
HAL Id: hal-00633641
https://hal.science/hal-00633641

Submitted on 19 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Effect of Network Realism on Community Detection
Algorithms

Günce Orman, Vincent Labatut

To cite this version:
Günce Orman, Vincent Labatut. The Effect of Network Realism on Community Detection Algorithms.
International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2010,
Odense, Denmark. pp.301-305, �10.1109/ASONAM.2010.70�. �hal-00633641�

https://hal.science/hal-00633641
https://hal.archives-ouvertes.fr


The Effect of Network Realism on Community 
Detection Algorithms 

 

Günce K. Orman and Vincent Labatut 
Computer Science Department 

Galatasaray University 
Istanbul, Turkey 

korman@gsu.edu.tr 
vlabatut@gsu.edu.tr 

 
 

Abstract— Community detection consists in searching cohesive 
subgroups in complex networks. It has recently become one of 
the domain pivotal questions for scientists in many different 
fields where networks are used as modeling tools. Algorithms 
performing community detection are usually tested on real, but 
also on artificial networks, the former being costly and difficult 
to obtain. In this context, being able to generate networks with 
realistic properties is crucial for the reliability of the tests. 
Recently, Lancichinetti et al. [1] designed a method to produce 
realistic networks, with a community structure and power law 
distributed degrees and community sizes. However, other 
realistic properties such as degree correlation and transitivity are 
missing. In this work, we propose a modification of their 
approach, based on the preferential attachment model, in order 
to remedy this limitation. We analyze the properties of the 
generated networks and compare them to the original approach. 
We then apply different community detection algorithms and 
observe significant changes in their performances when 
compared to results on networks generated with the original 
approach. 

Keywords-complex networks; community detection; random 
networks, networks generation; networks properties 

I.  INTRODUCTION 
Complex networks constitute a powerful modeling tool, 

able to represent most real-world systems. The objects 
composing the system are represented under the form of nodes 
while their interactions correspond to links. Among the various 
approaches used to study complex networks properties, 
community detection has become one of the most popular ones. 
A community is a cohesive subset of nodes with denser inner 
links, relatively to the rest of the network [2]. Tens of 
algorithms exist, based on a whole range of principles: 
hierarchical clustering, optimization methods, graph 
partitioning, spectral properties of the network, etc. [3]. Those 
algorithms are generally tested on a few real and/or artificial 
networks [4-7]. Using real networks has some limitations: 
building them is costly and difficult, reference communities are 
generally subjectively defined, and one network only represent 
a specific set of properties (size, transitivity, etc.), which makes 
it difficult to generalize the test results. On the contrary, it is 
easy to generate large collections of artificial networks 
exhibiting a wide range of properties and a predefined 
community structure.  

The difficulty with this approach is to design a model able 
to generate networks with realistic properties, in order for 
algorithm testing to be relevant. Up to now, only a few 
methods have been designed for this purpose. The first one, is 
the model by Girvan and Newman (GN) [4], which produces 
networks taking roughly the form of sets of small 
interconnected Erdős-Rényi networks [8]. Although widely 
used to test and compare community detection algorithms [4, 
5], the GN method is limited in terms of realism [1], which is 
why several variants were defined, producing bigger networks 
and communities with heterogeneous sizes [3, 7, 9]. More 
recently, a different approach appeared, based on some 
rewiring process [1, 10]. It increased the realism level even 
more by producing networks with power law distributed 
degree. Among these works, the LFR model proposed by 
Lancichinetti et al. [1] exhibits the most realistic properties, 
although it does not possess all the properties currently 
attributed to real-world networks [11]. 

Interestingly, improvement on the realistic aspect of the 
generated networks has a noticeable effect on most community 
detection algorithms [7, 9]. The fact Lancichinetti et al.’s 
method still has room for improvement naturally raises two 
questions, which we will try to answer in this work: 1) how is it 
possible to produce more realistic networks, and 2) will this 
have an effect on community detection algorithms. In the 
following section, we describe briefly the LFR model, its 
characteristics and the modification we proposed. We also 
describe a few community detection algorithms, to be used to 
test the effect of network realism on community detection. In 
section III, we present the properties of the networks generated 
with the modified method, and use them to compare the 
performances of the community detection algorithms. Finally, 
we comment these results and propose some further 
improvements in section IV. 

