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Abstract

We are interested in percolation for a family of self-dual tilings

of the hyperbolic plane. We achieve an upper bound on the critical

probability for these tilings by taking appropriate finite quotients and

associating them with a family of quantum CSS codes. We then relate

the probability of percolation to the probability of a decoding error for

these codes on the quantum erasure channel.

1 Introduction and overview

Let G be an infinite graph with edge set E and let µp be the probability
measure on {0, 1} defined by µp({1}) = p. Consider the product space Ω =
{0, 1}E endowed with the product probability measure Pp = µ⊗E

p . Random
events should be seen as subgraphs. Informally, we choose every edge of G

with probability p independently of the other edges, and obtain a random
subgraph. The edges of this subgraph are called open edges. Percolation
theory is interested in the probability that a given edge e is contained in
a infinite open connected component (an open cluster). This probability
depends a priori on the edge e, but not if the graph G is edge-transitive, for
example if G is the infinite square lattice (Figure 1). The central parameter
in percolation theory is the critical probability pc, defined as:

pc(G) = inf{p ∈ [0, 1], Pp(|E(e)| = ∞) > 0},

where E(e) denotes the open cluster containing edge e.
By a famous result of Kesten [9] that stayed a conjecture for 20 years,

we have pc = 1/2 for the square lattice. Computing the critical probability
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exactly is usually quite difficult, but one class of graphs for which percola-
tion is fairly well understood is trees: in particular it is straightforward to
compute the critical probability of a regular tree of degree ∆, in which case
we have pc = 1/(∆ − 1).

Figure 1: The square lattice

Percolation is relevant to classical coding theory because it can be related
to the probability of a decoding error on the erasure channel. Specifically,
the critical probability of the infinite ∆-regular tree is an upper bound on
the highest tolerable channel erasure probability for the class of cycle codes
of ∆-regular graphs. The cycle code of a finite ∆-regular graph is the linear
code in the ambiant space {0, 1}E generated by the cycles of the graphs,
viewed as binary vectors of {0, 1}E when E is the edge set. The probability
of a decoding error on the erasure channel with erasure parameter p is the
probability that a random set of edges for the probability measure µ⊗E

p

contains a cycle. If the finite graph has no cycles of small length, then
elementary cycles locally look like long paths. This point of view was taken
up in [6, 15] where it was shown that if the channel erasure parameter p
is above pc = 1/(∆ − 1) then the probability of a decoding error must be
bounded away from zero. In [14] it was shown that for some families of
∆-regular graphs a vanishing decoding error probability can be achieved as
long as p < pc.

In the present paper we are interested in percolation on an infinite family
of graphs that generalize the square lattice. For any integer m ≥ 4, we denote
by G(m) the planar graph which is regular of degree m and tiles the plane
by elementary faces of length m. For m = 4 the graph G(4) is exactly the
square lattice. The local structure of the graph G(5) is shown on Figure 2.

For m > 4 these graphs make up regular tilings of the hyperbolic plane.
Interest in percolation on hyperbolic tilings was raised in a number of papers
e.g. [1, 3] and determining their critical probability is highly non-trivial.
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Figure 2: The local structure of the graph G(5)

Note that all graphs G(m) are self-dual like the square lattice G(m).
Our purpose is to relate the critical probability for these graphs to the

decoding error probability under the quantum erasure channel for a well-
defined family of quantum codes. Since the critical probability for the graphs
G(m) is unknown, this time our objective is a reverse import from coding
theory: we will use the known channel capacity of the quantum erasure
channel to derive an upper bound on the critical error probability pc of the
graphs G(m). Our strategy is to use a family of finite graphs that locally
look like G(m). These graphs will define a family of quantum error-correcting
codes that are quantum analogues of cycle codes of graphs (sometimes called
surface codes, or topological codes). As in the classical case, qubits will be
indexed by the edges of the finite graph. We will see that an uncorrectable
quantum erasure pattern is a set of edges that must contain a special type
of cycle (a non-trivial homological cycle) in the finite graph, and this event
is in turn related to percolation on the infinite graph G(m). Our main result
is the following upper bound on the critical probability.

