Intercontinental transport of anthropogenic sulfur dioxide and other pollutants: An infrared remote sensing case study

Lieven Clarisse, Michael Fromm, Yasmine Ngadi, Louisa Emmons, Cathy Clerbaux, Daniel Hurtmans, Pierre-François Coheur

To cite this version:

HAL Id: hal-00632738
https://hal.archives-ouvertes.fr/hal-00632738
Submitted on 18 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Intercontinental transport of anthropogenic sulfur dioxide and other pollutants: An infrared remote sensing case study

Lieven Clarisse,1 Michael Fromm,2 Yasmine Ngadi,1 Louisa Emmons,3 Cathy Clerbaux,1,4 Daniel Hurtmans,1 and Pierre-François Coheur1

Received 21 July 2011; revised 7 September 2011; accepted 13 September 2011; published 13 October 2011.

[1] Using 3 years worth of IASI (the Infrared Atmospheric Sounder Interferometer aboard METOP-A) measurements, we have identified 24 major events of uplift and transport of anthropogenic sulfur dioxide. These were all first observed over East Asia, and could be traced for over 60 hours. On 7 November 2010 a sulfur dioxide plume was observed over Northeast China and tracked for five days to North America. We discuss this event in detail with respect to build up; uplift and in-plume chemistry. We found a host of trace gas enhancements in the plume (SO2, CO, PAN, CH3OH, HCOOH and C2H2). A reasonable to very good agreement was found with MOZART-4 modeled ambient columns for all species except methanol, which was underestimated by the model by an order of magnitude. We calculate correlations of the different species and give observational evidence of secondary in-plume formation of methanol and PAN. Citation: Clarisse, L., M. Fromm, Y. Ngadi, L. Emmons, C. Clerbaux, D. Hurtmans, and P.-F. Coheur (2011), Intercontinental transport of anthropogenic sulfur dioxide and other pollutants: An infrared remote sensing case study, Geophys. Res. Lett., 38, L19806, doi:10.1029/2011GL048976.

1. Introduction

[2] Transport of pollution has an impact on atmospheric composition, chemistry and air quality across continents from the boundary layer up to stratosphere. Its importance has been established through a large number of model studies and in situ measurements [see, e.g., Liang et al., 2004; Heald et al., 2003; Talbot et al., 2003; Kritz et al., 1990; Chin et al., 2007; Stohl, 2001; Fiedler et al., 2009; Barrie, 1986; Law and Stohl, 2007; Jaffe et al., 1999]. Outflow from East Asia is largely controlled by monsoons and throughout the year reaches North America either via the North Pacific or via the Arctic (mostly in the winter) [Stohl et al., 2002]. Uplift and export mechanisms have a strong seasonal variability with spring being the most favorable period for transpacific transport due to active weather associated with frequent ascending air parcels and fast moving westerly winds [Liu et al., 2003; Russo et al., 2003].

[3] The IASI infrared sounder [Clerbaux et al., 2009] aboard MetOp-A has twice a day global coverage, which allows detection and analysis of the evolution of atmospheric plumes such as those arising from a volcanic eruption [Clarisse et al., 2008] or biomass burning [Coheur et al., 2009]. Here for the first time we use IASI to study transport of anthropogenic pollution plumes and analyze a particular plume first spotted above East Asia on 7 November 2010. IASI has a good spectral resolution, which permits measurement of a variety of trace gases [Clarisse et al., 2011]. For this event we were able to measure plume enhancements of carbon monoxide (CO), sulfur dioxide (SO2), peroxyacetyl nitrate (PAN), formic acid (HCOOH), acetylene (C2H2), methanol (CH3OH) and their evolution in time as the plume diluted and underwent chemistry and washout. It is the first study of this type as satellite studies of Asian anthropogenic outflow have traditionally been focused on CO [Turquety et al., 2008; Zhang et al., 2006] and aerosols [Yu et al., 2008; Di Pierro et al., 2011]. Infrared sounders are generally not sensitive to anthropogenic SO2; and we therefore start section 2 by giving an overview of the frequency and seasonality of such anthropogenic SO2 observations, before describing the event observed in November 2010. In section 3 we give a quantitative analysis of the event for the reported trace species and briefly compare with outputs from the MOZART model.

