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The quasiparticle Fock-space coupled-cluster (QFSCC) theory, introduced by us in 1985,
is described. This is a theory of many-electron systems which uses the second-quantization
formalism based on the algebraic approximation: one chooses a finite spin-orbital basis, and
builds a fermionic Fock space to represent all possible antisymmetric electronic states of a
given system. The algebraic machinery is provided by the algebra of linear operators acting
in the Fock space, generated by the fermion (creation and annihilation) operators. The Fock-
space Hamiltonian operator then determines the systems stationary states and their energies.

Within the QFSCC theory, the Fock space and its operator algebra are subject to a unitary
transformation which effectively changes electrons into some fermionic quasiparticles. A gener-
alization of the coupled-cluster method is achieved by enforcing the principle of quasiparticle-
number conservation. The emerging quasiparticle model of many-electron systems offers useful
physical insights and computational effectiveness.

The QFSCC theory requires a substantial reformulation of the traditional second-
quantization language, by making a full use of the algebraic properties of the Fock space
and its operator algebra. In particular, the role of operators not conserving the number of
electrons (or quasiparticles) is identified.

Keywords: many-electron systems, fermions, quasiparticles, Fock space, coupled-cluster
method.

1. Introduction

In 1983, while working together in the Quantum Theory Project, we started a new
theoretical project aimed at describing the electronic states of conducting (and
possibly – superconducting) polymers. Our first paper was presented as a poster
during the Sanibel Symposium in 1984, and subsequently it was published in the
Symposium volume of the International Journal of Quantum Chemistry [1]. It
was followed by a four-paper series [2–5] under the common title “Coupled-cluster
method in Fock space,” in which we introduced a new model of many-fermion sys-
tems – the quasiparticle model exploiting the algebraic properties of the fermionic
Fock space, based on the coupled-cluster approach. The specialization of this theory
to extended systems was discussed in [6]. In 1989 Maria Barysz joined the project,
and we did some pilot applications of our Fock-space coupled-cluster (FSCC) theory
to model π-electron systems [7]. In that paper we studied the ground-state energy
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and molecular (vertical) excitation energies (including ionization potentials, elec-
tron affinities, and singlet and triplet excitations), and compared the FSCC results
with the full configuration-interaction (FCI) benchmark values.

It seems that the title of our quadrilogy [2–5] has popularized the name “Fock-
space coupled-cluster method,” which was then attributed a posteriori to the family
of related coupled-cluster approaches [8]. However, our papers fostered a novel
algebraic language which departed largely from the literature standards, e.g. those
set forth by Paldus and Č́ıžek [9]. That language, apparently, was too foreign to
the practitioners of the coupled-cluster methodology to win wider popularity for
our quasiparticle FSCC theory. We feel that now, given the time perspective, it is
worthwhile to present a bird’s eye view of its algebraic foundations.

2. Inspirations and motivations

Conducting polymers was a hot topic already in the eighties, long before the Nobel
prize (2000) for Heeger, McDiarmid, and Shirakawa. In addition, there was a fas-
cinating proposal (1964) by Little [10] of the so-called excitonic superconductivity
in polymers of special architecture (a conducting backbone plus highly polarizable
side groups). Essentially it was the electronic correlation which was the driving
force for the superconductivity in the Little model, and the predicted transition
temperature Tc was quite high. In 1983 we were fascinated by that model (it was
before Bednorz and Müller started the high-Tc revolution in 1986 [11]), and we
have been looking for a theoretical framework capable of handling the problem of
electronic correlations in anisotropic metallic systems.

The quantum description of an extended electronic system requires numerical
methods that fulfill the condition of extensivity. The coupled-cluster (CC) method
[12–14] is thus a natural choice. In the (single-reference) CC method the ground-
state N -electron wave function Ψ is represented by using the exponential Ansatz:

Ψ = exp(T̂ )Φ , T̂ = T̂1 + T̂2 + . . .+ T̂N , (1)

where Φ = ΦHF is the reference Slater determinant (the Hartree-Fock one in this
case), and operators T̂n generate n-tuple excitations from Φ. The (exact) wave
function Ψ of Eq. (1) is not normalized, but fulfills the so-called intermediate
normalization condition:

〈Φ|Ψ〉 = 1 . (2)

The success of the CC calculations for the homogeneous electron gas (see Emrich
and Zabolitzky [15], and references therein) indicated that the CC method may be
a proper tool also for conducting polymers. However, in the case of an extended
system focusing on the ground-state is insufficient, and one needs to address also
the (correlated) band-structure problem (e.g., in the spirit of Pantelides et al.
[16]).This calls for a theoretical framework dealing simultaneously with a family
of N -, (N − 1)-, and (N + 1)-electron states. Again, Emrich and Zabolitzky [15]
gave some hint how the electronic-band spectrum could be calculated within the
CC scheme; moreover, they proposed to use the Bogoliubov-Valatin transformation
[17, 18], thus pawing the way into applications to supeconducting systems.