II. METHODS 

A. LFR Generative Model 
The LFR model was proposed by Lancichinetti et al. [1] to 

randomly generate undirected and unweighted networks with 
mutually exclusive communities. Nodes degrees and 
community sizes are both distributed according to a power law. 
The model was subsequently extended to generate weighted 
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and/or oriented networks, with possibly overlapping 
communities [12]. However, in this paper, we focus on non-
oriented unweighted networks with non-overlapping 
communities, because almost all existing community detection 
algorithms are dedicated to this type of networks. This model 
allows to control directly the following parameters: number of 
nodes n, desired average <k> and maximum kmax degrees, 
exponent γ for the degree distribution, exponent β for the 
community size distribution, and mixing coefficient µ. The 
latter represents the desired average proportion of links 
between a node and nodes located outside its community, 
called inter-community links. Consequently, the proportion of 
intra-community links is 1–µ. The communities are well-
defined when  µ<(n–nc

max)/n, where n and nc
max are the number 

of nodes in the network and in the biggest community, 
respectively [12]. 

The generative process first uses the configuration model 
[13] to generate a network with average degree <k>, maximum 
degree kmax and power law degree distribution with exponent γ. 
Second, virtual communities are defined so that their sizes 
follow a power law distribution with exponent β. Third, an 
iterative process takes place to rewire certain links, in order to  
approximate µ, while preserving the degree distribution. By 
construction, the LFR method guaranties to obtain values 
considered as realistic [14, 15] for several properties: size of 
the network, power law distributed degrees and community 
sizes. Other properties are not directly controlled, so we studied 
them empirically [11]. It turns out LFR generates small-world 
networks, with relatively high transitivity and degree 
correlation. This is realistic [14], but holds only under certain 
circumstances. In particular, transitivity and degree correlation 
are dramatically affected by changes in µ, and become clearly 
unrealistic the closer it gets to 1. These properties are directly 
related to the network structure, which is the only information 
used by community detection algorithms, therefore they are 
particularly important. Moreover, the sensitivity to µ is also a 
concern: by increasing its value, not only do the communities 
become less separated, which is the desired behavior, but the 
network additionally becomes less realistic. 

B. Proposed Modification 
One of the possible causes for the observed unrealistic 

properties is the use of the configuration model (CM) [13] to 
generate the initial network during the LFR first step. On the 
one hand, the CM is very flexible in the sense it is able to 
produce networks with any size and degree distribution, but on 
the other hand it is known these networks have zero correlation 
[16] and low transitivity (when degrees are power law 
distributed) [14]. We propose to use a different generative 
model, with more realistic properties. We considered the 
Barabási–Albert preferential attachment model (BA) [17] and 
one of its variants called evolutionary preferential attachment 
(EV) [18]. The rest of the LFR model is not modified: 
community sizes are still drawn from a power law distribution, 
and the rewiring process must be applied to make the 
community structure appear. 

The BA model [17] was designed as an attempt to explain 
the power law degree distribution observed in real networks by 
their building process. Starting from an initial connected 

network of m0 as nodes, remaining nodes are added one by one 
and randomly linked to m existing nodes (m≤m0). These m 
nodes are selected with a probability which is a function of 
their current degree k: the higher the degree, the higher the 
probability. BA produces small-world networks with a power 
law degree distribution whose exponent  tends towards 3 [17]. 
Transitivity is greater than in Erdős-Rényi networks, but 
nevertheless decreases with network size following a power 
law ~n−0.75, while the average degree depends directly on 
parameter m: <k>=2m [14]. 

The EV model [18] is a variant of the BA model, supposed 
to produce networks with high transitivity and degree 
correlation. Unlike BA, the level of attraction of a node 
regarding new links is not determined by its degree, but by its 
performance on a prisoner’s dilemma game. Every few 
iterations, each node “plays” either cooperation or defection 
against all its neighbors. It gets a total score depending on the 
individual results: 0 for bilateral defection or unilateral 
cooperation, 1 for bilateral cooperation, and b for unilateral 
defection, with b>1. An additional parameter, the selection 
pressure ε, is used to modulate the influence of the preferential 
attachment mechanism: all nodes are equiprobable when ε=0, 
whereas the nodes scores are fully considered for ε=1. 