2. Anthropogenic SO2 and the November Event

[4] While UV-vis instruments routinely measure anthropogenic SO2 [Lee et al., 2011], this is not the case for infrared instruments which have limited sensitivity to boundary layer SO2. For the v3 absorption band of SO2 (which is the strongest absorption band in the infrared) this is due to competing, and dominating water vapor absorption in the same spectral range. When SO2 is observed in this band it must be present in a significant amount at altitudes above the lower troposphere (5–7 km depending on the water vapor profile and SO2 concentrations [Clarisse et al., 2008]).

[5] We have analyzed SO2 retrievals for the complete period October 2007–December 2010 in search of anthropogenic emissions of SO2. Because of frequent volcanic activity, especially in the Northern Hemisphere, the produced imagery was analyzed manually and cross checked with volcanic activity reports from the USGS (http://www.
In total we identified 24 major events where an apparent non-volcanic SO2 plume was observed with loadings above 5 km exceeding $\sim 5 \times 10^{16}$ molecules/cm2 and which was visible for at least 5 consecutive IASI overpasses (2½ days). All these were first observed over East Asia and Siberia; while transport was mainly observed over the Russian Arctic, Japan, Sakhalin and Kamchatka. There is a marked seasonality in the events with 12 events observed in the fall, 9 in the winter and 3 in the spring.

[6] A first prerequisite for such large events to happen and for infrared sounders to see them, is the availability of large concentrations of SO$_2$. Note first that emissions of SO$_2$ only show a weak seasonal pattern \cite{Streetsetal2003}. In colder periods, the lifetime of SO$_2$ is however longer (a factor 2–3 in winter \cite{ChinandJacob1996,Leeetal2011}) because of slower dry deposition and less availability of oxidants. Furthermore, SO$_2$ is half-soluble and subject to wet scavenging. Over East Asia, precipitation has a marked seasonality, with fall and winter being very dry and spring and especially summer very wet. Enhanced with trapping of boundary layer air due to inversion, fall and winter are therefore favorable periods for the build up of large concentrations of SO$_2$. The second prerequisite is an efficient uplift mechanism to altitudes above 5 km. The occurrence of midlatitude cyclones and the associated warm conveyor belts are the main source of uplift to the mid-upper troposphere and occur frequently in fall and winter (note that these occur less frequent in the summer) \cite{Stohl2001,Liangetal2004,Yiengeretal2000}.

[7] This seasonality is very different as compared to CO, which is known to exhibit most transpacific transport in the spring (and to lesser extent in the summer). This can be seen e.g. from looking at monthly averages of CO \cite{Clerbauxetal2009,Figure5}. To understand this apparent contradiction, it is important to take into account the seasonality in the number of uplift events, the availability of source material and the altitude of transport. In the work of Liang et al. \cite{Liangetal2004} it was shown that the number of uplift events does not exhibit a strong seasonality (although the uplift mechanism can be different, e.g. in summer convective lifting is more important). However, in spring and summer, the amount of CO that is lifted and transported is larger due to larger source availability. Secondly, here we have only taken into account SO$_2$ transport events above 5 km, while the well known seasonality of CO transport includes transport at all altitude levels. Finally, the number of large uplift events might not be a good indication of the total amount of transported material, for which also a large number of smaller events can contribute.

[8] On 7 November 2010, IASI observed a SO$_2$ plume covering almost the whole of Northeast China and subsequent overpasses show the plume moving over the Sea of Japan, Northern Pacific, Gulf of Alaska and Canada. The last observations was made 5 days later near Hudson bay (see Figure S1 and Animation S1 in the auxiliary material). Fortuitous overpasses of the space-borne lidar Calipso \cite{Winkeretal2009} revealed coincident aerosol features between 6 and 9 km which were identified as smoke and in the later stages as sulfate. For all but the first overpass there was part of the aerosol curtain which contained no detectable clouds, and these were selected for Figure S1 in the auxiliary material.