In a metallic system the shape of the Fermi surface may be sensitive to the cor-
relation effects. In this respect the standard CC method based on the HF reference
Slater determinant lacks the necessary flexibility. Our first step towards the CC
method applicable to conducting polymers [1] was to optimize the reference Slater
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determinant Φ along the line suggested by Chiles and Dykstra [19]: by transforming
the orbitals occupied in Φ such that the single-excitation cluster operator vanishes,
T̂1 = 0̂. The optimization of the orbitals is a self-consistent procedure leading to
the Brueckner reference determinant, Φ = ΦB, that fulfills the maximum overlap
condition with the exact wave function Ψ:

〈ΦB|ẐΦB〉 = maximum , Ẑ =
|Ψ〉〈Ψ|
〈Ψ|Ψ〉

. (3)

In [1] we showed that the Brueckner orbitals can be determined as eigenvectors of
a one-electron operator which is a sum of the Fock operator and a correlation po-
tential depending of the amplitudes of operators T̂2 and T̂3. We described in detail
how this Brueckner-Hartree-Fock (BHF) method works in the case of a truncated
cluster operator T̂ = T̂2, which allows for capturing the most essential electronic-
correlation effects. Five years later Handy et al. [20] popularized that approach
under the name of the Brueckner Doubles method (but instead of solving the BHF
equations they performed orbital rotations using the amplitudes of operator T̂1).

Our next step was to look for a more general CC approach – a multireference
one, that would allow for a simultaneous treatment of states with different numbers
of electrons. We had the multireference CC method of Jeziorski and Monkhorst
[21], but it was designed for an ensemble of states with the same electron number.
There was also a family of multireference CC methods, proposed independently
by Coester [22], Offermann et al. [23, 24], Mukherjee et al. [25], and Lindgren
[26], which seemed more relevant for our purpose. However, the corresponding
formalisms looked very different, and it was difficult to decide whether they are
equivalent. We abandoned detailed analyses of these methods and, instead, took
on a synthetic route: to build our own approach based on a general idea of quasi-
particles. Another inspiration came from a series of papers by Kutzelnigg, opening
with paper [27]: in these papers he emphasized the importance of the Fock-space
view of many-electron systems – the view which necessarily implied a certain
genealogy of states with different numbers of electrons. We also took advantage
of a new algebraic tool – the contraction theorem – introduced by Harris et al. [28].

These are the origins of our quasiparticle model described in papers [2–5]. Below
we present an overview of this model. The notation used is basically that of papers
[2–7], with some modifications borrowed from [29].

3. Algebraic framework (I): Fock space

We consider a finite electronic system, e.g., a molecule within the Born-
Oppenheimer approximation. Extended systems may be described by assuming
the cyclic boundary conditions, and then studying the thermodynamic limit [6].

3.1. Algebraic approximation and spin-orbital basis

The algebraic approximation is assumed: we choose certain m0-element orthonor-
mal set of orbitals, from which the corresponding M -element (M = 2m0) orthonor-
mal set of spin orbitals is built (by applying a standard prescription). An ordered
set of those spin orbitals reads as

(φ1, φ2, . . . , φM ) . (4)
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This basis spans a complex vector space V(1) of the dimension M , endowed with
the scalar product denoted by 〈φa|φb〉.

3.2. Index strings

We shall consider finite ordered strings of indices, each index belonging to set
{1, 2, . . . ,M}. A string of N indices (i.e., N indices arranged in a definite order)
will be denoted by

X ≡ ij · · ·m (nX = N) , (5)

where nX stands for the number of indices in the string X (the length of X, in
short). The empty index string, nX = 0, will be symbolized by X = 0.

For nX ≥ 2, if any two indices in the index string X are the same, X is called
degenerate, otherwise X is called nondegenerate. Index strings corresponding to
nX = 0 and nX = 1 are of course nondegenerate. Two nondegenerate index strings
X and Y of equal lengths are called equivalent, if one may be obtained by a per-
mutation of the other. The parity of this permutation, p(X,Y ), calculated modulo
2, indicates two subcategories of equivalent index strings: X and Y may corre-
spond either to p(X,Y ) = 0 or to p(X,Y ) = 1. The number of nondegenerate
nonequivalent index strings of the length N is equal to

(
M
N

)
. The number of all

the nondegenerate nonequivalent index strings (of the length N = 0, 1, . . . ,M) is
equal to 2M . Any nondegenerate index string X of the length M is equivalent to
the index string 12 · · ·M , which will be called the maximal ordered index string.

