d) with constant

d > −.5, against the alternative hypothesis that d has changed, together with a rigorous formulation

of the last change. This kind of testing procedure is the basis to study the dynamics of persistence,

which is a major question in economy (see Kumar and Okimoto (2007), Hassler and Nautz (2008),

Kruse (2008)).

In a parametric setting and for stationary series (|d| < .5), the problem of testing for a single change

of d was first investigated by Beran and Terrin (1996), Horváth and Shao (1999), Horváth (2001),

Yamaguchi (2011) (see also Lavielle and Ludeña (2000), Kokoszka and Leipus (2003)). Typically, the

sample is partitioned into two parts and d is estimated on each part. The test statistic is obtained by

maximizing the difference of these estimates over all such partitions. A similar approach for detecting

∗The second and fourth authors are supported by a grant (No. MIP-11155) from the Research Council of Lithuania.
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multiple changes of d was used in Shimotsu (2006) and Bardet and Kammoun (2008) in a more general

semiparametric context.

The above approach for testing against changes of d appears rather natural although applies to

abrupt changes only and involves (multiple) estimation of d which is not very accurate if the number

of observations between two change-points is not large enough; moreover, estimates of d involve band-

width or some other tuning parameters and are rather sensitive to the short memory spectrum of the

process.

On the other hand, some regression-based Lagrange Multiplier procedures have been recently dis-

cussed in Hassler and Meller (2009) and Martins and Rodrigues (2010). The series is first filtered by

(1− L)d, where L is the lag operator and d is the long memory parameter under the null hypothesis,

then the resulting series is subjected to a (augmented) Lagrange Multiplier test for fractional inte-

gration, following the pioneer works by Robinson (1991, 1994). The filtering step can be done only

approximatively and involves in practice an estimation of d. This is certainly the main reason for the

size distortion that can be noticed in the simulation study displayed in Martins and Rodrigues (2010).

In a nonparametric set up, Kim (2000) proposed several tests based on the ratio

Kn(τ) :=
U∗
n−[nτ ](X)

U[nτ ](X)
, τ ∈ [0, 1], (1.1)

where

Uk(X) := 1
k2
∑k

j=1

(
Sj −

j
kSk

)2
, U∗

n−k(X) := 1
(n−k)2

∑n
j=k+1

(
S∗
n−j+1 −

n−j+1
n−k S∗

n−k

)2
(1.2)

are estimates of the second moment of forward and backward de-meaned partial sums

1

k1/2

(
Sj −

j

k
Sk

)
, j = 1, . . . , k and

1

(n− k)1/2

(
S∗
n−j+1 −

n− j + 1

n− k
S∗
n−k

)
, j = k + 1, . . . , n,

on intervals [1, 2, . . . , k] and [k + 1, . . . , n], respectively. Here and below, given a sample X =

(X1, . . . , Xn),

Sk :=
k∑

j=1

Xj , S∗
n−k :=

n∑

j=k+1

Xj

denote the forward and backward partial sums processes. Originally developed to test for a change

from I(0) to I(1) (see also Busetti and Taylor (2004), Kim et al. (2002)), Kim’s statistics were extended

in Hassler and Scheithauer (2011), to detect a change from I(0) to I(d), d > 0. A related, though

different approach based on the so-called CUSUM statistics, was used in Leybourne et al. (2007)

and Sibbertsen and Kruse (2009) to test for a change from stationarity (d1 < .5) to nonstationarity

(d2 > .5), or vice versa.

The present work extends Kim’s approach to detect a change from I(d1) to I(d2), for any −.5 <

d1 < d2, where d1, d2 6= .5, 1.5, . . . , or vice versa. This includes both stationary and nonstationary null

(no-change) hypothesis which is important for applications since nonstationary time series with d > .5

are common in economics. Although our asymptotic results (Propositions 3.1, 4.1 and Corollary 3.2)

are valid for the original Kim’s statistics, see Remark 4.3, we modify Kim’s ratio (1.1), by replacing

the second sample moments Uk(X), U∗
n−k(X) in (1.2) of backward and forward partial sums by the

corresponding empirical variances Vk(X), V ∗
n−k(X) defined at (3.1) below. This modification is similar

2



to the difference between the KPSS and the V/S tests, see Giraitis et al. (2003), and leads to a more

powerful testing procedure (see Table 1). Let us note, finally, that the ratio-based statistics discussed

in our paper, as well as the original Kim’s statistics, do not require any estimation of d. So they do not

depend on any tuning parameter apart from the choice of the testing interval T ⊂ (0, 1). However, the

limiting law under the null hypothesis involves d, therefore the computation of the quantile defining

the critical region requires a weakly consistent estimate of the memory parameter d.

The paper is organized as follows. Section 2 contains formulations of the null and alternative hy-

potheses, in terms of joint convergence of forward and backward partial sums processes, and describes

a class of I(d) processes which satisfy the null hypothesis. Section 3 introduces the change-point

statistics Wn, In and Rn and derives their limit distribution under the null hypothesis. Section 4

displays theoretical results, from which the consistency of our testing procedures is derived. Section

5 discusses the behavior of our statistics under alternative hypothesis. Some fractionally integrated

models with constant or changing memory parameter are considered and the behavior of change-point

statistics for such models is studied. Section 6 contains simulations of empirical size and power of our

testing procedures. All proofs are collected in Section 7.

2 The null and alternative hypotheses

Let X = (X1, · · · , Xn) be a sample from a time series {Xj} = {Xj , j = 1, 2, . . . }. Additional assump-

tions about {Xj} will be specified later. Recall the definition of forward and backward partial sums

processes of X:

Sk = Sk(X) =
k∑

j=1

Xj , S∗
n−k = S∗

n−k(X) =
n∑

j=k+1

Xj .

Note that backward sums can be expressed via forward sums, and vice versa: S∗
n−k = Sn − Sk,

Sk = S∗
n − S∗

n−k.

For 0 ≤ a < b ≤ 1, let us denote by D[a, b] the Skorokhod space of cadlag functions (i.e. right

continuous with left limits functions). In this article, the spaceD[a, b] and the product spaceD[a1, b1]×

D[a2, b2], for any 0 ≤ ai < bi ≤ 1, i = 1, 2, are all endowed with the uniform topology and the σ-field

generated by the open balls (see Pollard (1984)). The weak convergence of random elements in such

spaces will be denoted ’−→D[a,b]’ and ’−→D[a1,b1]×D[a2,b2]’, respectively; the convergence in law and in

probability of random variables will be denoted ’−→law’ and ’−→p’, respectively.

The following hypotheses are clear particular cases of our more general hypotheses H0, H1 specified

later. The null hypothesis below involves the classical type I fractional Brownian motion in the limit

behavior of the partial sums, which is typical to a long memory behavior for X. Recall that a

fractional Brownian motion Bd+.5 = {Bd+.5(τ), τ ≥ 0} (later also referred to as a type I fBm) with

Hurst parameter H = d+ .5 ∈ (0, 2), H 6= 1 is defined by

Bd+.5(τ) :=





1
Γ(d+1)

∫ τ
−∞

(
(τ − u)d − (−u)d+

)
dB(u), −.5 < d < .5,

∫ τ
0 Bd−.5(u)du, .5 < d < 1.5,

(2.1)

where (−u)+ := (−u) ∨ 0 and {B(u), u ∈ R} is a standard Brownian motion with zero mean and

variance EB2(u) = u, u ≥ 0.
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H0[I]: There exist d ∈ (−.5, 1.5), d 6= .5, κ > 0 and a normalization Bn such that

n−d−.5
(
S[nτ ] − [nτ ]Bn

)
−→D[0,1] κBd+.5(τ), n→ ∞. (2.2)

H1[I]: There exist 0 ≤ υ0 < υ1 ≤ 1, d > −.5, and a normalization Bn such that

(
n−d−.5

(
S[nτ1] − [nτ1]Bn

)
, n−d−.5

(
S∗
[nτ2]

− [nτ2]Bn

))
−→D[0,υ1]×D[0,1−υ0]

(
0, Z2(τ2)

)
, (2.3)

as n→ ∞, where {Z2(τ), τ ∈ [1− υ1, 1− υ0]} is a nondegenerate a.s. continuous Gaussian process.

Here and hereafter, a random element Z of D[a, b] is called nondegenerate if it is not identically zero

on the interval [a, b] with positive probability, in other words, if P(Z(u) = 0, ∀u ∈ [a, b]) = 0.

Typically, the null hypothesis is satisfied by the I(d) (d > −1/2) series (see Definition 5.1). In

Section 5.1 we give general family of processes satisfying H0[I] including stationary and nonstationary

processes. The alternative hypothesis corresponds to the processes changing from I(d1) to I(d2)

processes (see Section 5.3 for examples).

Let us give a first example based on the well-known FARIMA model.

Example 2.1 The class of FARIMA(p, d, q) processes with −.5 < d < .5 satisfies assumption H0[I].

