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Abstract

This paper is focused on the study of a new low frequency micro and nanoforce

sensor based on diamagnetic levitation. The force sensitive part is a ten-

centimeter long macroscopic capillary tube used as a levitating seismic mass.

This tube presents a naturally stable equilibrium state with six degrees of free-

dom thanks to the combination of diamagnetic repulsive and magnetic attractive

forces. It is only used as a one-direction force sensing device along its longitu-

dinal axis. This force sensor is passive. The force measurement is based on

the displacement of the capillary tube and in steady-state this displacement

is proportional to the force. This sensor is characterized by an under-damped

second-order linear force-displacement dynamic which remains linear on several

hundred micrometers and can thus measure a wide range of microforces. Be-

cause of the magnetic springs configuration used, the capillary tube presents a

horizontal mechanical stiffness that can be adjusted between 0.01 and 0.03 N/m

(similar to the stiffness of a thin AFM cantilever). The measurement range

typically varies between ±50 µN. Bandwidth is 4 Hz. The resolution depends

on the sensor used to measure the capillary tube displacement and on noises in-

duced by environmental conditions (ground and air vibrations). The resolution

typically reached with a STIL confocal chromatic sensor is 5 nN inside a test
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chamber located on a anti-vibration table. This study is illustrated by a pull-off

force measurement.

Keywords: micro and nano force sensor, magnetic spring, diamagnetism
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1. Introduction

Because force effects can be measured in many different ways, micro and

nanoforce sensor designs are numerous. The majority is based on monolithic

elastic microstructures which are most of the time microcantilevers [1] coupled

or not with a mechanical deformation amplifier : AFM based microforce sensors

using two or four quadrants photodetectors [2] [3] or the interferometry principle

[4], piezoresistive microforce sensors which use the variation of the piezoresis-

tive layer resistance when a force is applied [5] [6], capacitive microforce sensors

which make use of change in capacitance between two metal plates when their

distance changes during force application [7] [8], piezoelectric microforce sensors

which generate a voltage when they are stressed by a force [9], etc. Because max-

imum microstructure deformations are usually small, these sensors are mostly

limited in range of force measurement but have a large frequency bandwidth. A

few sensors can exhibit larger deformations or displacements. For instance, the

maximum deformation of the nanoforce sensor presented in [10] is several dozen

micrometers thanks to a special elastic mechanical design with a very small

stiffness. Unlike accelerometers which use seismic mass principle to measure ac-

celeration, microforce sensors based on a rigid seismic mass like in this article are

really uncommon. A force sensor with a range measurement of several millinew-

tons and based on a mass moving inside a pneumatic linear bearing is described

in [11]. The mass is 21.17 grammes and the force resolution is 0.5 micronew-

ton. The air friction inside the bearing is assumed small enough to be neglected.

The force measurement field is an emergent market with a potentially large

growth and some micro and nano force sensors are already commercially avail-

able. Companies producing nanomaterial and micromechanical devices, firms

using micro encapsulation, research laboratories in the field of micro and nano

technologies and finally the more restricted market of biomedical research are

potential users of force sensors. There are very few industrial actors on this mar-

ket excepted AFM manufacturers. One can list for instance Picotwist which
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is an innovative high-tech company that has recently brought a fully-featured,

plug-and-play version of the magnetic trap apparatus for single-molecule ma-

nipulation onto market [12]. Tetra GmbH company proposes a microforce mea-

surement system for microtribology applications [13] [14]. CSM Instrument

company1 has brought a nanotribometer and a nanoindenter using microforce

sensors onto market. Femtotools2 has designed a capacitive microforce sensor

for high resolution measurements with a large bandwidth (7.8 kHz) [8]. Fi-

nally, Robomat [15] was an important project funded in 2005 with a partnership

between Conti Temic GmbH (Nürnberg, Deutschland), Forschungszentrum

Caesar (Bonn, Deutschland), Amic GmbH (Berlin, Deutschland), Klocke Nanotechnik

(Aachen, Deutschland) and Nanoscale Technologies GmbH (Kassel, Deutsch-

land). The aim of this project is the development of a microrobot-based mea-

surement and test system for indentation and scratch tests, with an integrated

imaging system for microtopography.

To conclude this short review, contrary to micro force sensors based on

microcantilevers, micro and nano force-sensor studies based on a macroscopic

seismic mass seems little developed and the use of diamagnetic levitation to

design such a sensor remains an original approach.

All micro and nanoforce-sensor designs are constrained by the fact that only

force effects can be directly measured. Because of this, a force sensitive part

is needed in order to observe these effects which can be either the deformation

of an elastic microstructure or the displacement of a rigid seismic mass. Ap-

propriate sensors are used to measure the signal related to the deformation or

displacement x of the sensitive part. The usual scalar expression used to cal-

culate the component F of the applied force ~F in one direction ~x of space is

thus:

1http://www.csm-instruments.com
2http://www.femtotools.com

4



F = K x K > 0 (1)

where K is the mechanical stiffness of the sensitive part along ~x (by convention

x is set to zero when there is no deformation or displacement). Equation (1)

does not take into account the transient dynamic response of the sensitive part

excited by the force.