C. Community Detection Algorithms 
To study the effects of network realism on the community 

detection process, we applied 4 popular algorithms: Newman et 
al.’s Fast Greedy algorithm (FG) [6] relies on a modularity-
based agglomerative hierarchical approach. Its name is due to 
the use of a standard greedy method, making it relatively faster 
than earlier algorithms, and allowing it to process large 
networks. Pons and Latapy’s Walktrap algorithm (WT) [7] 
follows another agglomerative hierarchical method, in which 
the distance between two nodes is defined in terms of random 
walk processes. Raghavan et al’s Label Propagation algorithm 
(LA) [19] analyzes information diffusion to identify 
communities. Each node is initially labeled with a unique 
value. Then, an iterative process takes place, where each node 
takes the label which is the most spread in its neighborhood. 
When the process ends, communities correspond to sets of 
nodes with identical labels. Blondel et al.’s Louvain algorithm 
(LV) [20] is the most recent of the considered algorithms. It 
relies on a two-stepped hierarchical modularity optimization 
method. 

III. RESULTS AND DISCUSSION 

A. Generated Networks Properties 
The networks were generated by applying first one of the 

three previously presented methods (CM, BA, EV) to produce 
initial networks, and then using the LFR approach to generate 
the communities sizes and perform rewiring. In other terms, the 
generating processes differ only in their first step. For 
simplicity matters, we will thereafter refer to the networks by 
using only the name of the model employed during the first 
step. Consequently, CM will correspond to the original LFR 
method, whereas BA and EV are modified versions based on 
the corresponding models. 

We selected our parameters values based on previous 
experiments in artificial networks generation [1, 11] and 



descriptions of real-world networks measurement from the 
literature [14, 15]. Some parameters are common to all three 
processes: we fixed the size n=5000 and the power law 
exponent for the community sizes distribution β=2; and made 
the mixing coefficient µ range from 0.05 to 0.95 with a 0.05 
step. Other parameters are model-dependent. In particular, with 
the original LFR method based on CM, it is possible to specify 
the desired power law exponent γ for the degree distribution, 
and average <k> and maximal degrees kmax. We used the values 
γ=3, <k>=15, 30 and kmax=45, 90. The alternative models do 
not allow as much control as the CM, and we had to adjust 
their parameters so that the resulting networks had 
approximately the same degree-related properties. Preferential 
attachment does not give any control on γ, which tends towards 
3 by construction. To control the average degree, we used m=7, 
15 for both BA and EV. The maximal degree is not controlled, 
but the values measured in the resulting networks are of the 
same order as the values specified for CM. EV additionally 
allows controlling transitivity, and we found out score b=1.5 
and selection pressure ε=0.99 gave the best results.  

We produced 25 networks for each combination of 
parameters, and averaged the measured properties. Fig. 1 
shows the results for average distance, degree correlation and 
transitivity. Results were very similar for <k>=15 and 30, so 
we only present the latter here, but comments apply to both. 
The largest communities in the generated networks have 
around 700 nodes, so communities are supposed to be 
structurally well-defined (cf. section II) for µ<0.86. This 
mixing limit is represented on the plots under the form of a 
vertical line.  

The average distance is rather similar for all three models, 
both in terms of absolute value and sensitivity to µ. It ranges 
approximately from 2.5 to 4, and is relatively stable, especially 
for µ>0.3. On the one hand, the stability of this property is a 
good point, since it means networks with much separated 
communities (small µ) and networks with very mixed 
communities (high µ) have comparable average distances. 
Consequently, the effect of this property can be considered as 
negligible when comparing algorithm performances on 
networks generated with various µ values. But on the other 
hand, since all three models lead to very close average 
distances, this property cannot be used to compare them in 

terms of realism of the generated networks. 

CM has the highest transitivity, with values around 0.6 (the 
theoretical minimum and maximum being 0 and 1, 
respectively) for µ≈0, but it also has almost zero transitivity for 
µ≈1, exhibiting a serious sensitiveness to µ. Other methods 
also show a decreasing transitivity when µ increases, but the 
range is much smaller, partly because their values for µ≈0 are 
significantly smaller: around 0.25 and 0.45 for BA and EV, 
respectively. Like CM, they reach close to zero values when 
µ≈1. So contrarily to what we expected, networks generated 
with EV do not have a higher transitivity than CM, at least for 
small µ. However, thanks to its lesser sensitivity to µ, EV has a 
better transitivity for µ>0.3. Note that in the literature, real-
world networks with 0.2-0.3 transitivity are considered highly 
transitive [15], so we can state all three models exhibit realistic 
transitivity for small µ. The issue is more about their sensitivity 
to µ, leading to non realistic values for high µ. This non-linear 
decrease in transitivity observed for all three models could be 
linked to the rewiring process performed by the LFR method. 
In this case, the final transitivity would never be stable, 
whichever model is used to generate the initial networks. But 
testing this hypothesis would require an exhaustive analysis of 
the side-effects of rewiring on networks, which is out of the 
scope of this work. Another explanation would be that network 
transitivity is directly related to the nature of community 
structure itself, independent of the way the network is created. 
Testing this hypothesis would require quantifying the 
separation level of communities in real-world networks (using 
Newman’s modularity [2], for instance), in order to compare it 
to the transitivity we measured. But we are not aware of any 
work of this kind, which is also off-limits for this article. 

