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Abstract – This paper presents a nonlinear, macroscopic multi-phasic model for 

describing the interactions between solid, fluid, and ionic species taking place in 

porous materials. Governing equations are derived based on the nonlinear theories of 

solid mechanics, linear flow theory of Newtonian fluids, and theory of irreversible 

thermodynamics for the transport of ions and ionic solutions. The model shows that 

the transport coupling between ions and ionic solution exists only when the porous 

material has a membrane-like feature which could be inside the material or on the 

material boundaries. Otherwise, the coupling occurs only between the solid and fluid 

phases and the transport of ionic species will have no effect on the macroscopic 

stresses, strains and displacements of the porous material. As an application of the 

present multi-phasic model, a numerical example of the human cornea under the 

shock of NaCl hypertonic solution applied to its endothelial surface is presented. This 

is a typical example of how ionic transport induces swelling in biological tissues. The 

results obtained from the present multi-phasic model demonstrate that the mechanical 

properties of the tissue have important influence on the swelling of the cornea. 

Without taking into account this influence, the predicted swelling may be exaggerated.  

 

Keywords – porous media, nonlinear, multi-phasic, ionic transport, corneal swelling 

 

 

1. Introduction 

 

Multiphysics problems involving fluid-solid, chemical-fluid-solid, and electro-

chemical-fluid-solid interactions often arise in porous materials. A porous material is 

a solid (often called the matrix or skeleton) permeated by an interconnected network 

of pores (voids) filled with a fluid which may be a pure solvent or an ionic solution. 

Usually both solid matrix and the pore network (also known as the pore space) are 

assumed to be continuous, so as to form two interpenetrating continua such as in a 

sponge. Many natural substances such as rocks, soils, biological tissues, and 

manmade materials such as foams and ceramics can be considered to be porous 

materials. Porous materials whose solid matrix is elastic with a viscous fluid 

occupying the pores are referred to as poroelastic materials. A poroelastic material is 

characterized by its porosity and permeability, as well as the properties of its 

constituents (solid matrix and fluid). 

 

Poroelasticity theory describes the interaction between the flow and deformation in 

porous materials. The concept of a porous material originally emerged in soil 

mechanics, and in particular in the works of Terzaghi (1923), who introduced the 

concept of effective stress to describe the equilibrium problem of consolidation in soil 

mechanics. However a more general concept of a poroelastic material, independent of 

its nature or application, is attributed to Biot (1941, 1957, 1973). The Biot theory of 
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poroelasticity provides a complete and general description of the mechanical 

behaviour of poroelastic materials, which has been widely used in civil, mining and 

petroleum engineering, acoustic wave propagation in saturated media and recently in 

biology and biomedical engineering. 

 

Biot's equations for the linear theory of poroelasticity are derived from equations of 

linear elasticity for the solid matrix together with Darcy's law for the flow of fluid 

through the porous matrix. Since the early 1980s, interest has intensified concerning 

the role of poroelasticity on the mechanical behaviour of biological tissues. Several 

models have been proposed to investigate the biomechanics of soft tissues based on 

Biot’s poroelastic theory. They include, among others, successful applications in the 

study of articular cartilage (Mow et al., 1980, 1984), cardiac muscle (Yang and Taber, 

1991), arterial walls (Simon et al., 1993, 1998), skin and bones (Mak et al., 1994, 

2001). All these models have been based on the concept of tissues as structurally 

biphasic, i.e. composed of a solid matrix saturated by an interstitial fluid. By 

incorporating material nonlinearity of the solid matrix into the biphasic framework, 

the model has been able to describe the nonlinear response of porous materials 

(Holmes, 1986; Cohen et al., 1998; Soulhat et al., 1999; Soltz and Ateshian, 2000). 

 

For most biological tissues, the fluid phase contains ionic species and the solid phase 

may also carry fixed electric charges. In some cases the spatial concentration gradient 

of ionic species in the fluid phase can generate significant osmotic pressure, which in 

magnitude may be comparable to the fluid pressure. In these cases the transport of 

ionic species in the fluid phase also needs to be considered in the model as the 

osmotic pressure can influence the fluid flow and thus the deformation of the porous 

material. Lai et al (1991) proposed a triphasic model of articular cartilage as an 

extension of the biphasic model, where negatively charged proteoglycans are 

modelled to be fixed to the solid matrix, and monovalent ions in the interstitial fluid 

are modelled as additional fluid phases. This model was later extended to incorporate 

multiple polyvalent ions by Gu et al. (1997,1999). Similar modification of the 

biphasic model to include thermo-chemo-electro-mechanical interactions in saturated 

charged porous solids was made by Huyghe and Janssen (1999), van Meerveld et al. 

(2003) and Zhang and Szeri (2007). Finite element analyses based on triphasic models 

were undertaken by Ferguson et al. (2004) and Snijders et al. (2005) for the prediction 

of biomechanical behaviour of intervertebral disc tissues and other swelling porous 

media. 

 

In this paper, a nonlinear, macroscopic multi-phasic model is proposed for describing 

the interactions between solid, fluid, and ionic species taking place in porous 

materials. In contrast to existing multi-phasic models, the present model not only 

considers the geometrical and material nonlinearities of the porous material but also 

uses a more general flow theory describing the transport of ionic solution and ionic 

species in the medium with or without membranes. The model can be regarded as a 

direct extension of Biot’s poroelasticity from the linear interaction between solid and 

fluid phases to the nonlinear interactions between solid, fluid and ionic species. The 

model can be used to predict the interaction between mechanical and physiochemical 

properties in biological tissues. 