Moreover, from two different memory parameters d2 > d1, we can construct a process satisfying H1[I]

by the following equality

Xt =





∑∞
s=0 ψs(d1)εt−s if t ≤ n/2,

∑∞
s=0 ψs(d2)εt−s if t > n/2,

(2.4)

where (ψs(di))s=0,1,..., i = 1, 2 are the coefficients of linear representation of FARIMA(p, di, q) processes

and (εt) a Gaussian white noise with zero mean and unit variance.

The test procedure proposed in Section 3 to detect non-constant long memory parameter can be

valid in more general context. We can reformulate the hypotheses as follows.

H0: There exists normalizations An → ∞ and Bn such that

A−1
n

(
S[nτ ] − [nτ ]Bn

)
−→D[0,1] Z(τ), (2.5)

where {Z(τ), τ ∈ [0, 1]} is a nondegenerate a.s. continuous random process.

H1: There exist 0 ≤ υ0 < υ1 ≤ 1 and normalizations An → ∞ and Bn such that

(
A−1

n

(
S[nτ1] − [nτ1]Bn

)
, A−1

n

(
S∗
[nτ2]

− [nτ2]Bn

))
−→D[0,υ1]×D[0,1−υ0]

(
0, Z2(τ2)

)
, (2.6)

where {Z2(τ), τ ∈ [1− υ1, 1− υ0]} is a nondegenerate a.s. continuous random process.

Typically, normalization Bn = EX0 accounts for centering of observations and does not depend on

n. Assumptions H0 and H1 represent very general forms of the null (‘no change in persistence of X’)

and the alternative (‘an increase in persistence of X’) hypotheses. Indeed, an increase in persistence

of X at time k∗ = [nυ1] typically means that forward partial sums Sj , j ≤ k∗ grow at a slower rate

An1 compared with the rate of growth An2 of backward sums S∗
j , j ≤ n − k∗. Therefore, the former
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sums tend to a degenerated process Z1(τ) ≡ 0, τ ∈ [0, υ1] under the normalization An = An2. Clearly,

H0 and H1 are not limited to stationary processes and allow infinite variance processes as well. While

these assumptions are sufficient for derivation of the asymptotic distribution and consistency of our

tests, they need to be specified in order to be practically implemented. The hypothesis H0[I] presented

before is one example of such specification and involves the type I fBm. Another example involving

the type II fBm is presented in Section 5.2.

3 The testing procedure

3.1 The test statistics

Analogously to (1.1)–(1.2), introduce the corresponding partial sums’ variance estimates

Vk(X) :=
1

k2

k∑

j=1

(
Sj −

j

k
Sk

)2
−

(
1

k3/2

k∑

j=1

(
Sj −

j

k
Sk

))2

, (3.1)

V ∗
n−k(X) :=

1

(n− k)2

n∑

j=k+1

(
S∗
n−j+1 −

n− j + 1

n− k
S∗
n−k

)2

−

(
1

(n− k)3/2

n∑

j=k+1

(
S∗
n−j+1 −

n− j + 1

n− k
S∗
n−k

))2

and the corresponding “backward/forward variance ratio”:

Ln(τ) :=
V ∗
n−[nτ ](X)

V[nτ ](X)
, τ ∈ [0, 1]. (3.2)

For a given testing interval T = [τ , τ ] ⊂ (0, 1), define the analogs of the ’supremum’ and ’integral’

statistics of Kim (2000):

Wn(X) := sup
τ∈T

Ln(τ), In(X) :=

∫

τ∈T
Ln(τ)dτ. (3.3)

We also define the analog of the ratio statistic introduced in Sibbertsen and Kruse (2009):

Rn(X) :=
infτ∈T V

∗
n−[nτ ](X)

infτ∈T V[nτ ](X)
. (3.4)

This statistic has also the same form as statistic R of Leybourne et al. (2007), formed as a ratio of

the minimized CUSUMs of squared residuals obtained from the backward and forward subsamples of

X, in the I(0)/I(1) framework.

The limit distribution of these statistics is given in Proposition 3.1. To this end, define

Z∗(u) := Z(1)− Z(1− u), u ∈ [0, 1] (3.5)

and a continuous time analog of the partial sums’ variance V[nτ ](X) in (3.1):

Qτ (Z) :=
1

τ2

[ ∫ τ

0

(
Z(u)−

u

τ
Z(τ)

)2
du−

1

τ

(∫ τ

0

(
Z(u)−

u

τ
Z(τ)

)
du
)2]

. (3.6)

Note Q1−τ (Z
∗) is the corresponding analog of V ∗

n−[nτ ](X) in the numerators of the statistics in (3.2)

and (3.4).
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Proposition 3.1 Assume H0. Then
(
A−1

n

(
S[nτ1] − [nτ1]Bn

)
, A−1

n

(
S∗
[nτ2]

− [nτ2]Bn

))
−→D[0,1]×D[0,1]

(
Z(τ1), Z

∗(τ2)
)
. (3.7)

Moreover, assume that

Qτ (Z) > 0 a.s. for any τ ∈ T . (3.8)

Then

Wn(X) −→law W (Z) := sup
τ∈T

Q1−τ (Z
∗)

Qτ (Z)
, (3.9)

In(X) −→law I(Z) :=

∫

τ∈T

Q1−τ (Z
∗)

Qτ (Z)
dτ,

Rn(X) −→law R(Z) :=
infτ∈T Q1−τ (Z

∗)

infτ∈T Qτ (Z)
.

The convergence in (3.7) is an immediate consequence of H0, while the fact that (3.7) and (3.8)

imply (3.9) is a consequence of Proposition 4.1 stated in Section 4.

Remark 3.1 As noted previously, the alternative hypothesis H1 focuses on an increase of d, and the

statistics (3.3), (3.4) are defined accordingly. It is straightforward to modify our testing procedures

to test for a decrease of persistence. In such case, the corresponding test statistics are defined by

exchanging forward and backward partial sums, or V[nτ ](X) and V ∗
n−[nτ ](X):

W ∗
n(X) := sup

τ∈T
L−1
n (τ), I∗n(X) :=

∫

τ∈T
L−1
n (τ)dτ, R∗

n(X) :=
infτ∈T V[nτ ](X)

infτ∈T V ∗
n−[nτ ](X)

. (3.10)

3.2 Practical implementation for testing H0[I] against H1[I]

Under the ‘type I fBm null hypothesis’ H0[I], the limit distribution of the above statistics follows from

Proposition 3.1 with An = nd+.5, Z = κBd+.5. In this case, condition (3.8) is verified and we obtain

the following result.

Corollary 3.2 Assume H0[I]. Then

Wn(X) −→law W (Bd+.5), In(X) −→law I(Bd+.5), Rn(X) −→law R(Bd+.5). (3.11)

The process Bd+.5 in (3.11) depends on unknown memory parameter d, and so do the upper

α−quantiles of the r.v.s on the right-hand side of (3.11)

q
[I]
T (α, d) := inf{x : P(T (Bd+.5) ≤ x) ≥ 1− α)}, (3.12)

where T = W, I,R. Hence, applying the corresponding test, the unknown parameter d in (3.12) is

replaced by a consistent estimator d̂.

Testing procedure. Reject H0[I], if

Wn(X) > q
[I]
W (α, d̂), In(X) > q

[I]
I (α, d̂), Rn(X) > q

[I]
R (α, d̂), (3.13)

respectively, where d̂ is a weakly consistent estimator of d:

d̂ −→p d, n→ ∞. (3.14)

The fact that the replacement of d by d̂ in (3.13) preserves asymptotic significance level α is guar-

anteed by the continuity of the quantile functions provided by Proposition 3.3 below.
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Proposition 3.3 Let d ∈ (−.5, 1.5), d 6= .5, α ∈ (0, 1) and let d̂ satisfy (3.14). Then

q
[I]
T (α, d̂) −→p q

[I]
T (α, d), for T = W, I, R.

The proof follows the same lines as in Giraitis et al. (2006, Lemma 2.1) for the test of stationarity

based on the V/S statistic, we omit it.

Several estimators of d can be used in (3.13). See the review paper Bardet et al. (2003) for discussion

of some popular estimators. In our simulations we use the Non-Stationarity Extended Local Whittle

Estimator (NELWE) of Abadir et al. (2007), which applies to both the stationary (|d| < .5) and

nonstationary (d > .5) cases.

Remark 3.2 The above testing procedure can be straightforwardly extended to the case d > 1.5,

d 6= 2.5, 3.5, . . . , provided some slight modifications. In particular, the integral representation of the

type I fractional Brownian motion (2.1) involves in this case multiple integrals.

4 Consistency and asymptotic power

It is natural to expect that under alternative hypothesesH1 orH1[I], all three statisticsWn(X), In(X),

Rn(X) tend to infinity in probability, provided the testing interval T and the degeneracy interval [0, υ1]

of forward partial sums are embedded: T ⊂ [0, υ1]. This is true indeed, see Proposition 4.1 (iii) below,

meaning that our tests are consistent. Moreover, it is of interest to determine the rate at which these

statistics grow under alternative, or the asymptotic power.