Considering the degree correlation, there is a clear 
difference between CM and the other two models. CM degree 
correlation has acceptable values for small µ (0.25), but it 
decreases rapidly and oscillates around zero for µ>0.4. EV 
shows the highest degree correlation, with values greater than 
0.5 for µ≈0. It also decreases when µ increases, resulting in 
values close to 0.25 for µ≈1. Finally, unlike other models, BA 
degree correlation slightly increases with µ, ranging 
approximately from 0.25 to 0.35. Although its values are lower 
than for EV, it is also more stable both in terms of sensitivity to 
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Figure 1.  Influence of the mixing coefficient µ on the measured properties: (a) average distance, (b) degree correlation and (c) transitivity. Networks were 
generated with parameters n=5000, γ≈3, β=2 and <k>≈30 and using the LFR method on three different generative models: configuration model (CM), Barabási–
Albert model (BA) and evolutionary preferential attachment model (EV). Each point corresponds to an average over 25 generated networks. The vertical lines at 

µ=0.86 represent the average limit above which communities stop being clearly defined. 



µ and low standard-deviation (especially for µ>0.7). 

In conclusion to this section, we can state EV and BA are 
slightly above CM in terms of realism. All three of them have 
extremely similar results on the average distance. They have 
significantly different transitivity, but all three are realistic, at 
least for small µ values. Concerning the degree correlation, 
both BA and EV exhibit realistic values for any µ, whereas CM 
is realistic only for µ≈0. The main difference between the 
reviewed generative models is related to their sensitivity to µ. 
CM is clearly the most sensitive, showing the largest range of 
values for both transitivity and degree correlation, whereas BA 
is the most stable. However, EV generally has highest values 
than BA, so it is difficult to decide which one is the most 
adapted. The next section will be dedicated to study how these 
differences in stability and realism translate in terms of 
community detection performances. 

B. Community Detection Performances 
We applied the four community detection algorithms 

presented in section II on all the networks we generated. We 
compared the performances using the normalized mutual 
information (NMI), which was used for this purpose in 
previous studies [1, 11, 12, 21]. 

Fig. 2 shows the results for LP, LV and WT, in function of 
µ. FG was omitted because its performances do not vary 
significantly depending on the generative model (see [22] for 
more details). Although we applied the algorithms on networks 
with average degree <k>=15 and 30, there was no relevant 
difference between the results: the performances were 
uniformly slightly better for 30 than for 15. Consequently, our 
plots show only the former. Generally, as expected from 
previous studies [1, 11, 12], the accuracy of all algorithms 
decreases along µ increases, i.e. communities become more 
mixed and difficult to distinguish. When µ≈0, all algorithms 
manage to successfully identify communities, whereas when 
µ>0.86, they all perform badly. The way the performance 
evolves in function of µ depends on the algorithm, though. It is 
almost linear for FG, which has poor performances even for 
values of µ far from the mixing limit. For the other algorithms, 
the performance stays close to the maximum until some 
individual limit is reached, at which point a sudden drop 
occurs. This individual limit is very close to 0.7 for LV and 

WT, whereas it is around 0.5 for LP. The main differences 
between LV and WT are the former’s performance slightly 
decreases before suddenly dropping off, whereas the latter’s 
stays maximal; and LV performance are bellow WT’s when 
µ≈1. So a clear hierarchy appears between algorithms, in terms 
of general accuracy: FG<LP<LV<WT. 

The effect of the generative model on community detection 
performance depends on the considered algorithm. FG does not 
seem to be sensitive at all, which suggests the information it 
uses to identify communities is not related at all to transitivity 
nor degree correlation. FG essentially applies a modularity 
optimization approach, so on the one hand, this raises a 
question regarding the sensitivity of modularity to these 
properties. On the other hand, FG is not the best algorithm for 
modularity optimization, plus LV, which is also modularity-
based, shows signs of sensitivity to the model. LP, which is not 
modularity-based, is much more sensitive to the generative 
model. EV and BA provoke close low drop-off limits, around 
0.4 and 0.5, whereas it is approximately 0.7 for CM. However, 
note these values may not precisely represent the actual 
performance, due to the high variance observed in LP results. 
LP performance is far better for CM than for the other models, 
which could suggest it finds more realistic networks harder to 
process. More precisely, the way models are ordered in terms 
of performance is the exact opposite of their order in terms of 
degree correlation. We suppose LP does not handle well 
networks with positive degree correlation, maybe because such 
a property modifies the way labels spread in the network. 