 

 

2. Governing equations in the biphasic model 
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Consider a porous material that is made of a microscopically inhomogeneous solid 

matrix filled with a homogeneous fluid undergoing large displacements, which 

deforms from an initial undeformed configuration into the current deformed 

configuration (see Figure 1). Let Ω  be a representative elementary volume of the 

porous material. The representative elementary volume is defined as being fixed to 

the continuous solid frame; hence the solid mass is conserved within the 

representative elementary volume when it deforms from Ωo in the undeformed 

configuration to Ω in a deformed configuration. The fluid part of the representative 

elementary volume occupies the pore space enclosed within the solid frame, and its 

mass is not necessarily conserved.  

 

Let Ωs and Ωf be the volumes occupied by the solid and fluid phases in Ω, such that 

fs Ω∪Ω=Ω , and Ωso and Ωfo be the volumes occupied by the solid and fluid phases 

in Ωο, such that fosoo Ω∪Ω=Ω . The external surfaces Γ of the representative 

elementary volume Ω are the sum of the solid portion sΓ and the fluid portion fΓ , such 

that fs Γ∪Γ=Γ . The porosity φ  of the representative elementary volume thus is 

defined as (Lopatnikov and Cheng, 2002) 

 

Γ

Γ
=

Ω

Ω
= ffφ          (1) 

 

Let X denote the position vector of a material point of the solid matrix in the porous 

material in the undeformed configuration and x=ϕϕϕϕ(X) represents the position vector of 

the material point X in the deformed configuration. The function ϕϕϕϕ(X) is called the 

deformation mapping from the initial undeformed configuration to the current 

deformed configuration. By introducing the deformation gradient tensor F, where 

 

X

φ
F

∂
∂

=          (2) 

 

the right and left Cauchy-Green tensors, C and B, can be expressed in terms of the 

deformation gradient tensor as follows 

 

FFC T= , TFFB =         (3) 

 

The displacement vector u of the material point X is given by the difference between 

its current position and its initial position, so 

 

XxXXφXu −=−= )()(        (4) 

 

The Green strain tensor E can be expressed in terms of the deformation gradient 

tensor or the displacement gradients as follows 

 

]))(()()[(
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T
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T uuuuICIFFE ∇∇+∇+∇=−=−=   (5) 
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where the operator o∇ is the gradient with respect to the material coordinates and I is 

the second order unit tensor. It is clear from equations (2)-(5) that if the displacement 

vector at a material point is known then the deformation gradient tensor, the Cauchy-

Green tensors and the Green strain tensor at that material point can be determined.  

 

The equilibrium of the porous material is expressed in terms of the total Cauchy stress 

tensor σσσσ by, 

 

0=+⋅∇ bσ    in Ω      (6) 

 

where b is the body force field per unit volume. Based on the assumption of Biot’s 

poroelasticity, the constitutive equation for a fluid-filled porous material can be 

expressed as follows (Biot, 1957; Detournay and Cheng, 1993) 

 

( ) pJ
W T

o α−−−
∂
∂

=− FF
E

SS 1
       (7) 

 

where S is the second Piola-Kirchhoff stress tensor, So is the initial second Piola-

Kirchhoff stress tensor, W is the strain energy density function of the porous material, 

J=det(F) is the Jacobian of the deformation gradient tensor F, α is a material constant, 

and p is the fluid pressure. Equation (7) is a generalization of the constitutive equation 

for linear and isotropic porous materials (Biot, 1957; Detournay and Cheng, 1993) 

suitable for nonlinear and anisotropic porous materials. The first and second terms in 

the right-hand-side of equation (7) represent the stress contributions from the solid 

matrix and fluid pressure, respectively. The factor in parenthesis is the pull-back of 

the fluid pressure through the motion to the reference configuration. For anisotropic 

porous materials, examples of the strain energy density function W can be found in 

Gasser et al. (2006) and Pinsky et al. (2005). The relationship between the total 

Cauchy stress tensor in equation (6) and the second Piola-Kirchhoff stress tensor in 

equation (7) is given by 

 
T

J FSFσ
1−=           (8) 

 

Equations (2)-(8) are similar to those describing the nonlinear elastic deformation of 

hyperelastic materials under externally applied loads. The only difference here is the 

constitutive equation (7) involves the fluid pressure. It is for this reason that additional 

equations are required in order to determine the stresses, strains and displacements. It 

should be emphasized that the displacements, strains and stresses used here are based 

on a macroscopic description and referenced to the porous material. Thus the 

deformations or strains used in the present formulation may also include the 

contribution from the change of porosity of the porous material, which is not properly 

addressed in Biot’s theory. 

  

Fluid pressure in a porous material depends not only on the microstructure of the 

porous material but also on the flow of the fluid through the connective pores. Fluid 

flow in porous materials has been studied for more than a century. The interaction 

between solid and liquid phases in porous materials was first quantified by Darcy in 

1856. In a study of water percolating through sand, Darcy discovered that the flow 

rate was proportional to the pressure gradient. This empirical relationship was 
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theoretically derived later by other investigators on the basis of mechanical analysis of 

fluid flow in porous materials (Bear, 1988; de Boer, 2000), which demonstrated that 

Darcy’s law is valid for most Newtonian liquids at low flow velocity. Fluids in many 

biological materials and in most rock and soil materials belong to this category and 

therefore Darcy’s law can be applied in these fields. 