3.3. Determinantal wave functions

The normalized Slater determinant built of spin orbitals φi , φj , . . . , φm is de-
noted by φij···m ≡ φX , where the index string X is nondegenerate. The number of
electrons corresponding to the wave function φX is N ≡ nX . In the case of two
nondegenerate and equivalent index strings X and Y (nX = nY ≥ 2) one finds
that the corresponding Slater determinants are are antisymmetric with respect to
permutations of the indices:

φX = (−1)p(X,Y )φY , (6)

and for a degenerate string X one has φX = 0. For N = 1, the corresponding
Slater determinants are just spin orbitals of set (4), for N = 0 we assume that the
corresponding wave function is a number: φ0 = 1. The set of functions

{φX : X nondegenerate and nonequivalent, nX = N} , (7)

spans a complex vector space V(N) of the dimension
(
M
N

)
; the corresponding scalar

product is induced by the scalar product in V(1). The basis set (7) is orthonormal
with respect to this scalar product, provided that the spin-orbital basis set (4) is
orthonormal.
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3.4. Electronic Hamiltonians

There is a family on N -electron hamiltonians (N = 0, 1, 2, . . . ,M), which describes
our electronic system:

Ĥ(0) = W , Ĥ(1) = W + ĥ(1) ,

Ĥ(N) = W +
N∑

n=1

ĥ(n) +
N∑

m<n

v̂(m,n) (for N = 2, 3, . . . ,M) , (8)

where W is a constant term (e.g., representing the Coulombic repulsion of the
atomic nuclei in the molecule), ĥ(n) is the one-electron Hamiltonian (the kinetic
energy plus the Coulombic attraction between the electron and the atomic nuclei)
for electron n, and v̂(m,n) is the two-electron interaction term for electrons m and
n.

3.5. Full configuration-interaction expansions

Within the algebraic approximation employing the spin-orbital basis (4), the eigen-
functions of Hamiltonians (8) are represented as the FCI expansions of the form:

ψ(N) = φX cX = (nX !)−1φij···m cij···m , (9)

where the expansion coefficients cX ≡ cij···m are calculated by diagonalizing the
Hamiltonian Ĥ(N) within the vector space V(N) (which is a formidable numeri-
cal challenge for 2 � N � M). In the first equality in Eq. (9) we introduce the
Einstein summation convention for index strings: it amounts to the implicit sum-
mation restricted to all nondegenerate nonequivalent index strings X of the length
nX = N . In the second equality in Eq. (9) we use the usual form of the Einstein
summation convention: here we perform an implicit unrestricted summation over
all indices i, j, . . . ,m. The use of the unrestricted index summation produces all
possible strings X of the length nX = N , including equivalent strings (the contri-
bution from the degenerate strings is zero), and the redundant terms [see Eq. (6)]
have to be counterbalanced by introducing the factor (nX !)−1. For consistence, it
has been also assumed that coefficients cX ≡ cij···m are antisymmetric with respect
to permutations of the indices, compare Eq. (6):

cX = (−1)p(X,Y )cY , (10)

and for a degenerate string X one has cX = 0.

3.6. Fermionic Fock space

The fermionic Fock space F ≡ F(M) is a complex vector space generated by the
vector space V(1) spanned by the spin-orbital basis (4). F is built as the following
direct sum:

F = V(0) ⊕ V(1) ⊕ V(2) ⊕ · · · ⊕ V(M) ; (11)

the general definition of vector spaces V(N) is given in Sec. 3.3. Hence, the dimension
of F is equal to 2M . It is assumed that when M → ∞, and the spin-orbital basis
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(4) becomes complete in that limit, our Fock-space formalism becomes equivalent
to the (nonrelativistic) electronic quantum-field theory.

A general Fock-space vector may be written as an ordered set of M + 1 compo-
nents:

Ψ =
(
ψ(0), ψ(1), ψ(2), . . . , ψ(M)

)
, (12)

where ψ(N) ∈ V(N), for N = 0, 1, 2, . . . ,M . Each wave function ψ(N) may be
expressed as in Eq. (9). The scalar product in F is defined as

〈Ψa|Ψb〉 =
M∑

N=0

〈ψ(N)
a |ψ(N)

b 〉 , (13)

where 〈ψ(N)
a |ψ(N)

b 〉 is the scalar product in V(N).
We now define a particular type of basis set in F, which is called the Fock basis.