The new micro/nanoforce sensor design proposed is based on a seismic mass

which is a rigid levitating tube made of glass that will be called maglevtube.

This tube levitates passively and is stabilized around a given equilibrium state

thanks to repulsive diamagnetic effects coupled with attractive magnetic effects.

Because the maglevtube can move with 6 degrees of freedom (three rotations

and three translations) around its equilibrium configuration, the combination of

diamagnetic and magnetic effects forms what will be called a magnetic spring

with an associated stiffness K for each dof of the maglevtube like in the equa-

tion (1). The maglevtube has a microscopic tip where the external force to be

measured is applied. The sensor is currently designed to only measure forces

applied along the longitudinal axis ~x of the tube. It can be classified as a sensor

based on macroscopic seismic mass. Very few microforce sensors are based on

this principle. Almost all the realization, in this field, are based on elastic mi-

crostructures (see table 1). The main avantage of the levitation sensor (LEV) is

the use of standard equipment for its fabrication. Microstructures need heavy

equipment like a clean room, photolithography, DRIE, etc. As the seismic mass

can be easily measured with a precision balance, the calibration of the LEV can

be performed using a simple procedure. Nevertheless the magnetic levitation

associated with macroscopic weight induces a small bandwidth. Such a sensor

is well designed for measurement of quasi-static forces. The levitation sensor

characteristics compared to the other realizations are summarized in table 1.

This paper deals with the design and the modeling of the described force sen-
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sor. Experimentation is also provided. First of all, the diamagnetic levitation

principle will be developed to introduce the concept of passive magnetic springs.

Secondly, the experimental prototype will be presented. The dynamic modeling

and the simulation of the 3 dimensional non-linear behaviours will be described.

Nevertheless, the calculation based on quaternions will only be briefly described.

Thirdly, the linearity of the sensor along ~x direction will be characterized and a

linear model will be proposed. The calibration process (identification of the lin-

ear dynamic model) will be described and finally an experimental measurement

example will be given.
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Seismic mass (Macro) Elastic Structure (Micro)

Deformation or

displacement

amplitude

High: 2 mm (LEV)
Low: several dozen of

micrometers [16]

Resolution High: 10 nN (LEV)

High:

• Capacitive force sensor:

19.9 nN [17]

• Strain gauge sensor:

2 nN [18]

Structure stiffness Low: 0.01 N/m (LEV)
Medium: typically 0.1 N/m to

100 N/m for AFM cantilevers

Bandwidth Low: 4 Hz (LEV) High: Femtotools 7.8 kHz [8]

Deformation or

displacement

measurement

Outsourced by optical sensor:

• Confocal chromatic sen-

sor (LEV)

• Optical interferometer

[11]

Outsourced: optical sensor for

AFM [2] [3]

Internalized (micro fabricated):

• Strain gauge [19]

• Capacitive force sensor [20]

• Piezo-electric sensor [21]

dimensional developed

Ease of fabrication
Easy by conventional means

(LEV)

Heavy equipment (µ-fabrication,

cleanroom):

• AFM cantilever [1]

• Complex multi DOF mi-

crostructures [22] [21] [23]

Calibration Simplified (LEV)
Complex approaches: AFM

cantilever calibration [24]

Table 1: Levitation sensor compared to other force sensors.

7



2. Diamagnetic levitation and micro force measurement

The two basic approaches to achieve magnetic levitation are either passive

or active. The term active is used for systems using a feedback control loop,

in opposite to systems levitating passively which do not require any control. In

active magnetic levitation configurations, sensors for monitoring the position of

the suspended object are needed (in general, one sensor per controlled DOF).

Because displacement sensors are difficult to integrate in microdevices, passive

levitation is particularly interesting is this context.

Passive levitation is commonly unstable. This result was shown theoretically

for the electrostatic case by Earnshaw in 1841 [25] and for both electrostatic and

magnetic cases by Braunbek [26]. According to the Earnshaw theorem, stable

free suspension of a permanent magnet in the magnetic field of another magnet

is not possible. He proved that a configuration consisting in bodies which at-

tract or repel one another with a force proportional to the inverse square of the

distance between them is unstable. The most complete theory of the possibility

and the conditions for a free levitation are given by Boerdijik [26]. He proved

that free levitation in constant magnetic field is possible only with the use of

materials with a relative permeability µr inferior to 1 such as diamagnetic ma-

terials. This is mainly due to the magnetic response of diamagnetic materials

to an external magnetic field. When the external magnetic field is applied to a

diamagnetic material, the latter becomes magnetized in the opposite direction

of the applied magnetic field. For this reason, a force is produced which causes

the diamagnetic material to be expelled from the magnetic field.