Theorem 1. For m ≥ 5, the critical probability of G(m) is bounded from
above as:

pc ≤
2

m
.

2 Percolation on hyperbolic lattices

Regular trees can be seen algebraically as a Cayley graph over a free group.
The graphs G(m) can similarly be constructed [12] by appealing to a group
slightly more involved than a free group, namely the triangular group T (m)
defined by the presentation

< y, z | ym = zm = (yz)2 = 1 >,
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Such a group exists, we will see an explicit realization in the next section.
The left cosets of the subgroups 〈y〉, 〈yz〉 and 〈z〉 correspond respec-

tively to vertices, edges and faces of the graph, or more precisely to the
2-dimensional complex consisting of the graph together with its m-edged
faces. A vertex and an edge (or an edge and a face) are declared to be
incident whenever the corresponding cosets are non-empty. In the next sec-
tion we use this construction to obtain finite quotients of G(m) by taking
appropriate quotients of the triangular group.

Note that the graph G(m) is self-dual. The dual graph G∗(m) of G(m)
has the faces of the original graph for its vertices and two vertices of the dual
are declared adjacent if the corresponding faces in the original graph have a
common edge. Self-duality is apparent on the group T (m) since it permutes
the roles of the generators y and z.

The natural framework of this graph is hyperbolic geometry. In the
Poincaré disc, we can construct a hyperbolic regular m-gon centered on 0 of
angle 2π/m. Denote by y the hyperbolic rotation of center 0 and angle 2π/m
and by z the hyperbolic rotation of center a fixed vertex of the polygon and
angle 2π/m. When we apply the group of hyperbolic isometries generated by
y and z to the polygon, we obtain the hyperbolic tesselation G(m). Moreover
it can be shown that the group generated by y and z is exactly the triangular
group T (m) defined above, and it is the automorphism group of the tiling.

We have the following easy bounds on pc:

Proposition 2. The critical probability pc of G(m) satisfies

1

m − 1
≤ pc ≤ 1 − 1

m − 1
.

Proof. We adapt the proof of [8] page 14 in the case of the square lattice.
Let O be a fixed vertex. To show the first inequality we can say that

there are not more than m(m−1)n−1 paths from O of length n in G(m) and
the probability of such an open path is pn. So if p < 1

m−1 the average length
of an open path from O is not more than

∑∞
n=1 m(m − 1)n−1pn < ∞. In

this case p is under the critical probability.
For the upper bound remark that if the ball of radius N is totally open

and if the open edges of the complementary set of this ball never contains
a closed circuit in the dual graph, then there is an infinite open path. The
probability to have all the edges of a ball open is strickly positive for all N .
For the second condition, we need to study the number of circuits of length
n surrounding O in the complementary of the ball of radius N . We fix a
shortest path from O to the circle centered on O of radius n. Every circuit
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of length n surrounding O contains at least one vertex of the n vertices of
the path, and there are at most m − 1 successors of each bond. So the
probability to have a closed circuit in the complementary set is not more
than

∑

n≥n0
n(m − 1)n(1 − p)n where n0 is the minimal length of this kind

of circuit. We can take N and consequently n0 as large as we want. If
p > 1− 1

m−1 and N is large enough then the sum is strickly less than 1. The
two events in the ball and in its complementary set are independent so we
have an infinite open cluster with positive probability. This gives the upper
bound.

3 Quotient graphs

To study percolation on the hyperbolic tiling G(m), we need a family of
increasingly big finite graphs which are locally the same as G(m). We will
use a family introduced by Širáň in [12].

Let Pk(X) = 2 cos(k arccos(X/2)) be the k-th normalized Chebychev
polynomial and ξ = 2 cos(π/m2). Let y and z be the matrices of SL3(Z[ξ])
defined by

y =





Pm(ξ)2 − 1 0 Pm(ξ)
Pm(ξ) 1 0
−Pm(ξ) 0 −1





z =





−1 −Pm(ξ) 0
Pm(ξ) Pm(ξ)2 − 1 0
Pm(ξ) Pm(ξ)2 1



 .