The following Proposition 4.1 provides the theoretical background to study the consistency of the

tests. It also provides the limit distributions of the test statistics under H0 since Proposition 3.1 is

an easy corollary of Proposition 4.1 (ii).

Proposition 4.1 (i) Let there exist 0 ≤ υ0 < υ1 ≤ 1 and normalizations Ani → ∞ and Bni, i = 1, 2

such that
(
A−1

n1

(
S[nτ1] − [nτ1]Bn1

)
, A−1

n2

(
S∗
[nτ2]

− [nτ2]Bn2

))
−→D[0,υ1]×D[0,1−υ0] (Z1(τ1), Z2(τ2)

)
, (4.1)

where (Z1(τ1), Z2(τ2)
)
is a two-dimensional random process having a.s. continuous trajectories on

[υ0, υ1]× [1− υ1, 1− υ0]. Then

(
(n/A2

n1)V[nτ1](X), (n/A2
n2)V

∗
n−[nτ2]

(X)
)

−→D(0,υ1]×D[υ0,1)

(
Qτ1(Z1), Q1−τ2(Z2)

)
. (4.2)

Moreover, the limit process
(
Qτ1(Z1), Q1−τ2(Z2)

)
in (4.2) is a.s. continuous on (υ0, υ1]× [υ0, υ1).

(ii) Assume, in addition to (i), that T ⊂ U := [υ0, υ1] and

Qτ (Z1) > 0 a.s. for any τ ∈ T . (4.3)

Then, as n→ ∞,

(An1/An2)
2Wn(X) −→law sup

τ∈T

Q1−τ (Z2)

Qτ (Z1)
,

(An1/An2)
2In(X) −→law

∫

τ∈T

Q1−τ (Z2)

Qτ (Z1)
dτ, (4.4)

(An1/An2)
2Rn(X) −→law

infτ∈T Q1−τ (Z2)

infτ∈T Qτ (Z1)
.
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(iii) Assume, in addition to (i), that T ⊂ U , Z1(τ) ≡ 0, τ ∈ T and the process {Q1−τ (Z2), τ ∈ T } is

nondegenerate.

Then

(An1/An2)
2





Wn(X)

In(X)

Rn(X)





−→p ∞. (4.5)

Remark 4.1 Typically, under H1 the relation (4.1) is satisfied with An2 growing much faster than

An1 (e.g., Ani = ndi+.5, i = 1, 2, d1 < d2) and (4.4) translates to that Wn(X), In(X) and Rn(X) are

Op

(
(An2/An1)

2
)
. Two classes of fractionally integrated series with changing memory parameter and

satisfying (4.1) are discussed in Section 5.

Remark 4.2 Note that Qτ (Z) ≥ 0 by the Cauchy-Schwarz inequality and that Qτ (Z) = 0 implies

Z(u)− u
τ Z(τ) = a for all u ∈ [0, τ ] and some (random) a = a(τ). In other words, P(Qτ (Z) = 0) > 0

implies that for some (possibly, random) constants a and b,

P
(
Z(u) = a+

u

τ
b, ∀u ∈ [0, τ ]

)
> 0. (4.6)

Therefore, condition (4.3) implicitly excludes situations as in (4.6), with (a, b) 6= (0, 0), which may

arise under the null hypothesis H0, if Bn = 0 in (2.5) whereas the Xj ’s have nonzero mean.

Remark 4.3 All the results of sections 3 and 5 hold for the ’KPSS versions’ of the statistics Wn, In

and Rn defined by replacing V[nτ ](X), V ∗
n−[nτ ](X) in (3.3), (3.4) by U[nτ ](X), U∗

n−[nτ ](X) as given in

(1.2), with the only difference that the functional Qτ (Z) in the corresponding statements must be

replaced by Q̃τ (Z) := τ−2
∫ τ
0

(
Z(u)− u

τ Z(τ)
)2
du, cf. (3.6).

5 Application to fractionally integrated processes

This section discusses the convergence of forward and backward partial sums for some fractionally inte-

grated models with constant or changing memory parameter and the behavior of statistics Wn, In, Rn

for such models.

5.1 Type I fractional Brownian motion and the null hypothesis H0[I]

It is well-known that type I fBm arises in the scaling limit of d−integrated, or I(d), series with i.i.d.

or martingale difference innovations. See Davydov (1970), Peligrad and Utev (1997), Marinucci and

Robinson (1999), Bružaitė et al. (2005) and the references therein.

A formal definition of I(d) process (denoted {Xt} ∼ I(d)) for d > −.5, d 6= .5, 1.5, . . . is given below.

Definition 5.1 (i) Write {Xt} ∼ I(0) if

Xt =
∞∑

j=0

ajζt−j , t ∈ Z

8



is a moving average with i.i.d., zero mean unit variance innovations {ζj} and sumable coefficients∑∞
j=0 |aj | <∞,

∑∞
j=0 aj 6= 0.

(ii) Let d ∈ (−.5, .5), d 6= 0. Write {Xt} ∼ I(d) if {Xt} is a fractionally integrated process

Xt = (1− L)−dYj =
∞∑

j=0

ψj(d)Yt−j , t ∈ Z,

where {Yt} ∼ I(0) and {ψj(d), j ≥ 0} are the coefficients of the binomial expansion (1 − z)−d =∑∞
j=0 ψj(d)z

j, |z| < 1.

(iii) Let d > .5 and d 6= 1.5, 2.5, . . . . Write {Xt} ∼ I(d) if Xt =
∑t

j=1 Yj , t = 1, 2, . . . , where

{Yt} ∼ I(d− 1), and Xt = 0, t = 0,−1,−2, . . . .

From the above definition it follows that an I(d) process can be written as a moving average (a sum

of moving averages) in i.i.d. variables {ζs}, for instance:

Xt =





∑
s≤t(a ⋆ ψ(d))t−sζs, −.5 < d < .5,

∑
s≤t

∑
1∨s≤j≤t(a ⋆ ψ(d− 1))j−sζs, .5 < d < 1.5,

t = 1, 2, . . . , (5.1)

where (a ⋆ ψ(d))j :=
∑j

i=0 aiψj−i(d), j ≥ 0 is the convolution of the sequences {aj} and {ψj(d)}.

Definition 5.1 also implies that {Xt} is solution of the fractional equation:




(1− L)dXt =

∑∞
j=0 ajζt−j , t ∈ Z, if − .5 < d < .5,

(1− L)dXt =
∑∞

j=0 ajζt−j , t = 1, 2, . . . and Xt = 0, t = −1,−2, . . . , if d > .5.

Proposition 5.2 (i) Let {Xt} ∼ I(d) for some d ∈ (−.5, 1.5), d 6= .5. If d ∈ (−.5, 0], assume in

addition E|ζ0|
p <∞, for some p > 1/(.5 + d). Then (2.2) holds.

(ii) Let {0 ≤ σs, s ∈ Z} be an almost periodic sequence such that σ̄ := limn→∞

∑n
s=1 σs > 0. Let {Xt}

be defined as in (5.1), where ζs, s ∈ Z are replaced by σsζs, s ∈ Z and where d and {ζs} satisfy the

conditions in (i). Then (2.2) holds.

Proposition 5.2 (i) is proved in Chan and Terrin (1995), while (ii) follows from Philippe et al.

(2006a). Note that the linear process {Xt} in Proposition 5.2 (ii) with heteroscedastic noise {σsζs}

is nonstationary even if |d| < 1/2. Although type I fBm is well-defined for d = .5, theses cases are

excluded from H0[I] and Proposition 5.2 since this case is rather peculiar and requires a different

normalization (see Liu (2006)).

5.2 Type II fractional Brownian motion and the null hypothesis H0[II]

Definition 5.3 A type II fractional Brownian motion with parameter d > −.5 is defined by

BII
d+.5(τ) :=

1

Γ(d+ 1)

∫ τ

0
(τ − s)ddB(s), τ ≥ 0, (5.2)

where {B(s), s ≥ 0} is a standard Brownian motion with zero mean and variance EB2(s) = s.

9



A type II fBm shares many properties of type I fBm except that it has nonstationary increments,

however, for |d| < .5 increments at time τ of type II fBm tend those of type I fBm when τ → ∞.

Convergence to type II fBm of partial sums of fractionally integrated processes was discussed in

Marinucci and Robinson (1999, 2000), Leipus and Surgailis (2010).

Type II fBm may serve as the limit process in the following specification of the null hypothesis H0.

H0[II]: There exist d > −.5, κ > 0 and a normalization Bn such that

n−d−.5
(
S[nτ ] − [nτ ]Bn

)
−→D[0,1] κBII

d+.5(τ). (5.3)

The alternative hypothesis to H0[II] can be again H1 of Section 2.