2.1. Stable configuration allowing free levitation of permanent magnets

There are three basic diamagnetic bearing configurations allowing stable free

levitation of permanent magnets [27]. Each of them is represented in figure 1.

In the first configuration on the left, it is possible to stabilize the equilibrium
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Figure 1: Basic configurations used to achieve stable passive levitation of a permanent magnet

M2.

state of the small magnet M2 by placing a diamagnetic material closely below

it. The latter exercises an upward force of repulsion upon M2 which increases

if M2 comes closer to the diamagnetic material. If the vertical distance be-

tween the magnet M1 and the diamagnetic material is correctly chosen (this

distance depends on the mass of M2, the magnetization of M1 and M2 and on

the susceptibility of the diamagnetic material), any slight lowering of M2 from

the equilibrium state results in an increase in the repulsion exercised by the

diamagnetic body and a decrease of the attraction force between the two mag-

nets M1 and M2. The sum of both is always superior to the weight of M2, thus

M2 moves up and returns to its equilibrium position [27]. If a slight upward

displacement of M2 from the equilibrium state is made, the magnetic attractive

force is more important, but the diamagnetic repulsion decreases. The sum of

both is always lower than the weight of M2 thus M2 moves down. In the two

remaining configurations, the diamagnetic levitation works in a similar way.

2.2. Diamagnetic suspension mechanism

The suspension mechanism L adopted is a variation of the three configura-

tions previously presented (see figure 2). Two identical (material, geometry,...)

magnets M1 and M ′
1 are used with north and south poles in opposite direction

on the vertical axis. The levitating magnet M2 is placed between the two fixed
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Figure 2: Suspension mechanism L

magnets such that the attractive forces ~Fmag compensates the weight of M2.

The resulting equilibrium state is stable in the plan (~x, ~z) but unstable along ~y

because any slight displacement of M2 along ~y will increase the y component of

the magnetic forces ~Fmag and M2 will move towards M1 or M ′
1. This unstable

equilibrium is stabilized with the addition of two diamagnetic plates. It can be

shown that ~Fdia components along ~x and ~z are negligible (as they are extremely

small compared to the component along ~y) thus the diamagnetic forces ~Fdia can

be considered to be only along axis ~y [28]. In this case ~Fdia is always opposed

to the magnetic attraction along ~y and will compensate any displacement along

~y. The expression of ~Fmag is given by [27]:

~Fmag = ~m

∫∫∫

vm

∇ ~Bdv (2)

where ~m is the permanent magnetization of the magnet M2 (supposed constant

inside M2) and ~B the magnetic field created by the M1 and M ′
1 magnets at the

center of an elementary volume dv of M2. The term vm is the total volume of
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Figure 3: Principle of the levitating force sensing device.

M2. The diamagnetic force is given by [27]:

~Fdia =
χm

µ0

∫∫∫

vg

~BT .∇ ~BT dv (3)

where χm is the susceptibility of the diamagnetic material, µ0 the absolute per-

meability of free space, and ~BT the magnetic field created by all the magnets M1

and M2 at the center of an elementary volume dv of the diamagnetic material.

The term vg is the total volume of the diamagnetic material.

Figure 3 shows the principle of the levitating force sensing device. It uses two

suspension mechanisms L1 and L2 spaced out in order to reduce the influence

between each other. The two levitating magnets M2 are jointed by a thin

capillary glass tube to make up the maglevtube. The first end of the maglevtube

is sharpened and constitutes the sensing area. the other end is equipped with a

plane deflector used to facilitate the measurements of the x displacement of the

tube. The maglevtube is considered as a seismic mass mechanically connected

to a virtual magnetic spring. The levitating part is only used as a one direction

force sensing device. The force ~F to be measured is assumed to be colinear

with ~x and has the following components in the global reference frame given in

figure 3:

~F











F x

0

0











(4)

11



Material
Magnetic

property
Dimension

Magnet

M1

NdFeB Br= 1.3 T
10 mm x 10 mm

x 10 mm

Magnet

M2

NdFeB Br=0.95 T
φ 1.6 mm x 2.3

mm

Capillary

tube
Glass -

φ 0.45 mm x 95

mm

Sharpened

extremity
Glass -

φ 0.02 mm x 1

mm

Diamagnetic

material

Graphite
χm=

−12 × 10−5

30 mm x 20 mm

x 3 mm

Table 2: Force sensor components.

3. Experimental prototype

Table 2 presents the characteristic of each element that has been used for the

experimental prototype. The mass m of the maglevtube is 74 mg and its length

is 9.5 cm. The diamagnetic material used is a pyrolytic graphite with a dia-

magnetic susceptibility χm equal to −12 × 10−5. The air gap between the two

graphite plates is 2 mm. Figure 4 is a top view of the experimental prototype.