These two matrices generate the triangular group T (m) [12, 11]. To obtain
a finite graph we can reduce the entries of the matrices modulo a prime
number p. The coefficients are in the ring Z[ξ] which is isomorphic to the
quotient Z[X]/h(X) where h is the minimal polynomial of the algebraic
integer ξ. Reducing coefficients modulo p, we obtain a group homomorphism
from SL3(Z[ξ]) to SL3(Fp[X]/(h(X)). The image of T (m) will be called
T̄ (m).

Let Ḡ(m) be the graph defined like G(m) but with the group T̄ (m), in
other words the vertices, edges and faces of Ḡ(m) are defined as the left
cosets of 〈ȳ〉, 〈ȳz̄〉 and 〈z̄〉 respectively. There is a surjection s from G(m)
to Ḡ(m) which sends u〈y〉 to ū〈ȳ〉.

Following Širáň, let us define the injectivity radius of the graph Ḡ(m) as
the largest integer r such that the restriction of the surjection s to a ball
of radius r is one-to-one. It is shown in [12] that we can choose p so as to
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have r arbitrarily large. Loosely speaking, Širáň’s argument is that if two
distinct vertices u〈y〉 and v〈y〉 in G(m) have the same image under s then
u−1v in T (m) must project to the identity element in T̄ (m). But this means
that the matrix u−1v has polynomial entries that, properly reduced modulo
h(X), can only be expressed with coefficients at least one of which exceeds p:
this implies that u−1v can only be expressed as a product of a large number
of matrices y and z, which in turn means that the original vertices u〈y〉 and
v〈y〉 have to be far apart in G(m).

The above construction enables us to define a family of finite graphs
(Gr(m))r≥1 such that each graph Gr(m) has injectivity radius at least r, for
every integer r.

Let us now define random subgraphs of Gr(m) through the product mea-
sure µ⊗Er

p , where Er denotes the edge set of Gr(m). In other words the open
subgraph of G(m) is created by declaring every edge open with independent
probability p.

For any fixed edge e, let Er(e) be the (possibly empty) connected com-
ponent of the random subgraph of Gr(m) that contains e and call it again
the open cluster containing e. Let fr(p) be the probability that |Er(e)| > r.
We have:

Proposition 3. If p < pc(m) then fr(p) goes to 0 when r goes to infinity.

Proof. Notice that the probability 1−fr(p) that the open cluster containing
e has cardinality not more than r is the same for the random subgraph
defined on the finite graph Gr(m) and the random subgraph defined on the
infinite graph G(m). This is because this event depends only on the ball of
radius r centered on an endpoint of e, and these balls in Gr(m) and G(m)
are isomorphic.

We can therefore consider fr(p) to mean the probability of the event Fr

that |E(e)| > r in the infinite graph G(m). Now (Fr)r≥1 is a decreasing
sequence of events, and Pp(∩r≥1Fr) is exactly the probability of percolation,
which is 0 since we have supposed p < pc. By monotone convergence we
therefore have fr(p) = Pp(Fr) → 0.

4 hyperbolic quantum codes and the quantum er-

ror channel

4.1 CSS codes

The quantum codes we will consider are CSS codes [4, 13]. A CSS code of
length n is determined by two binary parity-check matrices HX and HZ of
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two classical codes of length n, CX and CZ respectively, with the property
that every row of HX is orthogonal to every row of HZ , in other words
the row-spaces C⊥

X and C⊥
Z of HX and HZ are orthogonal subspaces of F

n
2 .

The parameters of the associated quantum code are [[n, k, d]], where n is the
blocklength, k is its dimension and is given by n−dimC⊥

X −dimC⊥
Z , and the

minimum distance d is given by the minimum weight of the non-zero vectors
that are either in CX but not in C⊥

Z or in CZ but not in C⊥
X .