 

Let q be the specific discharge vector, which describes the motion of the fluid relative 

to the solid in a porous material, which is formally defined as the rate of fluid volume 

crossing unit area of the porous material, and ζ be the change of fluid content of the 

porous material with respect to the initial state, which is defined as the variation of 

fluid volume per unit volume of porous material due to permeable fluid mass 

transport. A positive ζ corresponds to a “gain” of fluid by the porous solid. The 

relationship between q and ζ can be obtained by considering the volumetric 

conservation of the fluid in the representative elementary volume as follows (Biot, 

1957; Detournay and Cheng, 1993) 

 

q⋅−∇=
∂
∂

o
t

ζ
         (9) 

 

where t is time. The flow of fluid within the porous material can be described by 

Darcy’s law. By ignoring the fluid density variation effect, Darcy’s law can be simply 

expressed as follows 

 

 p∇−= Kq          (10) 

 

where K is the permeability tensor which may reduce to diagonal form if the porous 

material is orthotropic or isotropic. Substituting equation (10) into (9) yields, 

 

( )p
t

o ∇⋅∇=
∂
∂

K
ζ

        (11) 

 

In addition to equation (11), an equation of state that links the fluid pressure to the 

volume deformations of the fluid phase and the porous material is needed in order that 

both the variation of fluid content and fluid pressure can be determined. The equation 

of state for a general porous material can be expressed as follows (Detournay and 

Cheng, 1993), 

 

[ ])1( −−= JMp αζ         (12) 

 

where M and α are the material constants. For linear problems of small deformation J 

= 1+Tr(ΕΕΕΕ) where Tr(ΕΕΕΕ) is the volume dilatation of the porous material. Equations (11) 

and (12) provide two additional equations which together with equations (5)-(7) can 

be used to determine the stresses, strains, displacements, variation of fluid content and 

fluid pressure in the porous material. 

  

For most biological materials, both the solid and fluid phases of the porous material 

can be regarded as incompressible. In this case the change of volume of the porous 

material is caused only by the “gain” or “loss” of the fluid, that is, ζ=−1J . In this 
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case the values of the material constants M and α can be taken as ∞→M  and 1=α  

(Detournay and Cheng, 1993). Eliminating ζ from equations (12), equation (11) yields 

 

( )p
t

J
o ∇⋅∇=

∂
∂

K         (13) 

 

Equations (5), (6), (7) and (13) are the governing equations for determining stresses, 

strains, displacements and fluid pressure in fluid-filled porous materials whose solid 

and fluid phases are incompressible. The porous material can be nonlinear and 

anisotropic elastic material. The boundary conditions for stresses and displacements 

are the same as those normally used in solid mechanics. The boundary conditions for 

the fluid pressure require that the pressure by prescribed if the boundary surface is 

permeable, otherwise a zero normal derivative of fluid pressure can be assumed. The 

governing equations involve the equilibrium, geometrical and constitutive equations 

of solid materials and the moment balance equation (Darcy’s law) of fluids, and so the 

model is usually referred to as the biphasic model. The linear version of the present 

biphasic model has been proposed by Naili et al. (1998) and Swartz et al. (1999). 

However, the present model is more general as not only is it nonlinear but also 

anisotropic. 

 

 

3. Governing equations in the triphasic model 

 

For most biological materials, the fluid is an ionic solution and thus the transport in 

the porous material involves not only the flow of ionic solution but also the diffusion, 

convection and migration of ionic species. Dependent on the properties of the porous 

material, the permeability of a porous material may be different for the solvent and 

solutes. If so, osmotic pressure may be generated when the ionic species have 

concentration gradients. This osmotic pressure can affect the flow of solution and thus 

the overall deformation of the porous material.  

 

The governing equations describing the transport of ionic solution and ionic species in 

porous materials can be derived in terms of the mass conservation of individual 

components in the representative elementary volume as follows 

 

)(
)/(

qfo

off

t
ρ

ρ
⋅−∇=

∂

ΩΩ∂
       (14) 

ko

ofk

t

C
N⋅−∇=

∂

ΩΩ∂ )/(
       (15) 

 

where ρf is the density of the ionic solution, Ck is the concentration of species k, and 

Nk is the molar flux of species k flowing in unit time through unit area of porous 

material. For a dilute solution ρf can be taken as the density of the solvent and thus is 

a constant. Note that, 

 

o

o

fo

o

fof

o

f φζ +=
Ω

Ω
+

Ω

Ω−Ω
=

Ω

Ω
      (16) 
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where ofoo ΩΩ= /φ  is the initial porosity of the porous material. It is clear from the 

relationship between ζ and Ωf given by equation (16) that equation (14) is equivalent 

to equation (9) when ρf is constant. However, for the porous material of 

incompressible solid and fluid phases, ζ can be replaced with J-1. Also, for a 

macroscopic model it is more convenient to use ζ than Ωf. Note that sos Ω≡Ω for a 

porous material with an incompressible solid phase. In this case the change of 

porosity can be calculated directly from the variation of fluid content ζ  as follows   

 

φ
φφ

φφζ
−
−

=−
Ω
Ω

=
Ω

Ω−Ω
=

1

o
o

oo

fof
      (17) 

 

Note that equation (17) is slightly different from that proposed by Gu et al. (1993, 

1999). In Gu et al. (1993, 1999), the volume dilatation is taken as the solid phase 

volume dilatation, whereas in the present formulation, it is taken as the porous matrix 

volume dilatation. It is believed that the present volume dilatation definition is more 

appropriate because the strains are calculated from the displacements which are the 

macroscopic average displacements of the porous material rather than the 

displacements of the solid phase of the porous material in the representative 

elementary volume.    