It is related to the basis sets (7) corresponding to the V(N) vector spaces. The
elements of the Fock basis read

Φ0 = (φ0, 0, 0, . . . , 0) ,

Φk = (0, φk, 0, . . . , 0) (k = 1, 2, . . . ,M) ,

Φkl = (0, 0, φkl, . . . , 0) (k, l = 1, 2, . . . ,M ; k < l) ,

· · · · · · ,

Φ12···M = (0, 0, 0, . . . , φ12···M ) , (14)

where φ0 = 1, and the corresponding element of the Fock basis, Φ0, is called the
physical vacuum. It can be shown that the above basis set is orthonormal with
respect to the scalar product (13), this property may be written as

〈ΦX |ΦY 〉 = δX,Y , (15)

where

δX,Y = δX
Y = δX

Y = δX,Y =
{

0 , X or Y degenerate, or nX 6= nY ,

(−1)p(X,Y ) , X, Y equivalent,
(16)

is the antisymmetric Kronecker delta.
For nX = N , each element ΦX of the Fock basis (14) corresponds directly to

some element φX of the basis set (7). Thus, the vector space V(N) of N -electron
wave functions corresponds to some subspace F(N) of the Fock space, spanned by
vectors ΦX , nX = N . One may thus introduce the following resolution of the Fock
space into a direct sum of its subspaces:

F = F(0) ⊕ F(1) ⊕ F(2) ⊕ · · · ⊕ F(M) . (17)

It will be also useful to consider a resolution

F = F(even) ⊕ F(odd) , (18)

where the subspaces F(even) and F(odd) correspond to states with the even and odd
number of electrons, respectively.
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The general Fock-space vector (12) may be written as a linear combination of
the Fock-basis vectors (14):

Ψ = ΦX CX

= Φ0C
0 + ΦiC

i +
1
2

Φij C
ij + · · · + (N !)−1 Φij···mCij···m + · · ·

+ Φ12···M C12···M , (19)

where we use a generalization of the notation introduced in Eq. (9): in the first
equality in Eq. (19) we apply the Einstein summation convention for index strings,
which is the implicit summation restricted to all nondegenerate nonequivalent index
strings X of the length ranging from nX = 0 to nX = M . In the second equality in
Eq. (19) we use the usual form of the Einstein summation convention: an implicit
unrestricted summation over all indices.

A general remark applies: following papers [2–5], we make use of the assumption
that the spin-orbital basis (4) is orthonormal. This property is inherited by the
bases of the Slater determinants (7), and the Fock basis (14). It turns out in this
case that it is just a matter of convenience whether a given index (or index string
in general) is placed in the lower or in the upper position. Thus, one may write
ΦX ≡ ΦX , CX ≡ CX , etc., and the only purpose for the particular choice is to
satisfy the Einstein summation convention: ΦX CX ≡ ΦX CX . There is, however,
a deeper sense in distinguishing between the lower and upper indices in the case
of nonorthonormal bases, see the formalism described in [29]. Our orthonormal
formalism is explicitly covariant with respect to the unitary transformations of the
spin-orbital basis (4):

φk −→ φ′k = φl U
l
k , (20)

where the unitary matrix U ∈ U(M), and U(M) is the unitary group of the
dimension M .

4. Algebraic framework (II): operators acting in Fock space

4.1. Fermi-Dirac algebra

Following [2], we use the name “Fermi-Dirac algebra” for the algebra of linear oper-
ators acting in the Fock space. This algebra, hereafter denoted by AFD ≡ AFD(M),
is generated by the so-called fermion operators, associated with the elements of
the spin-orbital basis (4): the (fermion) creation operators {âk}, and the (fermion)
annihilation operators operators {âk}, k = 1, 2, . . . ,M . We follow here the notation
of Harris et al. [28]: the indices of the creation operators are fixed in the upper posi-
tion, and the indices of the annihilation operators are fixed in the lower position, so
there is no freedom in raising and lowering of these indices. In the formalism that
uses a general nonorthogonal spin-orbital basis set [29], one restores that flexibility
at the expense of introducing different symbols for the creation and annihilation
operators. Let us add that the name “Fermi-Dirac algebra” appeals to the physical
model which is associated with it – from the purely algebraic standpoint AFD turns
out to be a kind of Clifford algebra.