A zoom shows the maglevtube tip in contact with an AFM cantilever. The x

displacement of the maglevtube is measured by a CL2 confocal chromatic sensor

manufactured by STIL SA which is fixed and targeted at the deflector stuck at

the rear of the maglevtube. The confocal sensor only measures the distance l

between the deflector and the CL2 head. If the maglevtube remains oriented

along ~x the measurement of l is representative of the position x of the maglev-

tube (see section 4.1). The position of the four magnets M1 is independently

adjustable along the ~y direction. Thus, it is possible to vary the stiffness of the
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Figure 4: Force sensor prototype.
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Figure 5: Experimental response of the maglevtube to a 0.1 A current step.
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magnetic springs presented in section 2.2. Having different distances between

M1 and M ′
1 for suspension mechanisms L1 and L2, also makes an adjustment

of the horizontal attitude of the maglevtube possible.

The two coils added to the rear of the sensor on either side of the two rear

diamagnetic plates (deflector side) are used during the calibration process (see

section 6). They are designed to apply an external force on the maglevtube

along ~x. When the coils are supplied with a current i, they modify the local

magnetic field around the rear magnet of the maglevtube. This creates an

external electromagnetic force that generates a displacement along ~x. Figure 5

shows the under-damped and long time dynamic response of the maglevtube

after a current step of 0.1 A applied at t = 6.2 s into the coils. As this response

is similar to a second-order transfer function, an approximation of the stiffness

K can be deduced from this curve after the measurement of the mass m of the

maglevtube and the frequency f of the signal pulsation:

K ∼= 4π2 f2 m (5)

The value of K is around 0.02 N/m. In order to improve the analysis of the

dynamic behaviour of the maglevtube a complete 3D dynamic modeling is pre-

sented in the next section.
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Figure 6: 3D modeling of the sensor.
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Figure 7: forces applied on the maglevtube.

4. Three dof non linear dynamic modeling

All of the six degrees of freedom of the maglevtube can be excited and exhibit

particular trajectories. Understanding these trajectories requires investigation

of the system behavior using dynamic modeling. The maglevtube is considered

as a rigid body of mass m with a centre of gravity G and having a moment of

inertia tensor Ī. A local reference frame R1, attached on G, is used to express

the geometry of the maglevtube in a local way (see figure 6). The points cor-

responding to the sensitive area (Z1), the localization of the levitating magnets

(Z2,Z3) and the deflector (Z4) are expressed in R1, where their coordinates re-

main constant. The Newton law is used to calculate the dynamic trajectory of

G:

∑

~Fext = m
~̈
G with ~̈

G =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ẍG

ÿG

z̈G

∣

∣

∣

∣

∣

∣

∣

∣

∣

R0

(6)
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1

m

∫ ∫
∑

~Fext G̈ Ġ G

Figure 8: Numerical resolution of the maglevtube position.

~Fext represents the different forces applied to the mass m (see figure 7). They

are the external force ~F applied on the sensitive area, the magnetic forces FZ2

mag

FZ3

mag and the diamagnetic forces FZ2

dia FZ3

dia applied to the magnets M2, the

friction force Fvisc due to the drag of the surrounding air and the weight ~P .

~̈
G is the acceleration of the mass written in the Galilean reference frame R0.

To completely describe the mass trajectory, it is also necessary to take into

account its rotation in 3D space. Because levitation is similar to the behavior

of spacecrafts, the representation of the attitude of the maglevtube has been

inspired by [29]. It uses the formalism of quaternions. The rotation dynamic

behavior written in the reference frame R1 is given by the equation:

∑

~MF/G
= Ī

~̇Ω + ~Ω ∧ (Ī ~Ω) with ~̇Ω =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ṗ

q̇

ṙ

∣

∣

∣

∣

∣

∣

∣

∣

∣

R1

(7)

where ~MF/G
are the different moments around G of the forces applied to the

mass. The weight ~P is the only force that does not generate a torque that

makes changes in the maglevtube attitude (see figure 7). ~Ω is the instantaneous

angular velocity vector written in the reference frame R1. The components of

~Ω are p, q and r in R1.

4.1. Numerical resolution of the dynamic equations

A numerical resolution of the equations of the rigid body movement has been

developed. The forces applied at each instant produce movement variations. In

this way, the equation (6) can be easily solved to produce the trajectory of G

(see figure 8). For the equation (7) which describes the rotational behaviour, the

process is more complex. This equation is necessary to determine the angular

velocity ~Ω according to the different torques applied to the body. To determine
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eq.(7)
∫

eq.(9)
∫

Ω

∑ ~MF/G

Ω̇ Ω
Q̇ Q

Figure 9: Numerical resolution of the maglevtube attitude.

the attitude of the maglevtube a quaternion Q has been used. Q characterizes

the attitude, that is the orientation of the reference frame R1 in R0 (it is also

the attitude of the maglevtube in R0). The quaternion Q is equal to:

Q = q0 + q1 i + q2 j + q3 k (8)

where q0, q1, q2 and q3 are its components and i, j, k the quaternion’s basis

elements.