 

The fluxes of the solution and solutes which appear in equations (14) and (15) can be 

expressed in two different ways. One is to use the common approach in which the flux 

of the solution is defined by Darcy’s law, that is, equation (10), and that of the solutes 

is defined by the Nernst-Planck equation (Newman, 1991), that is, 

 

qDDN kkk
k

kkk CC
RT

Fz
C +Φ∇







−∇−=      (18) 

 

where Dk and zk are the diffusion tensor and charge number of species k, respectively, 

F is the Faraday constant, R is the universal gas constant, T is the absolute 

temperature, and Φ is the electrostatic potential. For an isotropic porous material Dk 

reduces to diagonal form. The fluxes defined in equations (10) and (18) do not include 

those generated by the osmotic pressure and thus they can be applied to porous 

materials that do not have membrane-like feature, which has no osmotic pressure. The 

other is based on the theory of irreversible thermodynamics (Kedem and Katchalsky, 

1958; Li, 2004) in which the fluxes of the solution and solutes across a permeable 

membrane are expressed as follows 

 
















 ∆Φ+∆−∆−= ∑
=

M

k

k
k

kkp C
RT

Fz
CRTpL

1

σq      (19) 








 ∆Φ+∆−−= k
k

kkkkk C
RT

Fz
CRTC ωσ qN )1(     (20) 

 

where Lp is the hydraulic conductivity coefficient, σk and ωk are the reflection 

coefficient and permeability coefficient of species k, respectively, ,p∆ ,kC∆ and 

∆Φ are the difference of pressures, concentrations and electrostatic potentials  in the 
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solutions on each side of the membrane wall, kC  is the average concentration of 

species k (see Figure 2), and M is the total number of species involved in the solution. 

For a semipermeable membrane of thickness hm, the gradient of a variable across the 

membrane can be approximated as mh/(.)(.) ∆=∇ . Thus equations (19) and (20) can 

be re-written as 

 
















 Φ∇+∇−∇−= ∑
=

M

k

k
k

kkp C
RT

Fz
CRTp

1

σLq     (21) 








 Φ∇+∇−−= k
k

kkkkk C
RT

Fz
CRTC ωqN )1( σ     (22) 

 

where nL mpp hL=  is the equivalent hydraulic conductivity coefficient matrix, 

nω mkk hω= is the equivalent permeability coefficient matrix of species k, and n is the 

normal of the membrane. Equations (21) and (22) can be compared with Darcy’s law 

(equation (10)) and the Nernst-Planck equation (equation (18)), where pL is 

equivalent to K, and RTkω  is equivalent to Dk. The only difference between the two 

approaches is that in the Nernst-Planck case σk = 0, while in the current approach it is 

not necessarily zero. Thus, the former can be regarded as a special case of the latter 

approach. For a porous material which has equal permeability to the solvent and 

solutes (i.e., there is no membrane-like feature) one can simply take σk = 0. Equations 

(21) and (22) imply that a porous material with membrane-like feature can be 

regarded as an assembly of a large number of membranes.   

 

Equations (21) and (22) show that the fluxes of solution and solutes are coupled. The 

first two terms in the right-hand-side of equation (21) represent the fluxes resulting 

from the gradients of fluid pressure and osmotic pressure, respectively. It is seen from 

equation (22) that the convective velocities of solutes are not necessarily equal to the 

solution velocity. This is because the permeability of the solvent and solutes in the 

porous material may be different. The solutes are normally more hindered by the pore 

surfaces and thus 0 ≤ σk ≤ 1.  

  

Note that for charged ions the molar fluxes of ionic species should satisfy the 

conservation equation of current, which is expressed by 

 

0)1(
11
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where i is the current density. Equation (23) can be used to determine the gradient of 

the electrostatic potential. Substituting equations (21) and (22) into (14) and (15), 

yields, 
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where RTkk ωD = , pLK = , and 1−= Jζ have been applied. Equations (5), (6), (7), 

(24) and (25) are the governing equations for determining stresses, strains, 

displacements, fluid pressure, and ionic concentrations in ionic solution-filled porous 

materials. Unlike the biphasic model where only the interaction between the solid and 

fluid is considered, the above model involves the interactions between the solid, ionic 

solution and ionic species, and so is referred to as the triphasic model. If finite 

element methods are used to solve the coupled system, the primary variables can be 

taken to be the displacements of the matrix u, the variation of fluid content ζ, and the 

concentrations of ionic species Ck; all other quantities can be expressed in terms of 

these primary variables.  

 

 

4. Application of the triphasic model in prediction of corneal swelling 

 

As an application of the proposed triphasic model, we consider a case where a human 

cornea is subject to an osmotic perturbation of NaCl solution applied to its endothelial 

surface. Assume that the tissue is initially equilibrated with the external bathing 

solution. Thus an increase in concentration in the bathing solution will cause an 

outward flow from the tissue and thus a reduction of the corneal thickness. For 

simplicity, we assume that the deformation is small and the strains parallel to the 

corneal surface are negligible and thus the problem can be simplified into a one-

dimensional problem in which all unknowns are only a function of the coordinate 

along the thickness direction. In this case, the strain-displacement relationship (5), 

equilibrium equation (6) and constitutive equation (7) become 

 

dx

du
xx =ε          (26) 

=xxσ  constant        (27) 

pxxoxx −+=− εµλσσ )2()(        (28) 

 

where u is the displacement, εxx is the strain, σxx is the total stress, σo is the initial 

stress which is generated by the swelling pressure psw, λ and µ are the Lame constants. 

The swelling pressure can be expressed in terms of the stromal hydration Hw which is 

defined as the mass of water in unit mass of dry tissue material. Hence, the initial 

stress can be expressed as )exp(1041.2 6

wswo Hp −×−=−=σ in dyn-cm
-2

 (Li and 

Tighe, 2006). The normal thickness of the cornea is about 0.5 mm, the maximum 

increase or decrease of the corneal thickness in a perfusion experiment is only about 

20 µm (Li and Tighe, 200), which gives a maximum strain of 4%. This justifies the 

above assumptions of small deformation and linear version of constitutive equations 

when considering that the matrix is a soft material which has very low elastic modulus. 