[9] In terms of meteorology, the week prior the event was characterized by low surface winds and a total absence of rain. These stagnant conditions led to build up of pollutants as reflected in the steady increase of the Daily Air Pollution Index \cite{Gaoetal2011} of several megacities in Northeast China during that week (see Figure 1, left). Weather maps of
the 6th and the 7th November show an intensifying baro-
clinic cyclone over Northeast China and Korea forming
thick clouds and accompanying rain further northeast of this
area. The associated warm conveyor belt is no doubt
responsible for the lifting and entraining of the local pol-
lutants picked up by IASI. Note that associated cloud for-

mation is important because of potential washout of pol-
lutants and the remote sensing challenge of dealing with
optical thick clouds. These can hamper the retrieval and, as
we will see further, bias it low.

3. Composition, Columns and Comparisons

[10] Comparison of SO2 data with near real time CO
retrievals [George et al., 2009] reveal coincident enhance-
ments. To assess enhancements of other species in the plume,
differences of averaged spectra inside the plume (using spectra with SO2 columns above 5 \times 10^{16} \text{ molecules/cm}^2) and
outside the plume (spectra with no detectable SO2) were
made. This technique allows detection of weak absorbers,
as it reduces noise and removes a large part of the spectral
signatures due to the strong absorbers (CO2, O3, H2O
[Karagulian et al., 2010]). Unambiguous identification of
CO (3 K), PAN (0.4 K), HCOOH (0.5 K), C2H2 (1 K),
CH3OH (0.4 K) was possible for each overpass. Here the
numbers in brackets are averaged observed signal strengths
and these emerge well above the IASI noise (~0.2 K on an
individual spectrum).

[11] For all detected species, we have performed optimal estima-
tion retrievals using Atmosphit [Coheur et al., 2005,
2009], limiting the retrieval of the target species between 6
and 9 km (except for CO which was fitted from 0 to 15 km).
Cloudy scenes are problematic since clouds are not directly
taken into account by Atmosphit. Thin clouds or small cloud
fractions can be compensated by a correction in surface
temperature, but thick clouds distort the baseline shape and
lead to diverging fits. For this reason we have performed
optimal estimation retrievals only for spectra with a cloud
coverage below 10%. Unfortunately, especially for the first
overpasses, the cloud fraction was very high (73% clouds on
average for the first overpass, see Table 1), resulting in only
few retrievals, mostly on the plume edge (and thus missing
the highest loadings). Recently, Walker et al. [2011] intro-
duced a method of detecting weakly absorbing species
yielding an apparent column amount. For fixed atmospheric
conditions and far away from saturation, the apparent col-
umn is linearly related with the true column amount. We
have implemented the detection using the so-called
ensemble method from Walker et al. [2011] and confirmed a
strong linear correlation (between 0.75 and 0.95) between
apparent and observed columns. This was used to obtain
true column amounts for all pixels in and around the
observed SO2 plume. This method does not work for CO,
which is a strong absorber with a saturating spectral signa-
ture and omnipresent in the atmosphere.

[12] The retrievals obtained in this way are illustrated for
SO2, HCOOH, C2H2 and PAN in Figure 2 and summarized
in Table 1, which contains maximum measured columns
(mean of the largest ten observations). For CO, mean out-
of-plume columns were subtracted from the total columns
and as the other species were not detected outside the plume
we can interpret all columns as in-plume enhancements. For
all species maximum loadings were detected on the third
overpass (evening overpass of the 8th), indicating under-
estimated loadings for the first two overpasses due to cloud
coverage.

[13] By inter-comparing the different species, more can be
said on the in-plume chemistry and lifetime. CO and C2H2
abundances are usually correlated in the atmosphere [Xiao
et al., 2007]. Because of difference in lifetime, the ratio
C2H2/CO or enhancement ratio \Delta C2H2/\Delta CO can be used as
a tracer of air mass age. We found an average correlation
coefficient of 0.59. The initial value for the enhancement
ratio was found to be 4.7 \times 10^{-3}, with the slope declining to
2.3 \times 10^{-3} for the aged plume. These values were obtained
from linear regression of all measurements in the plume. The
initial value matches closely the reported emission average
of 4.8 \times 10^{-3} [Xiao et al., 2007] for East Asia.

