The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions

Abstract : We consider hyperbolic scalar conservation laws with discontinuous flux function of the type $$\partial_t u + \partial_x f(x,u) = 0 \text{\;\;with\;\;} f(x,u) = f_L(u) \Char_{\R^-}(x) + f_R(u) \Char_{\R^+}(x).$$ Here $f_{L,R}$ are compatible bell-shaped flux functions as appear in numerous applications. It was shown by Adimurthi, S. Mishra, G. D. V. Gowda ({\it J. Hyperbolic Differ. Equ. 2 (4) (2005) 783-837)} and R. Bürger, K. H. Karlsen and J. D. Towers ({\it SIAM J. Numer. Anal. 47~(3) (2009) 1684--1712}) that several notions of solution make sense, according to a choice of the so-called $(A,B)$-connection. In this note, we remark that every choice of connection $(A,B)$ corresponds to a limitation of the flux under the form $f(u)|_{x=0}\leq \bar F$, first introduced by R. M. Colombo and P. Goatin ({\it J. Differential Equations 234 (2) (2007) 654-675}). Hence we derive a very simple and cheap to compute explicit formula for the Godunov numerical flux across the interface $\{x=0\}$, for each choice of connection. This gives a simple-to-use numerical scheme governed only by the parameter $\bar F$. A numerical illustration is provided.
Type de document :
Article dans une revue
Applied Mathematics Letters, Elsevier, 2012, 25, pp.1844--1848
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00631586
Contributeur : Clément Cancès <>
Soumis le : mercredi 7 mars 2012 - 11:31:25
Dernière modification le : vendredi 4 janvier 2019 - 17:32:30
Document(s) archivé(s) le : vendredi 8 juin 2012 - 02:25:20

Fichier

Godunov_disc_flux_HAL2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00631586, version 2

Citation

Boris Andreianov, Clément Cancès. The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions. Applied Mathematics Letters, Elsevier, 2012, 25, pp.1844--1848. 〈hal-00631586v2〉

Partager

Métriques

Consultations de la notice

514

Téléchargements de fichiers

449