The inclusion of swelling pressure in equation (28) is based on the fact that, in the 

absence of fluid pressure, an external compression stress must be applied in order to 

Page 9 of 18

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 10 

prevent the stromal swelling. Based on the stress boundary condition at the 

endothelial surface the stress constant in equation (27) can be identified, which in 

value is equal to the intraocular pressure (IOP = 2.67x10
4
 dyn-cm

-2
) but in an opposite 

direction (Li and Tighe, 2006). Thus, from equations (27) and (28) the fluid pressure 

can be expressed as follows 

 

swxx pIOPp −++= εµλ )2(        (29) 

 

Equation (29) implies that the strain-induced stress plus IOP will balance the swelling 

pressure and the fluid pressure. It is obvious that if the elastic stiffness of the tissue is 

very low, then the first term in the right-hand-side of equation (29) may be negligible. 

In this case the fluid pressure is only dependent on the IOP and swelling pressure, and 

therefore the tissue deformation can be determined purely from the transport model of 

ions and ionic solution which has been studied by several researchers (Klyce and 

Russell, 1979; Li et al., 2004; Li and Tighe, 2006). Assume that the reflection 

coefficients for chloride and sodium ions are identical, i.e., σCl = σNa = σkk.  By using 

electro-neutrality condition (i.e., CCl = CNa = C), equation (23) can be simplified as  
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  (30) 

 

where zNa=1 and zCl=-1are the charge numbers of Na and Cl ions, DNa and DCl are the 

diffusion coefficients of Na and Cl ions. Using equation (30), equations (24) and (25) 

can be simplified as   
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where kxx is the permeability coefficient in the thickness direction. Using equation (31) 

to simplify (32), it yields, 
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Equations (29), (31) and (33) are the three equations used to solve for the fluid 

pressure, strain, and ionic concentration. Note that the variation of the stromal 

hydration is related to the strain. The relationship between the two is as follows, 

 

dwwo

wow

dwwo

wwow
xx

H

HH

H

HH

ρρρρ
ρ

ε
//1/

/)(

+
−

=
+

−
=      (34) 

 

where ρw = 1 g-cm
-3

 is the density of water, ρd = 1.49 g-cm
-3

 is the density of the dry 

tissue material, and Hwo=3.4 is the initial stromal hydration. For given initial condition 
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(stromal hydration Hwo and ionic concentration Co) and boundary conditions (fluid 

pressure p or dp/dx and ionic concentration C or dC/dx), one can solve the partial 

differential equations (31) and (33) where the fluid pressure and stromal hydration can 

be expressed in terms of the strain by using equations (29) and (34). It should be 

pointed out that although the governing equations (29) and (31) for the solid and fluid 

phases are linear, the transport equation (33) for the ionic species is nonlinear due to 

the involvement of the change of porosity. Therefore, the coupled system of equations 

is not only time-dependent but also nonlinear.    

 

Figure 3 shows a typical example of the corneal response to the shock of NaCl 

hypertonic solution applied (after the steady state has been reached) to the endothelial 

surface for a hour duration, while the epithelial surface of the cornea is left intact. The 

transport parameters employed here are given in Table 1 which are the same as those 

used in Li and Tighe (2004, 2006a). The only difference is the equation (29) for fluid 

pressure; here it is also dependent on the volume dilatation of the tissue, while in Li 

and Tighe (2004, 2006a) 02 ≡+ µλ  was assumed. The Lame constants for a highly 

hydrated proteoglycan-containing matrix are estimated as 152 ≈+ µλ kPa (Pinsky 

and Datye, 1991; Hjortdal, 1996; Li and Tighe, 2006b). In practice, however, the 

value of λ+2µ in the thickness direction would be greater than 15 kPa because of the 

lamellae interlacing. Therefore, it is thought to be more reasonable to use λ+2µ=20 

kPa in the example. In order to show the influence of the elastic properties of the 

tissue material on its swelling in the collagen fibril direction, a large value of 

λ+2µ=100 kPa is also used. The plotted results show that the thickness changes to the 

shock are smaller when the strain-induced stress is included in the model. This is to be 

expected. As the tissue shrinks (or swells) due to the outward (or inward) volumetric 

flow, the solid matrix of the tissue will provide a “spring-like” mechanical resistance. 

This mechanical resistance will produce an opposite direction strain, which leads the 

overall strain be reduced. The results shown in figure 3 indicate that, the larger the 

value of λ+2µ, the smaller the changes in thickness. It is expected that, when the 

value of λ+2µ becomes large enough so that the mechanical stress and the swelling 

pressure are in balance, there will be no change in the thickness.  

 

It should be mentioned that the example shown here only demonstrates the influence 

of the elastic modulus of the matrix material on the response of the corneal thickness 

to the perfusion of external solutions. The interaction feature involving the nonlinear 

material characteristics of the cornea has to be investigated through a full three-

dimensional model which is currently being developed. Also, it should be pointed out 

that, because of the lack of experimental data all material constants used here in the 

example are the same as those used in the previous transport models (see, for example, 

Klyce and Russell, 1979; Li and Tighe, 2006a). Since most of these material constants 

were determined by using a best fit between the transport model, which did not 

consider the influence of solid phase, and the perfusion experiments, this makes it 

difficult to validate the present model. Nevertheless, the present results have clearly 

shown that if the solid phase influence is considered the corneal thickness response 

will be reduced remarkably. This suggests that the previously determined material 

constants need be re-assessed. It is noted than even for the one-dimensional model 

considered here, there are about 20 material constants that are required to determine. 