The variation of the attitude Q of the maglevtube, depends on the angular

velocity ~Ω according to:

Q̇ = q̇0 + q̇1 i + q̇2 j + q̇3 k =
1

2

















−p q1 − q q2 − r q3 + . . .

(p q0 − q q3 + r q2) i + . . .

(p q3 + q q0 − r q1) j + . . .

(−p q2 + q q1 + r q0) k

















(9)

where p, q and r are the components of ~Ω calculated with equation (7) (see

figure 9). A basic term to term integration of Q̇ provides the components q0,

q1, q2, q3 and thus the orientation of reference frame R1 in R0.

Figure 9 summarizes the different steps used to calculate the attitude Q

of the maglevtube. This processing has been implemented as an input-output

Matlab/Simulink block in which the end-user can apply external forces as inputs

on different selected points on the maglevtube. The output is the distance l

measured by the displacement sensor. The latter is aimed at the deflector in
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Figure 10: displacement measurement of the maglevtube.

the direction ~d (see figure 10). In practice ~d is colinear to ~x. The distance l is

given by:

l =
~n · ~PZ4

~n · ~d
with ~PI = l · ~d (10)

where ~n is a normal vector defining the orientation of the deflector which is

fixed on the maglevtube at Z4. When the maglevtube is in its equilibrium

configuration (with no external force), the deflector is on the point P and the

measured distance l is set to zero. To calculate l at a given moment, it is

necessary to use the position and the attitude of the maglevtube, because the

components of ~n and Z4 are initially defined in the reference frame R1 (they are

fixed points and fixed directions of the rigid body). Changing these components

from R1 to R0 is done by using a transformation matrix that depends on the

components of G and Q.

4.2. 3D simulator operation

The 3D simulator is programmed in C++ and implemented in a Mat-

lab/Simulink s-function. This s-function calculates all the internal forces (mag-

netic, diamagnetic, weight, viscous friction of the air) applied to the maglevtube

and solves (thanks to Simulink internal solver which makes the discretization of

the time) its dynamic behaviour according to the equations provided in sections

2 and 4. It also provides an OpenGL rendering in which the different kind of

forces and torques are visualized. The simplest usage consists in applying as

input a force ~F to the sensitive area Z4 (areas Z1, Z2 and Z3 are also pos-

sible) and eventually a current i in the two coils mounted on the sensor (see

figure 11). These coils generate an additional force applied to the maglevtube
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Figure 11: Simulink s-function block including 3D modeling and OpenGL rendering.
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along the measurement direction ~x in R0. The Matlab/Simulink workspace en-

vironment enables output data like the measurement l or the complete dynamic

state of the maglevtube to be monitored. It is also possible to plot the magnetic

force/torque fields. Vibrations can be communicated to the main magnets M1

and the distance between them can be adjusted. Mechanical characteristics of

the different maglevtubes used in the simulation can be modified.

This simulator has been used to determine the static characteristic of the sen-

sor. An input force ~F is applied in the horizontal direction ~x (see equation (4)).

The input-output transfer considered is the stationary transfer between F x and

the measured distance l when steady-state is reached. The force-displacement

characteristic of this transfer is given in figure 12. The slope of this curve is

the stiffness K of the sensor. Figure 13 shows the relative error ǫ between the

linearized force Flin and the non linear model:

ǫ =
Flin − F x

Flin
× 100 (11)

With displacements l between zero and 1.5 mm the sensor has a maximum rela-

tive error ǫ equal to 0.63 %. For greater displacements the magnetic sustentation

mechanism generates important perturbations not only to the height of levita-

tion zG in R0 but it also generates a parasite rotation of the maglevtube around

the ~y direction. For displacements greater than 9.5 mm the passive levitation

is broken.

21



5. Simplified one DOF linear dynamic modeling

To simplify the model of the sensor we have assumed that the external force

~F is applied along ~x (thus ~F = F x ~x according to equation (4)) and that the

displacement l is lower than ±1.5 mm. In this case a one dof simplified model

is established by a projection of the differential vector equation (6) on ~x:

F x + F x
mag + F x

visc = m ẍ (12)

Let S be the fixed point corresponding to the position of G when the ma-

glevtube is in steady-state without excitation (~F = 0). In case of small displace-

ments around S (inferior to 1.5 mm max), the magnetic force F x
mag is assumed

linear (see section 4):

F x
mag = −Kx

m x (13)

where Kx
m is the magnetic stiffness and x is the fist component of ~SG in R0.