Proposition 5.2 can be easily extended to type II fBm convergence in (5.3) as follows. Introduce a

“truncated” I(d) process by

Xt :=

t∑

s=1

(a ⋆ ψ(d))t−sζs, d > −.5, t = 1, 2, . . . , (5.4)

where the (a ⋆ ψ(d))j and {ζs} are the same as in (5.1).

Put Xt := 0, t = 0,−1,−2, · · · . The above definition and (5.4) imply that {Xt} is a solution of the

fractional equation

(1− L)dXt = Yt, t = 1, 2, . . . ,

where

Yt :=





∑t
j=0 ajζt−j , t = 1, 2, . . . ,

0, t = 0,−1,−2, . . . .

Proposition 5.4 (i) Let {Xt} be defined as in (5.4). If d ∈ (−.5, 0], assume in addition E|ζ0|
p <∞,

for some p > 1/(d+ .5). Then (5.3) holds.

(ii) Let {0 ≤ σs, s ≥ 1} be an almost periodic sequence such that σ̄ := limn→∞

∑n
s=1 σs > 0. Let {Xt}

be defined as in (5.4), where ζs, s ≥ 1 are replaced by σsζs, s ≥ 1 and where d and {ζs} satisfy the

conditions in (i). Then (5.3) holds.

Similarly to Corollary 3.2, Proposition 3.1 implies the following corollary.

Corollary 5.5 Let {Xt} satisfy the conditions of Proposition 5.4. Then

Wn(X) −→law W (BII
d+.5), In(X) −→law I(BII

d+.5), Rn(X) −→law R(BII
d+.5), (5.5)

where {BII
d+.5(τ), τ ∈ [0, 1]} is a type II fBm as defined in (5.2).

Remark 5.1 Numerical experiments confirm that the upper quantiles q
[II]
T (α, d), T =W, I,R, of the

limit r.v.s on the r.h.s. of (5.5) are very close to the corresponding upper quantiles q
[I]
T (α, d) of the

limiting statistics in (3.11) when d is smaller than 1 (see Figure 1 in the particular case T = I). In

other words, from a practical point of view, there is not much difference between type I fBM and type

II fBm null hypotheses H0[I] and H0[II] in testing for a change of d when d < 1.
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Figure 1: Representation of the ratio q
[I]
I (0.05, d)/q

[II]
I (0.05, d) as function of d, with the choice τ = 0.1

and τ = 0.9.

5.3 Fractionally integrated models with changing memory parameter

Let us discuss two nonparametric classes of nonstationary time series with time-varying long memory

parameter termed “rapidly changing memory” and “gradually changing memory”.

Rapidly changing memory. This class is obtained by replacing parameter d by a function d(t/n) ∈

[0,∞) in the FARIMA(0, d, 0) filter

ψj(d) =
d

1
·
d+ 1

2
· · ·

d− 1 + j

j
=

Γ(d+ j)

j!Γ(d)
(j ≥ 1), ψ0(d) := 1. (5.6)

Let d(τ), τ ∈ [0, 1] be a function taking values in the interval [0,∞). (More precise conditions on the

function d(τ) will be specified below.) Define

b1,j(t) := ψj

(
d( t

n)
)
, j = 0, 1, . . . ,

X1,t :=

t∑

s=1

b1,t−s(t)ζs, t = 1, . . . , n, (5.7)

where the innovations ζs, s ≥ 1 satisfy the conditions of Definition 5.1. The particular case

d(τ) =




0, τ ∈ [0, θ∗],

1, τ ∈ (θ∗, 1]
(5.8)

for some 0 < θ∗ < 1, leads to the model

X1,t =




ζt, t = 1, 2, . . . , [θ∗n],
∑t

s=1 ζs t = [θ∗n] + 1, . . . , n,
(5.9)

which corresponds to transition I(0) → I(1) at time [θ∗n] + 1. A more general step function

d(τ) =




d1, τ ∈ [0, θ∗],

d2, τ ∈ (θ∗, 1]
(5.10)

11



corresponds to X1,t changing from I(d1) to I(d2) at time [θ∗n] + 1.

Gradually changing memory. This class of nonstationary time-varying fractionally integrated processes

was defined in Philippe et al. (2006a, 2006b, 2008). Here, we use a truncated modification of these

processes with slowly varying memory parameter d(t/n) ∈ [0,∞), defined as

b2,j(t) :=
d( t

n)

1
·
d( t−1

n ) + 1

2
· · ·

d( t−j+1
n )− 1 + j

j
, j = 1, 2, . . . , b2,0(t) := 1,

X2,t :=
t∑

s=1

b2,t−s(t)ζs, t = 1, . . . , n. (5.11)

Contrary to (5.7), the process in (5.11) satisfies an autoregressive time-varying fractionally integrated

equation with ζt on the right-hand side, see Philippe et al. (2008). In the case when d(τ) ≡ d is

constant function, the coefficients b2,j(t) in (5.11) coincide with FARIMA(0, d, 0) coefficients in (5.6)

and in this case the processes {X1,t} and {X2,t} in (5.7) and (5.11) coincide.

To see the difference between these two classes, consider the case of step function in (5.8). Then

X2,t =




ζt, t = 1, 2, . . . , [θ∗n],
∑t

s=[θ∗n]+1 ζs +
∑[θ∗n]

s=1
t−[θ∗n]
t−s ζs, t = [θ∗n] + 1, . . . , n.

(5.12)

Note t−[θ∗n]
t−s = 0 for t = [θ∗n] and monotonically increases with t ≥ [θ∗n]. Therefore, (5.12) embodies

a gradual transition from I(0) to I(1), in contrast to an abrupt change of these regimes in (5.9). The

distinction between the two models (5.9) and (5.12) can be clearly seen from the variance behavior:

the variance of X1,t exhibits a jump from 1 to [θ∗n] + 1 = O(n) at time t = [θ∗n] + 1, after which it

linearly increases with t, while the variance of X2,t changes “smoothly” with t:

Var(X2,t) =




1, t = 1, 2, . . . , [θ∗n],

(t− [θ∗n]) +
∑[θ∗n]

s=1
(t−[θ∗n])2

(t−s)2
, t = [θ∗n] + 1, . . . , n.

Similar distinctions between (5.7) and (5.11) prevail also in the case of general “memory function”

d(·): when the memory parameter d(t/n) changes with t, this change gradually affects the lagged

ratios in the coefficients b2,j(t) in (5.11), and not all lagged ratios simultaneously as in the case of

b1,j(t), see (5.6).

5.4 Asymptotics of change-point statistics for fractionally integrated models with

changing memory parameter

In this subsection we study the joint convergence of forward and backward partial sums as in (2.6) for

the two models in (5.7) and (5.11) with time-varying memory parameter d(t/n). After the statement

of Proposition 5.6 below, we discuss its implications for the asymptotic power of our tests.

Let us specify a class of “memory function” d(·). For −.5 < d1 < d2 < ∞ and 0 ≤ θ ≤ θ ≤ 1,

introduce the class Dθ,θ(d1, d2) of left-continuous nondecreasing functions d(·) ≡ {d(τ), τ ∈ [0, 1]} such

that

d(τ) =




d1, τ ∈ [0, θ],

d2, τ ∈ [θ, 1],
, d1 < d(τ) < d2, θ < τ < θ. (5.13)
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The interval Θ := [θ, θ] will be called the memory change interval. Note that for θ = θ ≡ θ∗, the

class Dθ∗,θ∗(d1, d2) consists of a single step function in (5.10). Recall from Section 3 that the interval

T = [τ , τ ] in memory change statistics in (3.3) and (3.4) is called the (memory) testing interval.

When discussing the behavior of memory tests under alternatives in (5.7), (5.11) with changing

memory parameter, the intervals Θ and T need not coincide since Θ is not known a priori.

With a given d(·) ∈ Dθ,θ(d1, d2), we associate a function

H(u, v) :=

∫ v

u

d(x)− d2
v − x

dx, 0 ≤ u ≤ v ≤ 1. (5.14)

Note H(u, v) ≤ 0 since d(x) ≤ d2, x ∈ [0, 1] and H(u, v) = 0 if θ ≤ u ≤ v ≤ 1. Define two Gaussian

processes Z1 and Z2 by

Z1(τ) :=
1

Γ(d2)

∫ τ

0

{∫ τ

θ
(v − u)d2−1

+ dv
}
dB(u) = BII

d2+.5(τ)−BII
d2+.5(θ), (5.15)

Z2(τ) :=
1

Γ(d2)

∫ τ

0

{∫ τ

θ
(v − u)d2−1

+ eH(u,v)dv
}
dB(u), τ > θ,

Z1(τ) = Z2(τ) := 0, τ ∈ [0, θ].

The processes {Zi(τ),∈ [0, 1]}, i = 1, 2 are well-defined for any d2 > −0.5 and have a.s. continuous

trajectories.