 

5. Conclusions 
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A nonlinear, macroscopic multi-phasic model has been proposed for describing the 

interactions between solid, fluid, and ionic species taking place in porous materials. 

Governing equations have been derived based on nonlinear theories of solid 

mechanics, linear flow theory of Newtonian fluids, and the theory of irreversible 

thermodynamics for the transport of ions and ionic solution. The model is built up on 

Biot’s poroelasticity but considers the nonlinearity of the porous material and the 

influence of transport of ionic species on the flow of ionic solution and the 

deformation of the porous material.  

 

The present model has shown that the coupling between solid, fluid and ionic species 

exists when the porous material involves membranes or has membrane-like features, 

which could be inside or just on the boundaries of the material. Otherwise, the 

coupling occurs only between the solid and fluid phases in which case the problem 

can be solved using the biphasic model.  

 

As the application of the present multi-phasic model, a numerical example of the 

human cornea under the shock of NaCl hypertonic solution applied to its endothelial 

surface has been investigated. The results have demonstrated that the mechanical 

properties of the tissue have important influence on the swelling of the cornea. 

Without taking into account this influence, the predicted swelling could be 

exaggerated. 

 

 

Acknowledgement – This work was supported by the UK EPSRC research grant 

(EP/G056501/1).  

 

References 

 

Bear J. Dynamics of Fluids in Porous Media. 1988, Dover Publication, New York. 

Biot M.A. General theory of three-dimensional consolidation. Journal of Applied 

Physics 12, 1941, 155-164. 

Biot M.A. The elastic coefficients of the theory of consolidation. Journal of Applied 

Mechanics (ASME) 24, 1957, 594-601. 

Biot M.A. Nonlinear and semi-linear rheology of porous solids. Journal of 

Geophysical Research 78, 1973, (23)4924-4937. 

Cohen B., Lai W.M. and Mow V.C. A transversely isotropic biphasic model for 

unconfined compression of growth plate and chondroepiphysis. Journal of 

Biomechanical Engineering 120, 1998, 491-496. 

De Bore R. Theory of Porous Media: Highlights in the Historical Development and 

Current State, 2000, Springer, Berlin. 

Detournay E. and Cheng A.H.D. Fundamental of poroelasticity. In: Fairhurst C. (ed.): 

Comprehensive Rock Engineering, Principles, Practice and Projects. Vol.II, 

Analysis and Design Method. Pergamon Press, Oxford, 1993, 113-171. 

Ferguson S.J., Ito K. and Nolte L.P. Fluid flow and convective transport of solutes 

within the intervertebral disc. Journal of Biomechanics 37, 2004, 213-221. 

Gasser T.G., Ogden R.W. and Holzapfel G.A. Hyperelastic modelling of arterial 

layers with distributed collagen fibre orientations. Journal of the Royal Society 

Interface 3, 2006, (6)15-35. 

Page 12 of 18

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://rsif.royalsocietypublishing.org/cgi/content/abstract/3/6/15
http://rsif.royalsocietypublishing.org/cgi/content/abstract/3/6/15


For Peer Review
 O

nly

 13 

Gu W.Y., Lai W.M. and Mow V.C. Transport of fluid and ions through a porous-

permeable charged-hydrated tissue, and streaming potential data on normal bovine 

articular cartilage. Journal of Biomechanics 26, 1993, 709-723. 

Gu W.Y., Lai W.M. and Mow V.C. A triphasic analysis of negative osmotic flows 

through charged hydrated soft tissues. Journal of Biomechanics 30, 1997, 71-78.  

Gu W.Y., Lai W.M. and Mow V.C. Transport of multi-electrolytes in charged 

hydrated biological soft tissues. Transport in Porous Media 34, 1999, 143-157. 

Hjortdal J.O. Regional elastic performance of the human cornea. Journal of 

Biomechanics 29, 1996, (7)931-942. 

Holmes M.H. Finite deformation of soft tissue: analysis of a mixture model in uni-

axial compression. Journal of Biomechanical Engineering 108, 1986, (4)372-382. 

Huyghe J. and Janssen J.D. Thermo-chemo-electro-mechanical formulation of 

saturated charged porous solids. Transport in Porous Media 34, 1999, (1-3)129-141. 

Kedem O. and Katchalsky A. Thermodynamic analysis of the permeability of 

biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 1958, 229-

246. 

Klyce S.D. and Russell S.R. Numerical solution of coupled transport equations 

applied to corneal hydration dynamics. Journal of Physiology (London) 292, 1979, 

107-134. 

Lai W.M., Hou J.S. and Mow V.C. A triphasic theory for the swelling and 

deformation behaviours of articular cartilage. Journal of Biomechanical 

Engineering 113, 1991, 245-258.  

Li L.Y. Transport of multicomponent ionic solutions in membrane systems. 

Philosophical Magazine Letter 84, 2004, (9)593-599. 

Li L.Y., Tighe B.J. and Ruberti J.W. Mathematical modelling of corneal swelling. 

Biomech. Model. Mechanobiol. 3, 2004, 114-123. 

Li L.Y. and Tighe B.J. Numerical simulation of corneal transport processes. Journal 

of The Royal Society Interface 3, 2006a, 303-310. 

Li L.Y. and Tighe B.J. The anisotropic material constitutive models for the human 

cornea. Journal of Structural Biology 153, 2006b, 223-230. 

Lopatnikov S.L. and Cheng A.H.D. Variational formulation of fluid infiltrated porous 

material in thermal and mechanical equilibrium. Mechanics of Materials 34, (2002), 

685-704. 

Mak A.F.T. and Huang L. A biphasic poroelastic analysis of the flow dependent 

subcutaneous tissue pressure and compaction due to epidermal loadings: issues in 

pressure sore. Journal of Biomechanical Engineering 116, 1994, (4)421-430. 

