Coherent magneto-optical polarisation dynamics in a single chiral carbon nanotube - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2011

Coherent magneto-optical polarisation dynamics in a single chiral carbon nanotube

Philippe Roussignol
  • Fonction : Auteur
  • PersonId : 829954

Résumé

We propose a theoretical framework and a dynamical model for the description of the natural optical activity and the Faraday rotation in an individual chiral single-walled carbon nanotube in the highly nonlinear coherent regime. The model is based on a discrete-level representation of the optically active states near the band edge. Chirality is modelled by a system Hamiltonian corresponding to energy-level configurations, specific for each handedness, that are mirror reflections of each other. An axial magnetic field is introduced through the Aharonov-Bohm and Zeeman energy-level shifts. The time evolution of the quantum system following an ultrafast circularly polarised optical excitation is studied using the coherent vector Maxwell pseudospin equations. Giant natural and magneto-optical gyrotropy, exceeding the one of the artificial photonic metamaterials, is numerically demonstrated for a single (5, 4) carbon nanotube and an estimate of the magnitude of the natural and magneto-chiral circular dichroism and specific optical rotatory power is obtained. The model provides a framework for the investigation of chirality and magnetic field dependence of the ultrafast nonlinear optical response of a single carbon nanotube.
Fichier non déposé

Dates et versions

hal-00634081 , version 1 (20-10-2011)

Identifiants

  • HAL Id : hal-00634081 , version 1

Citer

Gabriela Slavcheva, Philippe Roussignol. Coherent magneto-optical polarisation dynamics in a single chiral carbon nanotube. 10th International Conference on Physics of Light-Matter Coupling in Nanostructures (PLMCN10), Apr 2010, Cuernavaca, Mexico. pp.325. ⟨hal-00634081⟩
30 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More