In the case θ = θ ≡ θ∗ and a step function d(·) in (5.13), Z2(τ) for τ > θ can be rewritten as

Z2(τ) =
1

Γ(d2)

∫ τ

0

{∫ τ

θ
(v − u)d1−1(v − θ)d2−d1dv

}
dB(u).

Related class of Gaussian processes was discussed in Philippe et al. (2008) and Surgailis (2008).

Proposition 5.6 Let d(·) ∈ Dθ,θ(d1, d2) for some 0 ≤ d1 < d2 < ∞, 0 ≤ θ ≤ θ ≤ 1. Let Si,k and

S∗
i,n−k, i = 1, 2 be the forward and backward partial sums processes corresponding to time-varying

fractional filters {Xi,t}, i = 1, 2 in (5.7), (5.11), with memory parameter d(t/n) and standardized

i.i.d. innovations {ζj , j ≥ 1} as in Definition 5.1. Moreover, in the case d1 = 0 we assume that

E|ζ0|
2+δ <∞ for some δ > 0. In addition,

(i) Let θ > 0. For any θ ∈ (0, θ],

(
n−d1−.5Si,[nτ1], n

−d2−.5S∗
i,[nτ2]

)
−→D[0,θ]×D[0,1−τ ] (Zi,1(τ1), Zi,2(τ2)

)
, i = 1, 2, (5.16)

where

Zi,1(τ) := BII
d1+.5(τ), Zi,2(τ) := Z∗

i (τ) = Zi(1)−Zi(1− τ), i = 1, 2, (5.17)

and Zi, i = 1, 2 are defined in (5.15).

(ii) For any θ ∈ [θ, 1], for any d > d(θ), d1 < d < d2

(
n−d−.5Si,[nτ1], n

−d2−.5S∗
i,[nτ2]

)
−→D[0,θ]×D[0,1−τ ] (0, Zi,2(τ2)

)
, i = 1, 2, (5.18)

where Zi,2, i = 1, 2 are the same as in (5.17).
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The power of our tests depends on whether the testing and the memory change intervals have an

empty intersection or not. When τ < θ, Proposition 5.6 (i) applies taking θ = τ and the asymptotic

distribution of the memory test statistics for models (5.7) and (5.11) follows from Proposition 4.1

(4.4), with normalization (An2/An1)
2 = n2(d1−d2) → 0, implying the consistency of the tests. But this

situation is untypical for practical applications and hence not very interesting. Even less interesting

seems the case when a change of memory ends before the start of the testing interval, i.e., when θ ≤ τ .

Although the last case is not covered by Proposition 5.6, the limit distribution of the test statistics

for models (5.7), (5.11) exists with trivial normalization (An2/An1)
2 = 1 and therefore our tests are

inconsistent, which is quite natural in this case.

Let us turn to some more interesting situations, corresponding to the case when the intervals T and

Θ have a nonempty intersection of positive length. There are two possibilities:

Case 1: τ < θ ≤ τ (a change of memory occurs after the beginning of the testing interval), and

Case 2: θ ≤ τ < θ (a change of memory occurs before the beginning of the testing interval).

Let us consider the two cases 1 and 2 in more detail.

Case 1. Let T̃ := [τ , θ] ⊂ T . Introduce the following “dominated” (see (5.20)) statistics:

W̃n(X) := sup
τ∈T̃

V ∗
n−[nτ ](X)

V[nτ ](X)
, Ĩn(X) :=

∫

T̃

V ∗
n−[nτ ](X)

V[nτ ](X)
dτ, (5.19)

R̃n(X) :=
infτ∈T V

∗
n−[nτ ](X)

inf
τ∈T̃

V[nτ ](X)
.

Clearly,

Wn(X) ≥ W̃n(X), In(X) ≥ Ĩn(X), Rn(X) ≥ R̃n(X), a.s. (5.20)

The limit distribution of (5.19) for models (5.7) and (5.11) can be derived from propositions 4.1

and 5.6 (i) choosing θ = θ. In particular, it follows that n2(d1−d2)W̃n(Xi), n
2(d1−d2)Ĩn(Xi), and

n2(d1−d2)R̃n(Xi), i = 1, 2 tend, in distribution, to the corresponding limits in (4.4), with T replaced

by Θ and Z1 = Zi,1, Z2 = Zi,2, i = 1, 2 as defined in (5.17). Moreover, it can be shown that

n−2d1V[nτ ](Xi) −→p ∞ for any τ ∈ T \Θ. Therefore one can expect that in case 1, the limit distribu-

tions of the original statistics in (3.3) and the “dominated” statistics in (5.19) coincide.

Case 2. In this case, define T̃ := [τ , θ̃] ⊂ T , where θ̃ ∈ (τ , θ) is an inner point of the interval

[τ , θ]. Let W̃n(X), Ĩn(X), R̃n(X) be defined as in (5.19). Obviously, relations (5.20) hold as in the

previous case. Since the memory parameter increases on the interval T̃ , the limit distribution of the

process V[nτ ](Xi), τ ∈ T̃ in the denominator of the statistics is not identified from Proposition 4.1 (ii).

Nevertheless in this case we can use Propositions 4.1 (iii) and 5.6 (ii) to obtain a robust rate of growth

of the memory statistics in (5.19) and (3.3). Indeed from Proposition 5.6 (ii) with θ = θ̃, we have

that n−2dV[nτ ](Xi) −→D(0,θ̃] 0 for any d2 > d > d(θ̃) and hence n2(d−d2)Wn(Xi), n
2(d−d2)In(Xi) and

n2(d−d2)Rn(Xi), i = 1, 2 tend to infinity, in probability.

6 Simulation study

In this section we compare from numerical experiments the performance of the different test statistics

in (3.13) for testing H0[I] against H1 with nominal level α = 5%. A comparison with the Kim’s

approach, based on the ratio (1.1), is also provided.
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The different steps to implement the testing procedures defined in (3.13) are the following: having

observed X1, . . . , Xn

• we choose τ = 1−τ for τ ∈ (0, 1) which defines the testing region T := [τ , 1−τ ]. The sensitivity

to the parameter τ will be explored.

• we estimate the parameter d which appears in the limit distributions in H0[I]. We choose d̂n as

the fully extended local Whittle (FELW) estimate (see Abadir et al. (2007) for the definition

and its convergence properties). The FELW estimate can be replaced by any estimator which

converges to d in probability (see Proposition 3.3).

• to deduce the critical regions (3.13), we approximate the quantile function q
[I]
T (.05, d), for T =

W, R, I, as a function of d and for different values of τ , by extensive Monte Carlo experiments.

See Figure 2 in the particular case T = I.

Figure 2: Upper quantile of order 5% of I(Bd+.5) as a function of d, for three different values of τ :

[solid line] τ = 5%; [solid line with points] τ = 10%; [dashed line] τ = 20%. The right plot is a zoom

in on the region d ∈ [0, .5).

6.1 Comparison of the test statistics

In this part we compare the test procedures based on our statistics In, Rn, Wn and the Kim’s statistic

associated to the integral functional

IKim
n =

∫

T

Kn(τ)dτ, (6.1)

where Kn(τ) is defined in (1.1).

To evaluate the properties of the tests under the null hypothesis H0[I], we consider the class of

FARIMA(0,d,0) processes with d ∈ [0, .5[. Then we estimate the power in presence of a change point

in the long memory parameter at n/2, i.e. we assume

Xt =





∑∞
s=0 ψs(d1)εt−s if t ≤ n/2,

∑∞
s=0 ψs(d2)εt−s if t > n/2,

(6.2)
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where (ψs(d))s=0,1,... is defined in (5.6) and (εt) is a Gaussian white noise with zero mean and unit

variance.

Table 1 displays the estimated level and power based on 104 replications of the testing procedures,

when n = 5000. Table 1 shows that for all τ , the estimated level is close to the nominal level for

the four statistics. We also observe that the performances of the tests based on In and IKim
n do not

depend too much on τ ; this property is not shared by the tests associated to Wn and Rn.

When τ is small, the most efficient test is clearly the test based on In. When τ increases, the

performances of the test based on Rn become comparable to the test based on In, while Wn and IKim
n

still induce less efficient tests. However it is preferable to choose τ as small as possible, since we can

not detect a change point that occurs in [0, τ ] ∪ [1− τ , 1].

In conclusion, the choice τ = 0.05 (or τ = 0.1) and the statistic In seems preferable to IKim
n , Wn

and Rn.

6.2 More numerical results for the test based on In

The numerical results in Table 1 have led to select the test based on the In statistic. Now we explore

its performances for various classes of processes under H0[I] and H1.

Table 2 extends the study in Table 1 to 0 < d1 ≤ d2 < 1.5. For d > .5, FARIMA(0, d, 0) processes

are simulated using the following representation

Xt = X0 +

t∑

i=1

Yi, (6.3)

where (Yt) is a stationary FARIMA(0, d− 1, 0) .