For small speeds, the viscous friction force is also assumed linear, thus:

F x
visc = −Kx

visc ẋ (14)

where Kx
visc is the viscous friction coefficient. According to equations (13) and

(14), equation (12) becomes:

F x − Kx
m x − Kx

visc ẋ = m ẍ (15)

5.1. Single input-single output model

The input of this system is the external force F x applied along ~x to the tip

on Z1. The output is the tip position x (see figure 6). Thus the associated

second-order transfer in Laplace domain is classically:

x(s) = G(s) F x(s) (16)
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Figure 14: temporal unit step response (F x = 1 N) and frequency response of the linear

model.

G(s) =
1
m

s2 +
Kx

visc

m s +
Kx

m

m

=
k ω2

n

s2 + 2 ξ ωn s + ω2
n

(17)

with k the static gain, ξ the damping ratio and ωn the undamped natural

frequency:

k = G(0) =
1

Kx
m

ωn =

√

Kx
m

m
ξ =

Kx
m

2 m ωn
(18)

The identification of the parameters performed on the experimental prototype

gives (see section 6) Kx
m = 0.026 N/m, Kx

visc = 2.2×10−5 N.s/m, m = 7.4×10−5

kg, thus:

G(s) =
13513

s2 + 0.3 s + 360
(19)

We find k = 37.52 m/N, ξ = 7.9 × 10−3 and ωn = 18.98 rad/s. The system

has two complex conjugate poles p1 and p2 whose values are characteristic of

an extreme oscillating behaviour and a long response time:

p1,2 = −ξ ωn ± j ωn

√

1 − ξ2 = −0.15 ± 18.97 j (20)

Figure 14 shows the system response for a hypothetical unit step force F x

and the frequency response. The cutoff frequency at 3dB is fc = 4.7 Hz. The

temporal response is characterized by the following parameters related to the
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system natural frequency ωn and the damping ratio ξ:

Overshoot: D% = 100 e
− πξ√

1−ξ2 = 97.5%

Rise time: tm = 1

ωn

√
1−ξ2(π−cos−1ξ)

= 0.02s

Settling time at 5%: tr = 1
ωnξ ln( 100

5
√

1−ξ2
) = 19.9s
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Figure 15: Measured and reconstructed zero input response (ZIR) of the maglevtube displace-

ment.

6. Sensor calibration along ~x

Calibration is a complex problem for micro and nanoforce sensors because

of the lack of standard forces at this scale [11]: no international measurement

institute supports a direct force realization linked to the International System of

Units (SI) below 1 N, even for a constant force. Thus, calibration must be per-

formed using indirect stationary or dynamic approaches and care must be taken

with stiffness calculation. The characterization of measurement uncertainty for

actual micro and nanoforce sensors is an open problem upon which international

metrology laboratories are working [30]. At the present time, without any stan-

dard micro or nanoforces available, it is difficult to validate any force sensor

calibration and the associated uncertainty. Most of the time, the uncertainty

associated with calibrations is not provided in experiments requiring micro or

nanoforce measurements (for instance the nanotribology field with AFM) be-

cause there is no way to validate it. Calibration remains an open problem in

the scientific community which is using or designing such sensors [4]. One of

the questions which arises is about the fact that even if a calibration seems cor-
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rectly done, it will be illustrated that micro and nanoforce measurements cannot

be guaranteed in all circumstances with actual sensors designs. For instance,

AFM used in nanotribology is based on two separate calibrations: one for the

normal force measurement and one for the lateral force. The first one necessi-

tates characterizing the vertical bending of the cantilever. The second, which

is much more difficult to achieve (and still problematic), necessitates the char-

acterisation of its torsion. During friction, because of coupling effects, torsion

will produce variations of the bending stiffness. Thus the normal force mea-

surement accuracy is not guaranteed in these conditions. The same reasoning is

valid for the lateral force measurement. The cantilever displacement (bending

and torsion) is measured using the deviation on a four-quadrant photodetector

of a laser spot reflected by the back side of the cantilever. The shape of the

cantilever under complex loading has also an unknown influence on the laser

spot position on the back side of the cantilever. These points and others not

developed here result in significant force measurement errors. These errors can

only be estimated with computing simulation in order to calculate the cantilever

shape on which simulated known forces are applied [31]. The problem here is to

develop realistic simulators of the force sensors in order to predict and analyze

the measurement errors.

Several dynamic calibration methods have been investigated for force sen-

sors specifically using a seismic mass. These methods are based on particular

external force generation like impact force [32, 33], step force [34] and oscillat-

ing force [35, 36, 37, 38]. The calibration approach presented here is different:

it only requires an unknown excitation force component F x with the following

dynamic:










F x(t) 6= 0 t0 ≤ t < t1 ∀F x (unknown force),

0 t ≥ t1.

(21)

The output l after t1 is the zero input response (ZIR) of the maglevtube. The

calibration of the sensor is achieved thanks to a parameters identification of (17)
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with the ZIR under unknown initial conditions at t1 (position and speed of the

maglevtube at t1). Thus, F x(t) temporal shape before t1 doesn’t matter. This

identification process gives the stiffness Kx
m and the damping coefficient Kx

visc.