The fermion operators may be defined by specifying their action on the elements
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of the Fock basis (14):

âkΦX = ΦY δY
Xk = ΦXk ,

âkΦX = ΦY δ
Y k

X . (21)

In particular, the annihilation operators fulfill the vacuum annihilation condition:

âkΦ0 = 0 , k = 1, 2, . . . ,M . (22)

The definitions in Eq. (21) employ the antisymmetrized Kronecker delta (16), and
the Einstein summation convention of Eq. (19); they correspond to the same phase
convention as used in [2]. It can be shown that the creation operator is the Hermi-
tian conjugate of the corresponding annihilation operator:

âk = (âk)† . (23)

The fermion operators defined in Eq. (21) fulfill the anticommutation rules:

âkâl + âlâk = âlâk + âkâl = 0̂ ,

âkâl + âlâ
k = δk

l1̂ , (24)

where 0̂ and 1̂ are the zero and the unit operator in Fock space, respectively.
It is useful to introduce the products of the annihilation operators, and the

analogous products of the creation operators:

âX ≡ âij···m = âiâj · · · âm ,

âX ≡ âij···m ≡ (âX)† = âm · · · âj âi ; (25)

note the reverse ordering of the creation operators in the product âX , due to the
relation (23). For completeness, we assume also that â0 = â0 = 1̂. One may use
the products of the creation operators to generate the Fock basis (14) from the
vacuum vector:

ΦX = âXΦ0 . (26)

A product of the fermion operators, in which all the annihilation operators pre-
cede the creation ones, is called the normal product (of fermion operators). By
using operators (25) as building blocks, one writes the normal products as

âX âY . (27)

For X and Y running (separately) through all the nondegenerate nonequivalent
index strings of the length N = 0, 1, . . . ,M , one finds that there are exactly 22M

different normal products of the form (27), which make a linearly-independent set
of operators. This set may be chosen as a basis set in the vector space AFD. Thus,
the dimension of this vector space is 22M .
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4.2. Second-quantized representation of operators

A general linear operator in F may be written as a linear combination of the normal
products of fermion operators:

Λ̂ = λX
Y âX âY , (28)

where the Einstein summation convention of Eq. (19) is used. Such a representation
of a linear operator is called the second-quantized representation. In Eq. (28), the
(complex) linear coefficients λX

Y are often referred to as the amplitudes of operator
Λ̂. When operator Λ̂ is Hermitian with respect to the scalar product (13), one has
λY

X = (λX
Y )∗.

The matrix elements of operator Λ̂ corresponding to the Fock basis (14) can be
expressed by the λ-amplitudes and the elements of the antisymmetric Kronecker
delta:

ΛX
Y ≡ 〈ΦX |Λ̂ΦY 〉 = δX

X1X2δX1
Y1λX2

Y2δY1Y2
Y . (29)

In the above equation one uses the Einstein summation convention of Eq. (19), the
only nonzero contributions correspond to all possible partitions X1, X2 of string X,
and all possible partitions Y1, Y2 of string Y ; the resulting matrix element ΛX

Y is
then automatically antisymmetric in strings X and Y . Eq. (29) establishes a linear
one-to-one correspondence between the Λ-matrix elements and the λ-amplitudes
of operator (28). When reversed, the correspondence (29) may be used to calculate
the λ-amplitudes from the Λ-matrix elements.

The amplitudes λX
Y and the matrix elements ΛX

Y are thus complementary sets
of numbers that characterize a given linear operator Λ̂. These sets depend on the
particular choice of the Fock basis (14). Both sets may be viewed as consisting of
tensor components of the valency (nX , nY ) with respect to the unitary transfor-
mations (20).

4.2.1. Particle-number operator

In the Fermi-Dirac algebra, in adddition to the “standard” operators 1̂ and 0̂,
there is another unique operator – the particle-number operator:

N̂ = δi
j âiâj . (30)

The invariant subspaces of N̂ are equal to subspaces F(N), and correspond to the
eigenvalues N = 0, 1, 2, . . . ,M . The particle-number operator is invariant with
respect to the unitary transformations (20) corresponding to the U(M) group.

4.2.2. Fock-space Hamiltonian

The family of electronic Hamiltonians (8), and the Fock basis (14), define the
matrix of the Hamiltonian Ĥ that operates in the Fock space F:

HX
Y ≡ 〈ΦX |ĤΦY 〉 =

{
〈φX |Ĥ(N)φY 〉 , for nX = nY = N ,
0 , for nX 6= nY .