4.2 The quantum codes Qr(m) associated to the graphs Gr(m)

Every finite graph Gr(m) gives rise to a CSS quantum code Qr(m) whose
coordinate set is the edge set E of the graph. We will have therefore a
quantum code of length n = |E|. The matrices HX and HZ are defined as
follows: the rows of HX are in one-to-one correspondence with the vertices
of the graph. Every vertex x yields a row of HX whose support is exactly
the set of edges incident to x. Every row of HX therefore has weight m. The
rows of the other matrix HZ is in one-to-one correspondence with the set of
faces of the graph. Every face yields a row whose support is equal to the set
of edges making up the face. Since faces are m-gons, every row of HZ also
has weight m. It should be clear that rows of HX and HZ meet in either 0
or 2 edges, so any row of HX is orthogonal to any row of HZ and we have
a quantum CSS code.

Note that the classical binary linear code CX is exactly the cycle code of
the graph Gr(m). Note also that the code CZ can be seen as the cycle code
of the dual graph G∗

r(m) of Gr(m).
If v is the number of vertices Gr(m), then the dimension of the cycle

code CX is n − v + 1 = n − 2n/m + 1. The graph Gr(m) is easily seen to
have the same number of faces as the number of vertices so that we have
dimCX = dimCZ . Therefore:

Proposition 4. The dimension k of the quantum code Qr(m) equals:

k =

(

1 − 4

m

)

n + 2.

We remark that for m = 4, the graph Gr(4) is a combinatorial torus and
the quantum code Qr(4) is a version of Kitaev’s toric code [10]. For m ≥ 5
the quantum codes Qr(m) have positive rate bounded away from zero and
minimum distance at least 2r (see the remark after the proof of Proposition 7
below) which is a quantity which behaves as log n. See [16] for a discussion
of similar families of quantum codes (surface codes).
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4.3 Quantum erasures

The quantum erasure channel can be defined in several equivalent ways.
Loosely speaking, an erasure on coordinate i corresponds to the “loss” of this
coordinate. On the erasure channel with transition parameter p, coordinates
are declared “erased” independently and with probability p. In the CSS
setting, the only feature we need to keep in mind [7] can be formulated as
follows, identifying codewords with their supports: An erasure pattern is
decodable if and only if it is a set of coordinate positions that contains no
codeword of CZ not in C⊥

X and no codeword of CX not in C⊥
Z .

The capacity of the quantum erasure channel of erasure parameter p is
known to equal 1−2p, see for example [2]. For our purposes, it can be shown
that this translates into the following:

Proposition 5. There does not exist a family of quantum CSS codes with
rate R > 1−2p such that, for the quantum erasure channel with parameter p,
the erasure vector is decodable with vanishing probability when the blocklength
n goes to infinity.

5 Upper bound on the critical probability and proof

of Theorem 1

Consider an arbitrary member of the family of quantum codes Qr(m) as-
sociated to the graphs Gr(m). The erasure vector can be identified with a
random set of edges of Gr(m) and we will denote it by E . According to the
definition of Gr(m) and the characterization of decodable erasure vectors
given just above, the random erasure pattern E is decodable if and only if it
either contains a cycle of Gr(m) which is not a sum of faces, or E , viewed as
a set of edges of the dual graph G∗

r(m) of Gr(m), contains a cycle of G∗
r(m)

that is not a sum of faces of G∗
r(m). Because the original graph G(m) is

self-dual, all arguments involving Gr(m) will be seen to hold for its dual
graph G∗

r(m) and we will focus on the probability that the random erasure
pattern E contains a cycle that is not a sum of faces in the original graph
Gr(m).