Mak A.F.T. and Zhang J.D. Numerical simulation of streaming potentials due to 

deformation-induced hierarchical flows in cortical bone. Journal of Biomechanical 

Engineering 123, 2001, (1)66-70. 

Mow V.C., Holmes M.H. and Lai W.M. Fluid transport and mechanical properties of 

articular cartilage: a review. Journal of Biomechanics 17, 1984, (5)377-394. 

Mow V.C., Kuei S.C., Lai W.M. and Armstrong C.G. Biphasic creep and stress 

relaxation of articular cartilage in compression: theory and experiments. Journal of 

Biomechanical Engineering 102, 1980, (1)73-84. 

Naili S., Oddou C. and Geiger D. A method for the determination of mechanical 

parameters in a porous elastically deformable medium: applications to biological 

soft tissues. Int. J. Solids Structures 35, 1998, 4963-4979. 

Newman J.S. Electrochemical Systems (2
nd

 edition), 1973. Prentice-Hall, Englewood 

Cliffs, New Jersey. 

Page 13 of 18

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://www.springerlink.com/content/100342/?p=b4679a909afa450589caaa8c9c2cd468&pi=0
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Mak%2C+Arthur+F.+T.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Huang%2C+Lidu&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Zhang%2C+J.+D.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mow%20VC%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Holmes%20MH%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Lai%20WM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Mow%2C+V.+C.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Kuei%2C+S.+C.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Lai%2C+W.+M.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Armstrong%2C+C.+G.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true


For Peer Review
 O

nly

 14 

Pinsky P.M. and Datye D.V. A microstructurally based finite element model of the 

incised human cornea. Journal of Biomechanics 24, 1991, 907-922. 

Pinsky P.M., van der Heide D. And Chernyak D. Computational modeling of 

mechanical anisotropy in the cornea and sclera. Journal Cataract Refract. Surg. 31, 

2005, 136-145. 

Simon B.R., Kaufmann M.V. and McAfee M.A. Finite element models for arterial 

wall mechanics. Journal of Biomechanical Engineering 115, 1993, (4B)489-497. 

Simon B.R., Kaufman M.V., Liu J. and Baldwin A.L. Porohyperelastic-transport-

swelling theory, material properties and finite element models for large arteries. 

International Journal of Solids and Structures 35, 1998, (34/35)5021-5031.  

Snijders H., Huyghe J.M. and Janssen J.D. Triphasic finite element model for 

swelling porous media. International Journal for Numerical Methods in Fluids 20, 

2005, (8/9)1039 – 1046. 

Soltz M.A. and Ateshian G.A. A conewise linear elasticity mixture model for the 

analysis of tension-compression nonlinearity in articular cartilage. Journal of 

Biomechanical Engineering 122, 2000, 576-586. 

Soulhat J., Buschmann M.D. and Shirazi-Adl A. A fibril-network-reinforced biphasic 

model of cartilage in unconfined compression. Journal of Biomechanical 

Engineering 121, 1999, 340-347. 

Swartz M.A., Kaipainen A., Netti P.A., Brekken C., Boucher Y., Grodzinsky A. and 

Jain R.K. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation 

and experimental validation. Journal of Biomechanics 32, (1999), 1297-1307. 

Terzaghi K. Theoretical Soil Mechanics, 1943, John Wiley and Sons, New York. 

van Meerveld J., Molenaar M.M., Huyghe J.M. and Baaijens F.P.T. Analytical 

solution of compression, free swelling and electrical loading of saturated charged 

porous media. Transport in Porous Media 50, 2003, (1/2) 111-126. 

Yang M. and L.A. Taber L.A. The possible role of poroelasticity in the apparent 

viscoelastic behavior of passive cardiac muscle. Journal of Biomechanics 24, 1991, 

(7) 587-597. 

Zhang L. and Szeri A.Z. Transportation of neutral solute in deformable, anisotropic, 

soft tissue. Computers & Mathematics with Applications 53, 2007, (2)232-243. 

 

 

 

 

 
 

 

Figure 1. Configurations of undeformed and deformed porous material. 
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Figure 2. Sign definition of fluxes in membrane wall (arrow direction represents q and 

N being positive). 

 

 

 

 

 

 
 

Figure 3. Stromal thickness response to the shock of 15 mOsm NaCl hypertonic 

solution applied (after a steady state) to the endothelial surface for an hour duration 

while the epithelial surface is left intact. 
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Table 1. Parametric values employed in the numerical studies  

for figure 3 (Li and Tighe, 2004, 2006a). 

Parameter Na
+
 Cl

-
 P 

Charge number 1 -1 - 

Molar mass 11 g/mole 17 g/mole - 

Initial 

conditions  

 

145x10
-6 

mole/cm
3
 

 

145x10
-6 

mole/cm
3
 

2.67x10
4 

dyne/cm
2
 

BCs at 

epithelium 
dC/dx=0 dC/dx=0 dp/dx=0 

BCs at 

endothelium 

(145+15)x10
-6 

mole/cm
3
 

(145+15)x10
-6 

mole/cm
3
 

2.67x10
4 

dyne/cm
2
 

Permeability 

coefficient in 

epithelium 

2.90x10
-15

 

cm
4
/(s-dyne) 

Permeability 

coefficient in 

stroma 

8.63x10
-15

Hw
4

 

cm
4
/(s-dyne) 

Permeability 

coefficient in 

endothelium  

2.65x10
-15

 

cm
4
/(s-dyne) 

Reflection 

coefficient in 

epithelium,σkk 

 

0.800 

 

0.580 

 