(31)

The matrix elements 〈φX |Ĥ(N)φY 〉, corresponding to the basis of the determinantal
functions (7), can be calculated by applying the well-known Slater-Condon rules.
These matrix elements are expressed in terms of the constant W , and the one-
electron integrals hi

k = 〈φi|ĥφk〉 and the two-electron integrals vij
kl = 〈φij |v̂φkl〉,

corresponding to the spin-orbital basis (4).
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By writing the matrix elements (31) in an explicit form, and by reverting the
relationship provided by Eq. (29), one may now derive the amplitudes of the Fock-
space Hamiltonian Ĥ. The result is strikingly simple:

Ĥ = W 1̂ + hi
j âiâj +

1
4
vij

kl âij âkl . (32)

As seen, the amplitudes of Ĥ are equal to parameters W , hi
k, and vij

kl; the cor-
responding parts of Ĥ are called: the zero-electron, the one-electron, and the two-
electron operator, respectively. Unlike in the case of a general operator (28), the
number of the nonzero amplitudes of Ĥ is extremely small : O(M4) compared to
22M . Actually, this number is also much smaller than the number of nonzero matrix
elements (31), and even the number of the eigenvalues of Ĥ (equal to 2M ). The
compactness of the representation provided by Eq. (32) is due to the absence of
the n-electron interactions (n > 2) in the electronic Hamiltonians (8). One may
say that the power of the Fock-space approach to many-electron systems derives
from two factors: the built-in Pauli principle, and the simplicity of the Fock-space
Hamiltonian.

The operators that commute with the particle-number operator (30) are called
the electron-number conserving operators; Hamiltonian (32) belongs to this class.
This gives rise to an important continuous symmetry of Ĥ, governed by a unitary
group U(1) (in one dimension).

In the absence of the spin-orbit terms in in the electronic Hamiltonians (8), the
Fock-space Hamiltonian Ĥ is a spin scalar : it commutes with the spin operators
Ŝx, Ŝy, and Ŝz (these are one-electron operators); hence, it commutes also with the
spin-square operator Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z . The commutation with the spin operators
corresponds to another continuous symmetry of Ĥ – the spin symmetry, described
by the special unitary group SU(2) (in two dimensions).

The Fock-space Hamiltonian Ĥ usually has also a discrete symmetry, correspond-
ing to the time-reversal operation (represented by an antiunitary operator, see [29]).
Discrete symmetry operations, corresponding to some point-group symmetry, may
also be present.

4.2.3. Projection operators

The operators projecting onto the one-dimensional subspaces of the Fock space
spanned by the members of the Fock basis (14) may be expressed as follows:

|ΦX〉〈ΦX | = âX |Φ0〉〈Φ0|âX , (33)

where the projector onto the vacuum state Φ0 can be written as

|Φ0〉〈Φ0| = (M !)−1(1̂− N̂)(21̂− N̂) · · · (M 1̂− N̂) . (34)

The above operators, when written in the form corresponding to Eq. (28), appar-
ently consist of very many terms (up to M -electron ones). Thus, the explicit use of
projection operators within the second-quantization formalism should be avoided.

4.3. Subalgebras of Fermi-Dirac algebra

We now introduce some subalgebras of the Fermi-Dirac algebra: A(>)
FD , A(<)

FD , and
A(=)

FD , which are spanned (as the vector spaces) by the normal products (27) that

Page 10 of 36

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

August 11, 2010 18:44 Molecular Physics QFSCC˙MP

11

fulfill the conditions: nX > nY , nX < nY , and nX = nY , respectively. The Fermi-
Dirac algebra may be expressed as a direct sum:

AFD = A(>)
FD ⊕ A(=)

FD ⊕ A(<)
FD . (35)

Algebra A(>)
FD is called the excitation FD algebra, and algebra A(<)

FD is called the
de-excitation FD algebra, since the corresponding operators increase and decrease
(respectively) the number of electrons (when acting on a Fock-space vector cor-
responding to a given number of electrons). Operators belonging to algebra A(=)

FD

do not change the number of electrons – it is thus called the electron-number con-
serving algebra. All the operators that commute with the particle-number operator
(30) belong to A(=)

FD .
It is also useful to consider the following resolution of the vector space AFD:

AFD = A(even)
FD ⊕ A(odd)

FD , (36)

where A(even)
FD and A(odd)

FD are the vector subspaces, of the dimension 22M−1

each, which are spanned by the normal products (27) that fulfill the conditions:
nX +nY = even and nX +nY = odd, respectively. The vector space A(even)

FD is a sub-
algebra of the Fermi-Dirac algebra, and it can be decomposed in a way analogous
to that of Eq. (35):

A(even)
FD = A(even,>)

FD ⊕ A(=)
FD ⊕ A(even,<)

FD , (37)

where A(even,>)
FD and A(even,<)

FD are subalgebras of A(>)
FD and A(<)

FD , respectively.
The excitation FD algebra A(>)

FD and the de-excitation FD algebra A(<)
FD (as well

as their subalgebras) are nilpotent algebras: for any operator Ĉ belonging to A(>)
FD

or A(<)
FD one has ĈM+1 = 0̂. That property may be used for constructing some

operator functions which are defined via infinite power series:

(1̂ + Ĉ)−1 = 1̂− Ĉ + Ĉ2 − . . .+ ĈM , (38)

ln(1̂ + Ĉ) = Ĉ − 1
2
Ĉ2 +

1
3
Ĉ3 − . . .− 1

M
ĈM , (39)

exp(Ĉ) = 1̂ + Ĉ +
1
2!
Ĉ2 +

1
3!
Ĉ3 + . . .+

1
M !

ĈM (40)

where M = 2m0. When Ĉ belongs to A(even,>)
FD or A(even,<)

FD , one has Ĉm0+1 = 0̂.
The above algebraic analysis of the Fermi-Dirac algebra seems of little use in

applications to quantum chemistry: in fact, we need only those operators which
belong to the electron-number conserving algebra A(=)

FD . However, an analog of the
resolution (37) will turn out to be of importance when the quasiparticle represen-
tation of the Fock space and the Fermi-Dirac algebra is introduced, see Sec. 5,
Eq. (58). From now on we shall restrict our considerations to the operators that
belong to algebra A(even)

FD , i.e., the operators of the form (28) built of the normal
products (27) with the even number of fermion operators.
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4.4. Amplitude algebra and its diagrammatic representation

When calculating a product of two operators, ĈD̂ = Λ̂, each written in the form
given by Eq. (28), one has to consider the products of all pairs of terms. Then
the contraction theorem [28] has to be applied, followed by assembling together
the terms corresponding to the same normal product. That tedious and inefficient
procedure may be reformulated such that the λ-amplitudes of operator Λ̂ are di-
rectly expressed through the c-amplitudes of operator Ĉ and the d-amplitudes of
operator D̂. We write the result in the following form:

λX
Y = δX

X1X2cX1
Y1ZdZX2

Y2δY1Y2
Y , (41)

where the rhs should be interpreted in the same spirit as the rhs of Eq. (29).
Here we assume that operators Ĉ, D̂, and Λ̂ belong to the algebra A(even)

FD (in the
general case an additional phase factor appears). Eq. (41) defines the amplitude
algebra corresponding to the operator algebra A(even)

FD : it allows to calculate some
selected amplitudes of the product operator directly from the amplitudes of the
operator factors, bypassing the intermediate steps mentioned at the beginning of
this section.

For the bookkeeping purposes, it is convenient to represent the algebraic expres-
sions of the ampiltude algebra by diagrams. Our diagrams do not correspond to
operators, but to tensor quantities: the operator amplitudes, see Fig. 1. The dia-
grammatic interpretation of Eq. (41) is given in Fig. 2. The diagrams depicted in

Figure 1. Diagrammatic representation of the λ-amplitudes of operator Λ̂ of Eq. (28); x ≡ nX , y ≡ nY .
Note that the set of upper lines corresponds to the lower index set (X), and the set of lower lines
corresponds to the upper index set (Y ); no index symbols are indicated. Multiple (thin) lines corresponding
to set X are collectively represented by a thick line labeled with x, the number of thin lines.

Figure 2. Diagrammatic representation of the amplitude algebra of Eq. (41); x ≡ nX , y ≡ nY , etc.
Conditions: x1 + x2 = x, y1 + y2 = y, x1, y1, z = 0, 1, 2, . . . , M .

Figs. 1 and 2 are in fact closely related to the Hugenholtz diagrams: with “dots” ex-
panded to boxes, and curved (or oblique) lines replaced by vertical, strictly parallel
ones. This graphical language leads to very compact and readable diagrammatic
equations, see papers [2–5, 7].
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In Fig. 2, the rhs of the diagrammatic equation is a sum of diagrams. Within
this sum, the diagrams corresponding to z = 1, 2, . . . are called connected dia-
grams, while those corresponding to z = 0 are called disconnected diagrams. The
connected diagrams correspond to those terms in Eq. (41), in which there are con-
tractions of indices belonging to the c- and d-amplitudes. Such contributions to a
given λ-amplitude are called the connected terms; the remaining contributions are
the disconnected terms. It is customary to extend this nomenclature to the whole
operator Λ̂ = ĈD̂, and to speak of the connected part, and of the disconnected part,
of Λ̂. However, such a partition makes sense only if a given operator Λ̂ is defined
as a function of some other operators.

Like the Fermi-Dirac algebra, the corresponding amplitude algebra is associative.
It is, however, useful to derive analogs of Eq. (41) for products of more than two
operators (see [4]): such formulas become very handy when one is interested only
in the connected part of a given operator-product amplitude.