The mass of the maglevtube must be previously measured with a microbalance.

6.1. Experimental calibration

On the experimental setup, the procedure consists in using the rear coils

driven by a transient current i (one pulse). The current i is canceled two sec-

onds before t1. The acquisition of l starts at t1 when the maglevtube is in ZIR

configuration. Figure 15 shows the matching between both experimental and

reconstructed ZIR after the parametric identification of the second-order model

(17) (done with Matlab identification toolbox). The unknown initial conditions

necessary to reconstruct the ZIR in figure 15 are also estimated during the ZIR

identification process. The measurement is done with the sensor located on a

antivibration pneumatic table and inside a test chamber to reduce air pertur-

bations. The room is mechanically well isolated from the rest of the laboratory

on the same floor but is not isolated from the vibrations induced by the bottom

floor. Maglevtube natural vibrations before the pulse current are due to the

vibrations in the floor which are not correctly filtered by the antivibration table

and transmitted to the magnets M1. These vibrations create a non stationary

magnetic field and thus unwanted forces on the small magnets M2 in levitation

generating some small low frequency displacements. These vibrations measured

in the signal l are smaller early in the morning or late in the evening. Classical

standard deviations for l are given in table 3.

Everybody in the room is completely still during the entire measurement

process because foot step impacts on the floor are easily detected by the sensor

despite the antivibration table (see figure 16). The maglevtube mass m is mea-

sured with a precision balance (Ohaus AR0640 with a readability of 0.1 mg and

a repeatability σm equal to 0.1 mg). The measured stiffness variations obtained

with 10 successive identification trials done in the same conditions give a stan-

27



Standard deviation (m)

7:30 am 0.99 × 10−7

10:00 am 2.02 × 10−7

3:00 pm 5.03 × 10−7

7:30 pm 1.72 × 10−7

Table 3: Standard deviations of l when F x = 0
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Figure 16: Disturbance of the measured distance l due to step impacts.
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dard deviation of 0.0001 N/m (0.5 % of the identified stiffness) on Kx
m. Typical

Kx
m values are between 0.01 and 0.03 N/m depending on the maglevtube mass

and the magnets M1 configuration.

6.2. Measurement error analysis in simulation

During calibration, the maglevtube oscillates in a given direction of space

and the external force to be measured should not change this direction. The

greater the change is in this direction, when the external force is applied, the less

correct is the force measurement with the identified stiffness Kx
m. It is possible

to have an idea of the measurement error thanks to a simulation approach. The

force is computed in steady-state according to equation (15):

F x = Kx
m x (22)

The measurement of x is l, thus an estimation of F x is:

F̂ x = Kx
m l (23)

The displacement measurement l is calculated with the simulator presented in

section 4. l is corrupted by a gaussian noise with a zero mean and a standard

deviation equal to 0.012× 10−6 meters (the same value as a real STIL SA CL2

confocal chromatic sensor used in the same conditions). The stiffness Kx
m in (23)

is given by the ZIR identification done with the simulator. In these conditions,

real Kx
m is 0.02892 N/m and identified Kx

m is 0.02859 N/m. When a given

external force F x is applied on the maglevtube, the component xG and zG are

acquired after the oscillating behavior becomes hidden in the output noise of

l (quasi steady-state reached). Note that without external force l, xG and zG

are considered equal to zero. The evolution of the altitude in quasi steady-state

is shown in figure 17. This plot shows that the variation of the maglevtube

altitude is not negligible. For F x = −30 µN the variation of zG reach 24 µm.

Figure 18 shows the ratio α = xG

l − 1 versus F x. This figure estimates how

the measurement of l represents xG. For a perfect match between the confocal

measurent of l and the displacement of the maglevtube along ~x, α should be

equal to zero.
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F z (% F x) relative error (%)

1 % -0.15

2 % -0.03

5 % 0.26

10 % 0.55

Table 4: Influence of the applied force direction on the measured force (‖~F‖ = 1µN).

In these conditions, table 4 gives the typical relative errors when force ~F

which is equal to 1 µN (constant modulus) is applied with a vertical component

F z different from zero:

~F











F x

0

F z











‖~F‖ = 1µN (24)

The evolution of the relative error depends on the combination of rotation

and translation behavior of the maglevtube which influences the position of the

point I (see figure 10).

In the following, it will be assumed that the maglevtube oscillates horizon-

tally along ~x and thus the calibration is only valid if the external force is applied

under assumption (4).
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Figure 19: Experimental setup of the maglevtube in contact with a glass slide.

7. Experimental measurement of a micro/nanoforce

After the identification step giving Kx
m, the measured force F x is estimated

using the distance l measured by the CL2 confocal chromatic sensor. This sen-

sor is connected to a Dspace real-time digital signal processor via a RS232 link.