- 

Reflection 

coefficient in 

stroma,σkk 

 

0 

 

0 

 

- 

Reflection 

coefficient in 

endothelium,σkk  

 

0.685 

 

0.450 

 

- 

Diffusion 

coefficient in 

epithelium, D 

 

4.95x10
-10

 

cm
2
/s 

 

7.5x10
-10

 

cm
2
/s 

 

- 

Diffusion 

coefficient in 

stroma, D dww

w

H

H

ρρ /

1091.5 6

+

× −
 
cm

2
/s 

dww

w

H

H

ρρ /

100.9 6

+

× −
 
cm

2
/s - 

Diffusion 

coefficient in 

endothelium, D 

2.63x10
-8 

 
cm

2
/s 

4.00x10
-8 

 
cm

2
/s 

 

- 

Active pump 

rate at 

endothelium, J 

0 
-4.0x10

-10 

mole/(s-cm
2
) 

- 
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Dear Editor 

 

Thank you very much for sending me the valuable comments and suggestions made 

by the three reviewers. We have revised our paper in the light of these comments and 

suggestions and the following are the responses (text with blue colour) to the 

reviewers’ comments and the new texts added in the revised paper are highlighted 

with yellow colour. 

  

Referee: 1 

  

“The some derived equations in Section 2 and Section 3 have nonlinear expressions, 

but the discussion in Section 4 basically made them to be linear expressions. Hence 

Figure 3 is similar to that of Li and Tighe (2004, 2006a), which the nonlinear 

characteristics focused on was not displayed completely.” 

  

There are three sets of governing equations (each phase has one set). Because of the 

coupling, governing equations in liquid and ionic species phases are also nonlinear. 

Only simplification used in the example section is the governing equations in solid 

phase which are linearised, while in sections 2 and 3 they are nonlinear. This 

simplification is purely because the use of one-dimensional model (normal to the 

thickness), in which case the elastic modulus is only due to the matrix material (which 

is almost linear) and the collagen fibrils have no contribution to the modulus of 

elasticity. The main purpose of Fig.3 is not to show the nonlinear characteristics but to 

demonstrate how the elastic modulus can affect the thickness change during a 

numerical perfusion experiment. These two points have been re-addressed in the text 

of the example section (see added text in pages 9 and 11). It should be pointed out that 

Li and Tighe (2004, 2006a) model did not have the solid phase while the present 

model including the example has although in the example only linear equations of the 

solid phase are considered (see also our response 3 to Referee 2).  

 

“Journal readers may not have more profound physical or mechanical basis, and are 

not good at understanding complex formula. If it is allowed, the manuscript may give 

some clearer example of verification, then the readers can easily understand.” 

 

See our response to Referee 3. 

 

Referee: 2 

 

1) Some of the equations in section 2 are textbook material and can be taken out by 

referring to a textbook. 

 

It is true that Eqs.(2)-(6) can be found in some high level textbooks. However, they 

are used a few times during the derivation of other equations in sections 3 and 4 and 

therefore it is better to keep them. If they were removed it would be difficult for 

readers to follow. 

 

2) It would be useful to point out what are the basic field variables (such as 

displacement in an elasticity problem) that need to be solved for after Eqn. (25). 

 

These have been added in text (see page 9). 
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3) In section 4, a justification for the small deformation assumption would be helpful, 

what is the actual level of deformation during the corneal swelling? 

 

The normal thickness of the cornea is about 0.5mm. The increase or decrease of the 

thickness during a perfusion experiment is about 20 micro-meters (see Fig.3), which 

gives the maximum strain of about 4%. Thus small deformation assumption is 

justified. This is particularly true for the matrix material which has small elastic 

modulus. Some text has been added in section 4 (page 9) to justify this. 

 

4) References should be provided for the source of data in Table 1 

 

This has been added in text (see page 16). 

 

5) Fig 2, sign definition – sign convention. 

 

This has been added in text (see page 14). 

 

Referee: 3 

. 

“The governing equations of the model seem correct to me, but it would be helpful if 

the authors included a plot, table, or at least a sentence about validation. The previous 

model (Li and Tighe, 2006a) was able to reproduce experimental data (Fischbarg, J. 

1973, Exp. Eye Res. 15, 615–638.) very well and there did not seem to be much room 

for further improvement (in terms of agreement with experiment). It would be 

interesting to see how the present model compares with the same or other experiment. 

This might help readers decide whether to adopt the presented model. 

  

The main purpose of this paper is to demonstrate how important the interaction 

between solid, liquid and ionic species phases is. As it can be seen from the present 

tri-phase model, there are two sets of material constants, one for the transport of 

solution and solutes and the other for the mechanical properties. Currently, the 

constants for the transport were determined based on the best fit between the transport 

model which did not consider the solid phase influence and the perfusion experiments 

(see, for example, Klyce and Russell, 1979). This is why “The previous model (Li and 

Tighe, 2006a) was able to reproduce experimental data (Fischbarg, J. 1973, Exp. Eye 

Res. 15, 615–638.) very well”. The present results show that if the solid phase 

influence is considered the corneal thickness response will be reduced remarkably. 

This suggests that the previously determined constants need be re-assessed. Since 

even for the one-dimensional model there are still about 20 material constants 

required to determine, this requires more experimental data and is obviously out of the 

scope of this paper. More explanation has been added in text (see pages 11/12) 

 

The manuscript is organized in a logical way and is written in good English. I have 

noticed some minor typographical errors:  

1)      In abstract: “typical example of …” instead of “typical example about …” 

2)      Section 4, last paragraph: “Lame constants” instead of “lame constants”. Better 

yet “Lamé constants” 

 

These errors have been corrected. 
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