[14] The best correlation with CO was found with PAN
with an average correlation coefficient of 0.68. PAN pro-
duction peaks in the summer, however photochemical pro-
duction of PAN can also be elevated outside the summer and
thermal stability at lower temperatures can account for
increased concentrations [Brice et al., 1988; Tsalkani et al.,
1987]. Its enhancement ratio with CO was initially ~3.7 \times 10^{-3},
increased to ~4.7 \times 10^{-2} and then dropped the last day to
~0.8 \times 10^{-2}. On the third overpass remarkably high columns
were measured (more than a factor two of what was observed
during the first overpass). This increase is much larger than
any of the other species, and therefore unlikely related to the
cloud retrieval problem. It is indicative of secondary for-
mation within the plume.

Table 1. Overview of the event

<table>
<thead>
<tr>
<th>Day</th>
<th>Clouds (%)</th>
<th>Size (km²)</th>
<th>CH2OH</th>
<th>HCOOH</th>
<th>CO</th>
<th>SO2</th>
<th>PAN</th>
<th>C2H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>07AM</td>
<td>-</td>
<td>-</td>
<td>0.30e16</td>
<td>0.55e16</td>
<td>2.00e18</td>
<td>5.00e16 (25)</td>
<td>0.40e16 (1.5)</td>
<td>0.75e16 (3.0)</td>
</tr>
<tr>
<td>07PM</td>
<td>73</td>
<td>0.66e6</td>
<td>3.17e16</td>
<td>1.00e16</td>
<td>1.65e18</td>
<td>5.93e16 (25)</td>
<td>0.75e16 (3.8)</td>
<td>1.00e16 (4.7)</td>
</tr>
<tr>
<td>08AM</td>
<td>61</td>
<td>1.06e6</td>
<td>3.91e16</td>
<td>1.25e16</td>
<td>1.80e18</td>
<td>6.27e16 (21)</td>
<td>1.04e16 (3.6)</td>
<td>1.05e16 (4.3)</td>
</tr>
<tr>
<td>08PM</td>
<td>47</td>
<td>1.46e6</td>
<td>4.04e16</td>
<td>1.55e16</td>
<td>2.01e18</td>
<td>6.46e16 (26)</td>
<td>1.69e16 (4.0)</td>
<td>1.12e16 (4.1)</td>
</tr>
<tr>
<td>09AM</td>
<td>34</td>
<td>1.66e6</td>
<td>3.42e16</td>
<td>1.26e16</td>
<td>1.58e18</td>
<td>5.42e16 (25)</td>
<td>1.13e16 (4.7)</td>
<td>0.82e16 (3.1)</td>
</tr>
<tr>
<td>09PM</td>
<td>36</td>
<td>1.16e6</td>
<td>3.16e16</td>
<td>1.20e16</td>
<td>1.58e18</td>
<td>5.17e16 (24)</td>
<td>1.05e16 (3.6)</td>
<td>0.80e16 (2.6)</td>
</tr>
<tr>
<td>10AM</td>
<td>36</td>
<td>1.16e6</td>
<td>3.20e16</td>
<td>1.03e16</td>
<td>1.21e18</td>
<td>4.87e16 (26)</td>
<td>0.81e16 (3.7)</td>
<td>0.64e16 (3.1)</td>
</tr>
<tr>
<td>10PM</td>
<td>17</td>
<td>0.76e6</td>
<td>2.84e16</td>
<td>0.99e16</td>
<td>1.23e18</td>
<td>4.55e16 (28)</td>
<td>0.63e16 (3.1)</td>
<td>0.72e16 (2.4)</td>
</tr>
<tr>
<td>11AM</td>
<td>7</td>
<td>0.46e6</td>
<td>2.74e16</td>
<td>0.94e16</td>
<td>0.70e18</td>
<td>4.00e16 (22)</td>
<td>0.48e16 (2.8)</td>
<td>0.57e16 (2.7)</td>
</tr>
<tr>
<td>11PM</td>
<td>8</td>
<td>0.36e6</td>
<td>2.69e16</td>
<td>0.76e16</td>
<td>0.92e18</td>
<td>3.59e16 (29)</td>
<td>0.38e16 (0.8)</td>
<td>0.49e16 (2.3)</td>
</tr>
</tbody>
</table>