We would like to derive the upper bound on pc in Theorem 1 by claiming
the following: if p < pc, then for the family of graphs Gr(m), the probability
that the random set of edges E contains a cycle which is not a sum of faces
vanishes. If this is true, then the rate R of the quantum code Qr(m) must
satisfy R < 1 − 2p for every p < pc so that R ≤ 1 − 2pc and Proposition 4
gives the result since R = 1 − 4/m.
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Unfortunately, we do not know whether for every p < pc, the erasure
pattern E contains no cycle that is not a sum of faces with high probability.
What we will prove however, is that if E contains a cycle that is not a
sum of faces, then with high probability one of the representatives of this
cycle modulo the space of faces must have very small weight. To violate the
capacity of the erasure channel we will therefore use, not Qr(m) directly, but
an “improved” version Q′

r(m) of Qr(m) that we now introduce.

Proposition 6. Let Qr(m) be a hyperbolic code, n its length and R its rate.
Suppose ρ ∈]0, 1

2 [ and α ∈]0, 1[ are such that

h(ρ) < α <
R

2
,

where h(ρ) = −ρ log2 ρ − (1 − ρ) log2(1 − ρ) denotes the binary entropy
function. Then we can add αn rows to the parity-check matrix HX and αn
rows to the parity-check matrix HZ of Qr(m) to obtain a CSS code Q′

r(m)
of length n, rate R − 2α and distance d ≥ ρn.

Proof. Denote by rX and rZ the dimension of the code C⊥
X and C⊥

Z respec-
tively. We have rX = rZ = 2

m
n − 1.

We will construct a matrix H
′
X by adding αn rows to the matrix HX

such that the rows of H
′
X are orthogonal to the rows of HZ and the rank of

H
′
X is rX + αn. Let C ′

X be the code of parity-check matrix H
′
X .

For ρ ∈]0, 1/2[, we define Xρ by

Xρ(H
′
X) = |{v ∈ C ′

X\C⊥
Z |w(v) ≤ ρn}|.

We can write Xρ as a sum a random variables to see that

E(Xρ) =
∑

v∈CX\C⊥
Z

v∈B(0,ρn)

|{H′
X |v ∈ C ′

X}|
|{H′

X}| .

Let L1, L2, . . . LrX
be rX rows of HX . The number of suitable matrices

H
′
X is the number of families L′

1, L
′
2, . . . L

′
αn of vectors of F

n
2 such that L′

j ∈
CZ for all j and (L1, L2, . . . LrX

, L′
1, L

′
2 . . . , L′

αn) are linearly independant.
We can construct a suitable matrix H

′
X if and only if rX +αn ≤ dim(CZ)

this gives the condition α < (1− 4
m

)− 2
n
. In this case the number of matrices

is
rX+αn−1

∏

i=rX

(2n−rZ − 2i).
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To evaluate the cardinality |{H′
X |v ∈ C ′

X}| with v in CX\C⊥
Z , it suffices

to add the condition L′
j ∈ {v}⊥ for all j. We get

rX+αn−1
∏

i=rX

(2n−rZ−1 − 2i).

So we have

|{H′
X |v ∈ C ′

X}|
|{H′

X}| =
2n−rX−rZ−αn − 1

2n−rX−rZ − 1
≤ 2−αn.

This bound doesn’t depend of v so we can give an upper bound on the
expectation of Xρ because we know that the number of words in the ball of
radius ρn is less than 2nh(ρ). We find

E(Xρ) ≤ 2n(h(ρ)−α).

If α > h(ρ) the mean goes to 0. Since Xρ has integer values there exists
H

′
X such that Xρ(HX) = 0. We obtain a CSS code of matrix H

′
X with

r′X = rX + αn and HZ unchanged such that the minimum weight of a word
of C ′

X\C⊥
Z is at least ρn.

We want to repeat this argument to have the minimum weight of a word
of C ′

Z\C ′⊥
X higher than ρn. It suffices to choose α < 1

2(1 − 4
m

) + 1
n

because
in this case rZ + αn < dim(CX).

Let E be an erasure. We can write

E = EC + EP (1)

where EC is the sum of the connected components which do not cover a cycle
which is not a sum of faces. The problematic part EP of E is the union of
the others components.

In the graph Gr(m), define gr(p) to be the probability that that the open
cluster Er(e) covers a cycle which is not a sum of faces. We have:

Lemma 7. If p < pc(m) then gr(p) goes to 0 when r goes to infinity.