Figure 3 represents some trajectories simulated from model (6.2) with d2 − d1 = 0.3 and different

values of d1. From the observation of these realizations, it seems more difficult to detect a change in

the memory parameter when 0 ≤ d1 < d2 < .5 or .5 < d1 < d2, than when d1 < .5 < d2. Table 2

confirms this. Moreover, fixing the difference d2 − d1, it turns out that the test is more powerful in

the case 0 ≤ d1 < d2 < .5 than in the case .5 < d1 < d2.

In Tables 3–4, we illustrate the fact that the performances of the test based on In are preserved

when a positive, resp. negative, autoregressive part is added to the model (6.2).

Tables 2, 3 and 4 confirm that In is not very sensitive to the testing interval parameter τ .

Finally, we assess the power of the test in presence of fractionally integrated models with changing

memory parameters presented in Section 5.3. Figure 4 first provides trajectories of the rapidly changing

memory model defined in (5.7) and of the gradually changing memory model defined in (5.11), for

the same function d(t/n) = .2 + .6 t/n. From this representation, it is clearly easier to realize that

d(t/n) > 1/2 when t ≥ n/2 for the rapidly changing memory model than for the gradually changing

memory model.

Table 5 displays the estimated power of the test for the rapidly changing memory model (5.7) when

d(τ) = d1 + (d2 − d1)τ , θ = 0 and θ = 1. The null hypothesis is naturally less often rejected for this

model than for the model defined in (6.2). However the power is still satisfactory. Similar simulations

(omitted here) show that the test has more difficulty to detect gradually changing memory than rapidly

changing memory for small samples, but the difference becomes negligible for n = 5000.
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Figure 3: Comparison of trajectories simulated from the model (6.2) for different values of (d1, d2):

[top] (.1, .4) [middle] (.3, .6) and [bottom] (.8, 1.1). The sample size is n = 1000.
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Figure 4: Comparison of trajectories simulated from the model (5.7) [top] and (5.11) [bottom] with

d(τ) = .2 + .6τ , θ = 0 and θ = 1.
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τ = 0.05 τ = 0.1 τ = 0.2
❍
❍

❍
❍
❍

❍❍
d2

d1
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

Wn statistic

0 3.4 3.6 4.1

0.1 20.2 3.7 24.2 4.1 28.3 4.5

0.2 50.1 16 3.8 61.1 20.9 4.5 68.6 26 4.7

0.3 74.6 38.5 13.3 3.6 87.1 51.1 17.7 4.1 93.1 62 23.6 4.7

0.4 88.7 64.1 31.2 11.6 3.7 96.6 79.6 44.3 15 4 99.2 88.8 56.7 20 4.4

Rn statistic

0 3.7 3.9 4.1

0.1 29 5.1 30.9 4.9 31.3 5

0.2 65 25.3 4.9 71 28.1 4.8 73.1 30.5 4.6

0.3 85.3 53.8 21.2 5 91.7 62.2 24.4 4.9 94.3 67 26.5 4.9

0.4 94.1 75.7 44.8 18.4 4.8 98 84.8 54.1 21.7 4.6 99.3 90.3 60.3 24.4 4.5

In statistic

0 2.9 3.2 3.6

0.1 28.5 3.4 29.5 3.8 30.7 4.1

0.2 73.4 27.8 3.6 74 28.8 3.9 73.7 30.1 4.2

0.3 95.9 68 24.8 3.5 96.3 69.8 26.5 3.7 95.9 69.7 27.9 4.3

0.4 99.5 92.3 62.5 21.8 3.5 99.7 93.6 65.7 24.1 3.8 99.7 94.1 66.6 25.6 4

IKim
n statistic

0 3.5 3.7 4.2

0.1 23.5 3.6 24.1 4 24.6 4.3

0.2 58.4 21.4 4.3 58.5 22 4.4 57.4 22.4 4.7

0.3 86.1 54.8 19.9 4 86.8 55.8 20.5 4.2 86.1 55.4 20.8 4.5

0.4 96.6 82.2 52.1 18.4 4 97.3 83.6 53.6 19.2 3.7 97.3 83.4 53.4 19.7 4

Table 1: Estimated level (d1 = d2) and power (d1 6= d2) (in %) of the tests based on the three statistics

In, Wn, Rn and the Kim’s statistic (6.1). The nominal level is α = 5%. The samples are simulated

from model (6.2). The sample size is 5000 and the number of independent replications is 104.
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τ

❍
❍
❍
❍
❍
❍❍

d2

d1
0 0.1 0.2 0.3 0.4 0.6 0.8 1 1.2 1.4

0.05 0 2.9

0.1 28.5 3.4

0.2 73.4 27.8 3.6

0.3 95.9 68 24.8 3.5

0.4 99.5 92.3 62.5 21.8 3.5

0.6 100 99.9 99.7 97.1 88 5.3

0.8 100 100 99.8 98.7 92.6 11.3 5

1 100 100 100 99.9 98.9 45.3 28.1 5.1

1.2 100 100 100 100 99.9 87.4 78.6 41.4 5.3

1.4 100 100 100 100 100 98 96.4 85.9 59 3.3

0.1 0 3.2

0.1 29.5 3.8

0.2 74 28.8 3.9

0.3 96.3 69.8 26.5 3.7

0.4 99.7 93.6 65.7 24.1 3.8

0.6 100 100 99.9 98.7 92.5 5.2

0.8 100 100 99.9 99.4 96 11.8 4.9

1 100 100 100 100 99.7 51.9 34 5.1

1.2 100 100 100 100 100 91.7 84.2 44.6 5.1

1.4 100 100 100 100 100 99.1 98.2 88.9 57.8 2.9

0.2 0 3.6

0.1 30.7 4.1

0.2 73.7 30.1 4.2

0.3 95.9 69.7 27.9 4.3

0.4 99.7 94.1 66.6 25.6 4

0.6 100 100 99.9 99.4 95.4 5.1

0.8 100 100 100 99.8 98.1 11.6 4.9

1 100 100 100 100 99.9 57.3 39.4 4.6

1.2 100 100 100 100 100 94.8 89.5 48.4 4.9

1.4 100 100 100 100 100 99.7 99.3 91.8 57 2.7

Table 2: Estimated level (d1 = d2) and power (d1 6= d2) (in %) of the test based on In with nominal

level α = 5%. The samples are simulated from model (6.2). The sample size is 5000 and the number

of independent replications is 104.
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τ

❍
❍
❍
❍
❍
❍❍

d2

d1
0 0.1 0.2 0.3 0.4 0.6 0.8 1 1.2 1.4

0.05 0 3

0.1 28.6 3.6

0.2 73.4 26.9 3.6

0.3 95.2 68.3 23.7 3.7

0.4 99.4 91.5 63.5 21.5 3.4

0.6 100 100 99.6 97.4 87.5 5.2

0.8 100 99.9 99.9 98.7 92.2 11.3 5.4

1 100 100 99.9 99.9 99 44.8 28.1 5.5

1.2 100 100 100 99.9 99.9 87.3 78 43 5.7

1.4 100 100 100 100 100 98.2 96.3 84.7 58.9 3.1

0.1 0 3.3

0.1 29.5 4

0.2 73.6 27.8 3.8

0.3 95.7 70 24.9 4

0.4 99.6 92.9 66.2 23.5 4

0.6 100 100 99.9 98.8 92.1 5.1

0.8 100 99.9 99.9 99.5 96.1 11.9 5.2

1 100 100 100 100 99.7 51 34.9 5.4

1.2 100 100 100 100 99.9 91.6 84 46 5.4

1.4 100 100 100 100 100 99.1 98.2 87.9 57.8 2.8

0.2 0 3.7

0.1 30.6 4.5

0.2 73.4 29 4.3

0.3 95.4 70.1 26.6 4.3

0.4 99.7 93.2 67.4 25.1 4.3

0.6 100 100 99.9 99.4 94.6 5

0.8 100 100 100 99.8 98 11.7 5.1

1 100 100 100 100 99.9 56.6 40.5 5

1.2 100 100 100 100 100 94.7 89.4 49.3 4.9

1.4 100 100 100 100 100 99.7 99.4 91.2 56.9 2.2

Table 3: Estimated level (d1 = d2) and power (d1 6= d2) (in %) of the test based on In with nominal level

α = 5%. The samples are simulated from model (6.2), where (ψi(d)) are FARIMA(1, d, 0) coefficients

with AR parameter 0.7. The sample size is 5000 and the number of independent replications is 104.
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τ