Measured data l are sent to the Dspace at Ts = 100 Hz. A Simulink model

running on the Dspace acquires the data l and estimates the force F x according

to the equation (23) which is only valid in steady-state.

On the experimental setup the force F x is generated by the contact of a rigid

surface as a glass microscope slide on the maglevtube tip (see figure 19). The

process consists in moving the glass slide along the ~x axis until it comes into

contact with the tip. The motion of the glass slide is provided by three Physik

Instrumente motorized translation stages (PI M-122). This whole setup is run

under a camera to provide a visualization of the glass slide and the maglevtube

tip.

The glass slide is brought into contact with the tip at 5 µm/s. The goal is

to measure the pull-off force that is necessary to separate the tip from the slide.

The measured force F x is given in figure 20. The data provided are not filtered.

The sequence is composed of four steps:
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Figure 21: Force estimation using a deconvolution or an unknown input observer of the

maglevtube displacement.
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1 Initial approach (F x = 0)

2 Contact between the tip and the slide, loading until F x reaches −0.46 µN

3 Unloading until F x = −0.24 µN, the contact between the slide and the

tip is broken at this level. The measured force corresponds to the pull-off

force

4 The slide is removed. The force measured F x should be equal to zero

again in this non-contact configuration. This is not the case because the

equation (23) should not be used when the maglevtube is not in a steady-

state. In this more complex case, the dynamic of the maglevtube must be

taken into account in a deconvolution stage to correctly estimate the force

F x (see figure 21).

The equation (23) is theoretically valid only if ẋ and ẍ are equal to zero

(steady-state). During steps 1 to 3, ẍ is equal to zero but ẋ is either equal to

zero or to 5 µm/s (see figure 20). When ẋ is different from zero, the equation

(23) gives a biased result because the viscous friction force F x
visc is not taken

into account (see equation (14)). Nevertheless this bias is completely negligible

compared to the measured force because F x
visc is equal to 0.1 nN for the speed

ẋ considered. In this experiment with non filtered data, the resolution is about

5 nN (peak to peak amplitude noise) on a range of ±80 µN.
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8. Conclusion

This article describes the modeling and some important characteristics of

a long range micro-nano force sensor based on a levitating seismic mass. This

mass is a ten-centimeter capillary tube stuck on two small magnets and called

a maglevtube. Focus has been placed both on the dynamic and the station-

ary behaviour of the maglevtube using a non linear modeling and a linearized

modeling for limited displacements of the seismic mass. Thanks to a specific

magnetic spring design, this behaviour is close to a classical spring with a second-

order under-damped dynamic and the associated stiffness can be considered as

quasi-constant even for long displacements of the maglevtube (± 1.5 mm). This

stiffness is similar to the stiffness of a thin AFM cantilever and can be easily

adjusted. The linearity of the associated force/displacement characteristic in

the steady-state has been studied in simulation. Despite the low stiffness, the

fact that the stiffness is practically linear even for a long displacement enables

force measurement in a range which spreads over the nanonewton scale to one

hundred micronewtons, to be possible, when using the same maglevtube and

the same confocal sensor. This is very uncommon. The main drawback is the

very small bandwidth (a few hertz) due to the macroscopic nature of the seismic

mass. Designing or gluing specific tip on the end of the glass tube can also be a

complex problem. From a practical point of view, the use of a macroscopic seis-

mic mass makes the mavlevtube easy to handle. Because the maglevtube is very

sensitive to any air disturbance, it is necessary to put the sensor inside a closed

chamber located on a antivibration table. The calibration process of the sensor

is based on a zero input response that makes the complete parametric identifi-

cation of the linear dynamic model possible. If the maglevtube mass is known,

this identification gives the stiffness as well as the viscous friction coefficient.

In the steady-state, only the stiffness identification is necessary to estimate the

external force applied to the maglevtube. On the contrary, if the dynamic of

the maglevtube (speed and acceleration) is not negligible, the force estimation

necessitates the knowledge of the complete parametric model and thus the vis-
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cous coefficient identification. In this case, the reconstruction of the force is

possible using a deconvolution approach or an unknown input observer design.

This point is an outlook for this article. The external force should be applied to

the maglevtube along the direction corresponding to the calibration process. To

be verified, this condition needs the determination of the maglevtube complete

attitude (position and orientation). Because this reconstruction is impossible

with only a single displacement sensor, simulated results have been presented

to give an idea of the force measurement error achieved when the applied force

is not correctly aligned with the maglevtube calibrated direction. The last part

of the paper consists in the illustration of a real force measurement. The goal

is to experimentally determine a pull-off force between a glass tip and a given

material. Because of the small dynamic involved in this experiment, we focused

the study on the stationary behaviour in steady-state in order to illustrate the

force measurement. Experimental data presented are not filtered thanks to the

good quality of measurement provided by the CL2 confocal chromatic sensor

manufactured by STIL SA.
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