Proof. Recall that fr(p) denotes the probability that |Er(e)| > r. We prove
that gr(p) ≤ fr(p) and apply Proposition 3. If |Er(e)| ≤ r then the open
cluster Er(e) is included in a ball of radius r of the graph Gr(m). Since this
ball is isomorphic to the ball of the same radius in the planar graph G(m), it
is planar. In any planar graph every cycle is a sum of faces so Er(e) covers a
cycle which is not a sum of faces only if |Er(e)| > r, hence gr(p) ≤ fr(p).
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Remark: By the same planarity argument as above, every cycle of length
less than 2r in the graph Gr(m) is a sum of faces. This proves that the
distance of the quantum code Qr(m) is at least 2r.

Proposition 8. If we consider the erasure channel of probability p < pc then
∀ε > 0,∃r0 ∈ N such that if r ≥ r0 then the expectation of the weight of EP

defined as in (1) satisfies
E(|EP |) ≤ εn.

Proof. For any edge e of Gr(m), let Xr,e be the random variable which take
the value 1 if the connected component Er(e) of e in Gr(m) covers a cycle
which is not a sum of faces and the value 0 otherwise. Then we have:

|EP | =
∑

e

Xr,e.

To conclude note that E(Xr,e) = gr(p) and apply Lemma 7.

The next Lemma states that if the erasure vector E has a large “prob-
lematic” part EP then it must be correctable by the “improved” codes given
by Proposition 6.

Lemma 9. Let Q′
r(m) be one of the quantum codes given by Proposition 6

and let d be its minimum distance. Suppose the part EP of the erasure vector
E defined in (1) satisfies |EP | < d. Then E is correctable by Q′(m).

Proof. Denote by CX and CZ the binary linear codes associated with the
quantum code Qr(m) and by C ′

X , C ′
Z their binary sub-codes associated to the

quantum code Q′
r(m) introduced in Proposition 6 and defined by augmenting

the parity-check matrices HX and HZ of Qr(m).
If the erasure vector E covers an element x of C ′

X\C ′⊥
Z then x must

belong to CX\C⊥
Z i.e. x is a cycle of Gr(m) which is not a sum of faces.

The restriction of this cycle to EC defined in (1) is another cycle y and the
definition of EC implies that y is a sum of faces. We obtain that x + y is
included in EP with y ∈ C⊥

Z ⊂ C ′⊥
Z , i.e. x + y ∈ C ′

X\C ′⊥
Z but this is a

contradiction whenever the part EP of the erasure E has weight strictly less
than the minimum distance d of the improved code Q′(m).

We now conclude the proof of our main result, Theorem 1.
Let R = 1 − 4

m
and fix p < pc. For any α such that 0 < α < R/2,

Proposition 6 gives us a quantum code Q′(m) with minimum distance d ≥ ρn
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where ρ = h−1(α/2) and rate R − 2α. For such a code the probability of a
decoding error satisfies:

Perr ≤ P (|EP | ≥ ρn).

For any ε > 0 we can take r large enough so that Proposition 8 applies,
and together with Markov’s inequality we have

Perr ≤ P (|EP | ≥
ρ

ε
εn) ≤ ε

ρ
.

For every ε > 0 we take ρ =
√

ε. Then ρ(ε) and ε
ρ(ε) simultaneously go

to zero when ε goes to zero. Defining α by α = 2h(ρ) and choosing a
decreasing sequence of ǫ’s that tends to zero, we obtain a family of quantum
codes Q′

r(m) with decoding error probability tending to zero and rate R−2α
tending to R.

By Proposition 5 we can conclude that the quantity R− 2α is under the
capacity of the quantum erasure channel. So we have 1 − 4

m
− 2α ≤ 1 − 2p

if p < pc. Since α can be taken to tend to 0, we find 1 − 4
m

≤ 1 − 2p for all
p such that p < pc. Hence 1 − 4

m
≤ 1 − 2pc.
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