❍
❍
❍
❍
❍
❍❍

d2

d1
0 0.1 0.2 0.3 0.4 0.6 0.8 1 1.2 1.4

0.05 0 1.8

0.1 24.3 2.7

0.2 70.2 25.3 3.1

0.3 94.6 66.5 22.7 3.3

0.4 99.5 92.7 63.1 22.5 3.7

0.6 99.9 100 99.7 97.9 89.3 6.5

0.8 100 99.9 99.8 98.9 93 12.6 5.3

1 100 100 99.9 99.8 99.1 46.3 29.2 5.8

1.2 100 100 100 100 99.9 87.8 78.8 42.8 6

1.4 100 100 100 100 100 98.1 96.5 86.5 59.9 3.7

0.1 0 2

0.1 25.9 3.2

0.2 72.1 27.5 3.5

0.3 95.4 69.1 24.9 3.9

0.4 99.6 94.2 66.3 25 3.9

0.6 100 100 99.9 99.1 93.5 5.7

0.8 100 100 99.9 99.6 96.1 12.8 5.2

1 100 100 100 99.9 99.8 52.8 35.1 5.6

1.2 100 100 100 100 100 92.2 84.4 45.5 5.4

1.4 100 100 100 100 100 99.3 98.2 89.2 58.3 3.1

0.2 0 2.5

0.1 27.8 3.9

0.2 72.9 29.2 4.1

0.3 95.4 70.4 26.6 4.5

0.4 99.7 94.5 67.6 26.4 4.3

0.6 100 100 100 99.6 95.7 5.4

0.8 100 100 99.9 99.9 97.9 12.1 5.5

1 100 100 100 100 99.9 57.2 41.3 5.3

1.2 100 100 100 100 100 95.3 89.9 49.3 4.8

1.4 100 100 100 100 100 99.7 99.3 92.4 57.7 2.8

Table 4: Estimated level (d1 = d2) and power (d1 6= d2) (in %) of the test based on In with nominal level

α = 5%. The samples are simulated from model (6.2), where (ψi(d)) are FARIMA(1, d, 0) coefficients

with AR parameter −0.7. The sample size is 5000 and the number of independent replications is 104.
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τ

❍
❍

❍
❍
❍

❍❍
d2

d1
0 0.1 0.2 0.3 0.4 0.6 0.8 1 1.2 1.4

0.05 0

0.1 16.1

0.2 42.3 15.2

0.3 69.9 36.6 13.1

0.4 86.8 61.2 31.8 11.2

0.6 97.8 91.1 74.6 49.7 26.5

0.8 99.3 97.8 91.9 79.6 59.1 17.1

1 99.8 99.1 97.4 92.1 82.8 41.6 11.1

1.2 99.8 99.5 98.9 96.5 91.5 66.1 26.1 6.7

1.4 99.8 99.6 99.2 97.7 94.5 78.3 40.4 11.2 3.3

0.1 0

0.1 16.3

0.2 42.3 15.7

0.3 69.6 36.5 13.8

0.4 86.7 61.8 32.8 11.8

0.6 98.3 92.2 75.8 51.2 27.3

0.8 99.8 98.8 94 82.7 62.3 18.5

1 99.9 99.7 98.7 95 86.6 45.9 13.1

1.2 99.9 99.9 99.7 98.2 94.7 72.1 29.9 8.4

1.4 100 99.9 99.8 99.3 97.4 84.7 45.9 13.6 4.4

0.2 0

0.1 16.3

0.2 39.9 16

0.3 65.8 35.4 14

0.4 83.4 59 32.7 12.5

0.6 97.6 90.5 73.9 49.7 27.3

0.8 99.7 98.6 93.1 81.5 60.5 19.9

1 100 99.9 98.6 94.3 85.4 45.7 14.8

1.2 99.9 99.9 99.7 98.4 94.3 70.6 30.2 9.9

1.4 100 99.9 99.9 99.4 97.3 82.9 43.7 14.8 5.8

Table 5: Estimated power (in %) of the test based on In with nominal level α = 5%. The samples are

simulated from model (5.7) with d(τ) = d1 + (d2 − d1)τ , θ = 0 and θ = 1. The sample size is 5000

and the number of independent replications is 104.
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7 Appendix: proofs

Proof of Proposition 4.1. (i) Write zn1(τ) := A−1
n1S[nτ ], (n/A2

n1)V[nτ ](X) =
∑6

i=1 Uni(τ), where the

terms

Un1(τ) :=
(
n2/[nτ ]2

) ∫ [nτ ]/n

0
z2n1(u)du,

Un2(τ) := −2
(
n2/[nτ ]2

)
zn1(τ)

∫ [nτ ]/n

0

(
[nu]/[nτ ]

)
zn1(u)du,

Un3(τ) :=
(
n2/[nτ ]2

)
z2n1(τ)

∫ [nτ ]/n

0

(
[nu]/[nτ ]

)2
du,

Un4(τ) := −
(
n3/[nτ ]3

)( ∫ [nτ ]/n

0
zn1(u)du

)2
,

Un5(τ) := 2
(
n3/[nτ ]3

)
zn1(τ)

(∫ [nτ ]/n

0
zn1(u)du

)∫ [nτ ]/n

0

(
[nu]/[nτ ]

)
du,

Un6(τ) := −
(
n3/[nτ ]3

)
z2n1(τ)

(∫ [nτ ]/n

0

(
[nu]/[nτ ]

)
du
)2

tend in distribution, as n→ ∞, to the corresponding limit quantities

U1(τ) := τ−2

∫ τ

0
Z2
1 (u)du,

U2(τ) := −2τ−2Z1(τ)

∫ τ

0
(u/τ)Z1(u)du,

U3(τ) := τ−2Z2
1 (τ)

∫ τ

0
(u/τ)2du,

U4(τ) := −τ−3

(∫ τ

0
Z1(u)du

)2

,

U5(τ) := 2τ−3Z1(τ)

(∫ τ

0
Z1(u)du

)∫ τ

0
(u/τ)du,

U6(τ) := −τ−3Z2
1 (τ)

(∫ τ

0
(u/τ)du

)2

.

Note Qτ (Z1) =
∑6

i=1 Ui(τ) a.s. for each τ ∈ (0, υ1]. The joint convergence

(Un1(τ), . . . , Un6(τ)) −→d (U1(τ), . . . , U6(τ)) (7.1)

at each fixed point τ ∈ (0, υ1] can be easily derived from the (marginal) convergence A−1
n1S[nτ ] −→D[0,υ1]

Z1(τ) in (4.1). The convergence in (7.1) easily extends to the joint convergence at any finite number

of points 0 < τ1 < · · · < τm ≤ υ1. In other words,

(n/A2
n1)V[nτ ](X) −→fdd(0,υ1] Qτ (Z1). (7.2)

In a similar way,

A−1
n2S

∗
[nτ ] −→D[0,1−υ0] Z2(τ),

implies

(n/A2
n2)V

∗
n−[nτ ](X) −→fdd[υ0,1) Q1−τ (Z2). (7.3)
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It is clear from the joint convergence in (4.1) that (7.2), (7.3) extend to the joint convergence of

finite-dimensional distributions, in other words, that (4.2) holds with −→D(0,υ1]×D[υ0,1) replaced by

−→fdd(0,υ1]×[υ0,1).

It remains to prove the tightness inD(0, υ1]×D[υ0, 1). To this end, it suffices to check the tightness of

the marginal processes in (7.2) and (7.3) in the corresponding Skorokhod spaces D(0, υ1] and D[υ0, 1).

See, e.g., Ferger and Vogel (2010), Whitt (1970).

Let us prove the tightness of the l.h.s. in (7.2) in D(0, υ1], or, equivalently, the tightness in D[υ, υ1],

for any 0 < υ < υ1. Let Υn(τ) := (n/A2
n1)V[nτ ](X). Since {Υn(υ), n ≥ 1} is tight by (7.2), it suffices

to show that for any ǫ1, ǫ2 > 0 there exist δ > 0 and n0 ≥ 1 such that

P(ωδ(Υn) ≥ ǫ1) ≤ ǫ2, n ≥ n0, (7.4)

where

ωδ(x) := sup
{
|x(a)− x(b)| : υ ≤ a < b ≤ υ1, a− b < δ

}

is the continuity modulus of a function x ∈ D[υ, υ1]; see Billingsley (1968, Theorem 8.2). Since

Υn(τ) =
∑6

i=1 Uni(τ), it suffices to show (7.4) with Υn replaced by Uni, i = 1, . . . , 6, in other words,

P(ωδ(Uni) ≥ ǫ1) ≤ ǫ2, n ≥ n0, i = 1, · · · , 6. (7.5)

We verify (7.5) for i = 2 only since the remaining cases follow similarly. Write Un2(τ) =
∏3

i=1Hni(τ),

where Hn1(τ) := −2
(
n2/[nτ ]2

)
, Hn2(τ) := zn1(τ), Hn3(τ) :=

∫ [nτ ]/n
0

(
[nu]/[nτ ]

)
zn1(u)du. Then

P(ωδ(Un2) ≥ ǫ1) ≤
∑3

i=1

[
P(ωδ

(
Hni) ≥ ǫ1/(3K)

)
+ P

(∏
j 6=i ‖Hnj‖ > K

)]
, where ‖x‖ := sup{|x(a)| :

υ ≤ a ≤ υ1
}
is the sup-norm. Relation (4.1) implies that the probability P

(∑3
i=1 ‖Hni‖ > K

)
can be

made arbitrary small for all n > n0(K) by a suitable choice of K. By same relation (4.1) assumed un-

der the uniform topology, for a given ǫ1/K, we have that limδ→0 lim supn→∞ P
(
ωδ(Hni) ≥ ǫ1/K

)
= 0.