As stated before, LV is modularity-based but, unlike FG, it 
performs differently depending on the model. WT does not rely 
on modularity to identify communities, but generally uses it as 
a criterion to select the best cut in the output dendrogram. Both 
algorithms do not show any model-sensitiveness until they 
reach their drop-off limit. Then performances are clearly better 
for CM and EV than for BA. In the case of WT, CM leads to 
even higher performances than EV on the range 0.55-0.75. This 
order fits with the models transitivity, so we could assume LV 
performs better when this property is high enough. However, 
EV transitivity is higher than CM’s for µ>0.3 and this does not 
appear at all in the performance plot. On the contrary, the 
performance for CM stays above the other models until 0.8, 
whereas its transitivity is roughly the same. 

Figure 2.  Community detection performances in function of the mixing coefficient µ, for the LP (a), LV (b)  and WT (c) algorithms. The networks are the same 
than in Fig.1 (n=5000, γ≈3, β=2 and <k>≈30). Each point corresponds to an average over 25 processed networks. The vertical lines at µ=0.86 represent the 

average limit above which communities stop being clearly separated. Performances are expressed in terms of normalized mutual information. 
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The compared algorithms use different principles and 
mechanisms to identify communities, which can explain why 
their performances are influenced in various ways by the 
studied generative models. However, if we do not take FG into 
account, it generally appears the Barabási–Albert model is the 
most difficult to process, whereas the configuration model is 
associated to the highest results. The evolutionary preferential 
attachment model lies somewhere in between (LV), sometimes 
closer to the former (LP) and sometimes closer to the latter 
(WT). Drawing more solid conclusions will necessitate further 
experiments possibly involving additional community 
detection algorithms and network properties. However, for 
now, we would say results measured on the BA-based LFR 
method are the most reliable, because of the stability of the 
generated networks properties to changes in µ. 

IV. CONCLUSION 
In this paper, we proposed a modification of the LFR model 

designed by Lancichinetti et al. [1], aiming at improving the 
realism of the networks it generates. It consists in replacing the 
configuration model (CM) LFR relies on by the Barabási–
Albert (BA) [17] and evolutionary preferential attachment 
(EV) [18] models, which are known to produce more realistic 
networks. Our modification allows producing networks with 
comparable average distance, more realistic and stable degree 
correlation and more stable transitivity, compared to the 
original LFR method. For these properties, EV exhibits slightly 
better absolute values but BA is more stable.  

In order to study the effect of our modification on the 
community detection process, we applied four different 
algorithms on the generated collections: Fast Greedy (FG) [6],  
Label Propagation (LP) [19], Louvain (LV) [20] and Walktrap 
(WT) [7]. For all algorithms and on all networks, the 
performances decrease when the mixing coefficient µ 
increases, as observed in previous studies [1, 11, 12]. LP, LV, 
and WT show significant changes in their performances 
depending on the considered generative model (CM, BA or 
EV), whereas FG is not sensitive at all. For the three sensitive 
algorithms, the highest performances are obtained when 
applied to CM, the lowest correspond to BA, and the results on 
EV networks depend on the considered algorithm. We could 
not determine if the observed changes in performance were due 
to some property in particular, though. BA seems to be the 
most interesting model in terms of discrimination of the 
community detection algorithms, because its stability to 
changes in µ allows to consistently compare performances for 
different levels of separation of the communities. 

Our goal was to improve the realism of the networks 
generated by the LFR method, and from this point of view the 
modifications were efficient. But they also resulted in a loss of 
control on some other network properties, and the 
improvements were not as strong as expected. This could be 
solved by using other realistic generative models to replace the 
CM. It would also be interesting to assess how much the 
generated network properties depend on the initial generative 
model and on the LFR rewiring step itself. Concerning the 
effect of realism on community detection algorithms, our work 
can be extended in two ways. First, it could be generalized by 

applying other algorithms relying on different community 
detection approaches to the generated networks. Second, we 
could consider other properties to characterize networks. 
Maybe we did not find any strong relationships between the 
generated networks properties and the performance changes 
because we did not focus on the relevant properties. 
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