*First column is the date (in November 2010); and the overpass (morning or evening). The second column is the average cloud coverage from the IASI level 2 data. The third column is the size of the plume as estimated from the SO2 retrievals. The remaining columns are maximum observed column enhancements (averaging the 10 highest observations) in molecules/cm². For the species which correlate well with CO the enhancement ratio or slope ΔX/ΔCO is shown in brackets in units of 10^{-3}. The first line (07AM) represents maximum MOZART4 modeled columns below 800 hPa over the likely source area prior to the event.
sured columns with MOZART adiabatic storms is highly non-modeling uplift and subsequent circulation through moist estimation of uplift and altitude. This is not surprising as modeled over the Western Pacific, because of an underestimation much slower though, as by the 11th the plume is still to the Pacific is obvious on the 8th of November. Transport chemistry transport model deals with such an event of strong meteorology (see http://www.acd.ucar.edu/acresp/forecast/combustion and other anthropogenic activities [Stavrakou et al., 2011]. The main sink of formic acid is wet deposition, and concentrations are hence strongly linked with rainfall [see, e.g., Zhang et al., 2011]. As there was no precipitation in the week building up to the event, it is not surprising that this species was observed here. Of all the observed species, methanol abundances have the slowest decrease rate from the third to the last overpass, see Table 1 (slower than SO2 or the long-lived CO). Since dispersion of the plume is the same for all observed species, and since dispersion is the main reason for the observed decrease in CO abundances, the slower decrease of CH3OH is strongly suggestive for in-plume formation, probably related to the oxidation of volatile organic compounds.

[16] We have also carried out a comparison of our measured columns with MOZART-4, driven by NCEP/GFS meteorology (see http://www.acd.ucar.edu/acresp/forecast/for the figures), in order to see how a state of the art global chemistry transport model deals with such an event of strong uplift and long range transport. From the CO maps, outflow to the Pacific is obvious on the 8th of November. Transport is much slower though, as by the 11th the plume is still modeled over the Western Pacific, because of an underestimation of uplift and altitude. This is not surprising as modeling uplift and subsequent circulation through moist adiabatic storms is highly non-trivial. To assess the chemistry modeling of the build up, our measured columns have been compared with maximum measured columns below 800 hPa in the morning of the 7th over the likely source area. Modeled columns agree well for CO, C2H2 and SO2 but are underestimated for formic acid and PAN (almost a factor two) and especially methanol (a factor ten). These species are not surprisingly those which are least monitored (e.g. to our knowledge there has not been a single recent in-situ campaign aimed at measuring wintertime PAN in North East Asia).

[17] This study provides a detailed analysis of one of the 24 identified events of major uplift and transport of anthropogenic sulfur dioxide. It is a first demonstration of how IASI is able to monitor outflow and chemistry of a range of primary and secondary pollutants. As retrieval techniques and instrumental characteristics of infrared sounders continue to improve, we expect it to be possible to monitor outflow of Asian pollution of a series of tracers on a more regular basis, offering the modeling community unprecedented validation opportunities.

[18] Acknowledgments. IASI has been developed and built under the responsibility of the Centre National d’Etudes Spatiales (CNES, France). It is flown onboard the Metop satellites as part of the EUMETSAT Polar System. The IASI L1 data are received through the EUMETCast near real time data distribution service. L. Clarisse and P.-F. Coheur are Postdoctoral Researcher and Research Associate (Chercheur Qualifié), respectively, with F.R.S.-FNRS. C. Clerbaux is grateful to CNES for scientific collaboration and financial support. The research in Belgium was funded by the F.R.S.-FNRS (M.I.S. nF.4511.08), the Belgian State Federal Office for Scientific, Technical and Cultural Affairs and the European Space Agency (ESA-Prodex arrangements C90-327). Financial support by the ‘Actions de Recherche Concertées’ (Communauté Française de Belgique) is also acknowledged.

[19] The Editor thanks two anonymous reviewers for their assistance in evaluating this paper.

References
volcanic SO₂ with IASI, the September 2007 eruption at Bejieb at Taif, Atmos. Chem. Phys., 8, 7723–7734.

Zhang, Y., X. Lee, and F. Cao (2011), Chemical characteristics and sources of organic acids in precipitation at a semi-urban site in Southwest China, Atmos. Environ., 45, 413–419.