Computation of the Euclidean minimum of algebraic number fields - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2011

Computation of the Euclidean minimum of algebraic number fields

Résumé

We present an algorithm to compute the Euclidean minimum of an algebraic number field, which is a generalization of the algorithm restricted to the totally real case described by Cerri. With a practical implementation, we obtain unknown values of the Euclidean minima of algebraic number fields of degree up to 8 in any signature, especially for cyclotomic fields, and many new examples of norm-Euclidean or non-norm-Euclidean algebraic number fields. We also prove a result of independant interest concerning real quadratic fields whose Euclidean minimum is equal to 1.
Fichier principal
Vignette du fichier
comp_min.pdf (468.54 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00632997 , version 1 (17-10-2011)
hal-00632997 , version 2 (02-10-2012)

Identifiants

  • HAL Id : hal-00632997 , version 1

Citer

Pierre Lezowski. Computation of the Euclidean minimum of algebraic number fields. 2011. ⟨hal-00632997v1⟩
409 Consultations
737 Téléchargements

Partager

Gmail Facebook X LinkedIn More