This proves (7.5) and the functional convergence (n/A2
n1)V[nτ ](X) −→D(0,υ1] Qτ (Z1). The proof of

(n/A2
n2)V

∗
n−[nτ ](X) −→D[υ0,1) Q1−τ (Z2) is analogous. This concludes the proof of part (i), since the

continuity of the limit process in (4.2) is immediate from continuity of (Z1(τ1), Z2(τ2)
)
and the defi-

nition of Qτ in (3.6).

(ii) Note that (4.3) and the a.s. continuity of τ 7→ Qτ (Z1) guarantees that infτ∈T Qτ (Z1) > 0 a.s.

Therefore relations (4.4) follow from (4.2) and the continuous mapping theorem.

(iii) Follows from (4.2) and the fact that Z1(τ) = 0, τ ∈ T implies Qτ (Z1) = 0, τ ∈ T . �

Proof of Proposition 5.6. We restrict the proof to the case (i) and i = 2, or to the model (5.11), since

the remaining cases can be treated similarly. Similarly as in the proof of (3.7), it suffices to prove

the joint convergence of finite-dimensional distributions in (5.16) and the functional convergence of

marginal processes, viz.,

n−d1−.5S2,[nτ ] −→D[0,θ] Z2,1(τ), n−d2−.5S∗
2,[nτ ] −→D[0,1−τ ] Z2,2(τ). (7.6)

Since X2,t =
∑t

j=0 ψj(d1)ζt−j , 1 ≤ t ≤ [nτ ] has constant memory parameter d1, the proof of the

first convergence in (7.6) to Z2,1(τ) = BII
d1+.5(τ) is standard, and we omit it. Consider the second

convergence in (7.6). It can be rewritten as

n−d2−.5S2,[nτ ] −→D[τ ,1] Z2(τ). (7.7)
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Consider first the one-dimensional convergence in (7.7) at a fixed point τ ∈ [τ , 1]. Write S2,[nτ ] =∑[nτ ]
t=1 X2,t =

∑[nτ ]
t=1

∑t
s=1 b2,t−s(t)ζs. Let t = [nv], s = [nu] and 0 ≤ u ≤ θ < v ≤ 1. Consider the ratio

Kn(u, v) :=
b2,[nv]−[nu]([nv])

ψ[nv]−[nu](d2)
=

[nv]−[nu]∏

i=1∨([nv]−[nθ])

d
( [nv]−i+1

n

)
− 1 + i

d2 − 1 + i
, (7.8)

where ψj(d) are the FARIMA coefficients in (5.6). We claim that

lim
n→∞

Kn(u, v) = eH(u,v), 0 ≤ u ≤ θ < v ≤ 1, (7.9)

where H(u, v) is defined at (5.14). Indeed,

Kn(u, v) = exp

{
[nv]−[nu]∑

i=1∨([nv]−[nθ])

log

(
1−

d2 − d
( [nv]−i

n

)

d2 − 1 + i

)}
= eHn(u,v)+Rn(u,v),

where

Hn(u, v) := n−1

[nv]−[nu]∑

i=1∨([nv]−[nθ])

d
( [nv]−i

n

)
− d2

d2−1+i
n

→ H(u, v),

Rn(u, v) = O

(
[nv]−[nu]∑

i=1∨([nv]−[nθ])

1

i2

)
= O

(
1

1 ∨ ([nv]− [nθ])

)
,

hence Rn(u, v) → 0 for any v > θ.

Let us first consider the case τ > θ. Following the scheme of discrete stochastic integrals in Surgailis

(2003), rewrite the l.h.s. of (7.7) as a discrete stochastic integral

n−d2−.5S2,[nτ ] =

∫ τ

0
Fn(u)dzn(u) =

∫ θ

0
Fn(u)dzn(u) +

∫ τ

θ
Fn(u)dzn(u),

where zn(u) := n−1/2
∑[nu]

i=1 ζi is the partial sum process of standardized i.i.d. r.v.s, tending weakly to

a Brownian motion {B(u), u ∈ [0, 1]}. The integrand Fn in the above integral is equal to

Fn(u) := n−d2

[nτ ]∑

t=[nu]

b2,t−[nu](t)

=




n−d2

∑[nτ ]
t=[nu] b2,t−[nu](t), 0 < u ≤ θ,

n−d2
∑[nτ ]

t=[nu] ψt−[nu](d2), θ < u ≤ τ,

where we used the fact that b2,t−[nu](t) = ψt−[nu](d2) for t ≥ [nu] ≥ [nθ]. Similarly, the r.h.s. of (7.7)

can be written as the sum of two stochastic integrals:

∫ τ

0
F (u)dB(u) =

∫ θ

0
F (u)dB(u) +

∫ τ

θ
F (u)dB(u),

where

F (u) :=




Γ(d2)

−1
∫ τ
θ (v − u)d2−1eH(u,v)dv, 0 < u ≤ θ,

Γ(d2 + 1)−1(τ − u)d2 , θ < u ≤ τ.
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Accordingly, using the above mentioned criterion in Surgailis (2003, Proposition 3.2) (see also Bružaitė

and Vaičiulis (2005, Lemma 2.2)), the one-dimensional convergence in (7.7) follows from the L2−con-

vergence of the integrands:

∫ θ

0
|Fn(u)− F (u)|2du→ 0,

∫ τ

θ
|Fn(u)− F (u)|2du→ 0. (7.10)

The second relation in (7.10) is easy using the properties of FARIMA filters. Denote Jn the first

integral in (7.10). Using the above definitions, the integrand there can be rewritten as

Fn(u)− F (u) =

∫ θ

u
n1−d2b2,[nv]−[nu]([nv])dv +

∫ τ

θ
Gn(u, v)dv − n−d2(nτ − [nτ ])b2,[nτ ]−[nu]([nτ ]),

(7.11)

where Gn(u, v) := n1−d2b2,[nv]−[nu]([nv])− Γ(d2)
−1(v − u)d2−1eH(u,v).

Recall that from (7.8), b2,[nv]−[nu]([nv]) = ψ[nv]−[nu](d2)Kn(u, v). Using on one hand the fact

that the ratio Kn(u, v) tends to 0 for 0 < u < v ≤ θ, on the other hand (7.9), and from the

well-known asymptotics ψj(d) ∼ Γ(d)−1jd−1, j → ∞ of FARIMA coefficients, it easily follows that

n1−d2b2,[nv]−[nu]([nv]) → 0 for any 0 < u < v ≤ θ, and Gn(u, v) → 0 for any 0 < u < v ≤ 1 fixed.

Moreover, the last term in (7.11) obviously tends to 0 because d2 > 0. Since both sides of (7.9) are

nonnegative and bounded by 1, the above convergences extend to the proof of Jn → 0 by the domi-

nated convergence theorem. This proves the convergence of one-dimensional distributions in (7.7) for

τ > θ. For τ ≤ τ ≤ θ, the above convergence follows similarly by using the fact that Kn(u, v) tends

to 0 for 0 < u < v ≤ θ.

The proof of the convergence of general finite-dimensional distributions in (7.7), as well as the joint

convergence of finite-dimensional distributions in (5.16), can be achieved analogously, by using the

Cramèr-Wald device. Finally, the tightness in (7.7) follows by the Kolmorogov criterion (see, e.g.,

Bružaitė and Vaičiulis (2005, proof of Theorem 1.2) for details). Proposition 5.6 is proved. �

References

Abadir, K. M., Distaso, W. and Giraitis, L. (2007). Nonstationarity-extended local Whittle estimation. Journal

of Econometrics, 141, 1353–1384.

Bardet, J.-M. and Kammoun, I. (2008). Detecting abrupt changes of the long-range dependence or the self-

similarity of a Gaussian process. C. R. Acad. Sci. Paris, Ser. I, 346, 789–794.

Bardet, J.-M., Lang, G., Oppenheim, G., Philippe, A., Stoev, S. and Taqqu, M. S. (2003). Semi-parametric

estimation of the long-range dependence parameter: A survey. In Theory and Applications of Long-Range

Dependence (eds P. Doukhan, G. Oppenheim and M. S. Taqqu), pp. 557–577. Birkhäuser, Boston.
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Surgailis, D. (2008). Nonhomogeneous fractional integration and multifractional processes. Stochastic Processes

and their Applications, 118, 171–198.

Whitt, W. (1970). Weak convergence of probability measures on the function space C[0,∞). Annals of

Mathematical Statistics, 41, 939–944.

Yamaguchi, K. (2011). Estimating a change point in the long memory parameter. Journal of Time Series

Analysis, 32, 304–314.

29