4.5. The Gauss factorization in Fermi-Dirac algebra

Let Â be a unitary operator in the Fermi-Dirac algebra AFD, that diagonalizes a
certain Hermitian operator Λ̂ of the general form given in Eq. (28). The following
analog of the Gauss factorization of Â can be effected:

Â = (1̂ + Ĉ)(1̂ + D̂)B̂ , (42)

where Ĉ ∈ A(>)
FD , D̂ ∈ A(<)

FD , and B̂ ∈ A(=)
FD . Operator B̂ has to be nonsingular,

and so are operators 1̂ + Ĉ and 1̂ + D̂, see Eq. (38). There are several analogs
of Eq. (42), differing in the permutation of the three factors (in general, with
different Ĉ, D̂, and B̂), but the form given here is the one which is employed in
the QFSCC theory in Sec. 6. Let us note the following properties (which derive
from general properties of the algebras, to which the respective operators belong):
ĈB̂, B̂Ĉ ∈ A(>)

FD , D̂B̂, B̂D̂ ∈ A(<)
FD , Ĉ† ∈ A(<)

FD , D̂† ∈ A(>)
FD .

5. Algebraic framework (III): quasiparticle representation

To arrive at the quasiparticle representation of vectors in the Fock space F, and the
operators in the Fermi-Dirac algebra AFD, one employs a certain unitary operator
R̂ ∈ AFD which is used to effect a transformation of the Fock basis (14), and the
fermion operators (21).

5.1. Quasiparticle representation in Fock space

In our Fock space (see Sec. 3.6) we define a new (orthonormal) Fock basis

{ΦX : nondegenerate and nonequivalent, nX = 0, 1, 2, . . . ,M} , (43)

by means of the transformation:

ΦX −→ ΦX = R̂ΦX . (44)

The meaning of the index string X ≡ ij · · ·m is now changed: the individual indices
label the quasiparticles of the fermion nature (see Sec. 5.2), and the length of the
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string, nX = Nq, is the number of quasiparticles corresponding to the Fock-basis
vector ΦX . A new resolution of the Fock space, analogous to that of Eq. (17),
emerges:

F = F(0) ⊕ F(1) ⊕ F(2) ⊕ · · · ⊕ F(M) , (45)

where the subspace F(Nq) of the Fock space is spanned by vectors ΦX , nX = Nq.
The Fock-space vector Φ0 is called the quasiparticle vacuum.

A new representation of the general Fock-space vector (19) – the quasiparticle
representation – now reads as

Ψ = ΦX CX , (46)

where the linear coefficients CX correspond to the new Fock basis.
The subspace F(1), corresponding to the single-quasiparticle states, is invariant

with respect to unitary transformations

Φk −→ Φ′
k = Φl U

l
k , (47)

where the unitary matrix U ∈ U(M), and U(M) is the unitary group of the dimen-
sion M [this group, and the one correspnding to Eq. (20), are different copies of the
abstract unitary group U(M)]. It can be shown that our quasiparticle formalism
is explicitly covariant with respect to the unitary transformations (47) of the the
single-quasiparticle states. This covariance is not seen in the traditional approach
[9, 14] to many-electron systems.

5.2. Quasiparticle representation in Fermi-Dirac algebra

We now use operator R̂ to perform a similarity transformation of the fermion
operators defined in Eqs. (21):

âk −→ âk = R̂ âkR̂† ,

âk −→ âk = R̂ âkR̂
† . (48)

The new quasiparticle fermion operators, âk and âk, are the quasiparticle creation
and annihilation operators, respectively.

The similarity transformation (48), generated by a unitary operator R̂, is an
isomorphism of the Fermi-Dirac algebra AFD. Thus, the basic structural properties
described in Sec. 4.1 are preserved:

(1) The quasiparticle annihilation operators fulfill the analog of condition (22):

âkΦ0 = 0 , k = 1, 2, . . . ,M , (49)

which is the quasiparticle-vacuum annihilation condition.
(2) The quasiparticle creation operator is the Hermitian conjugate of the cor-
responding quasiparticle annihilation operator:

âk = (âk)† . (50)
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(3) The anticommutation rules are fulfilled:

âkâl + âlâk = âlâk + âkâl = 0̂ ,

âkâl + âlâ
k = δk

l1̂ . (51)

(4) The products of the quasiparticle annihilation operators, and the analogous
products of the quasiparticle creation operators read as:

âX ≡ âij···m = R̂ âXR̂
† = âiâj · · · âm ,

âX ≡ âij···m ≡ (âX)† = R̂ âXR̂† = âm · · · âj âi . (52)

In particular, we have â0 = â0 = 1̂.
(5) The products of the creation operators generate the Fock basis (43) from
the quasiparticle-vacuum vector:

ΦX = âXΦ0 . (53)

By using operators (52) as building blocks, one defines the normal products of
quasiparticle fermion operators (or the quasiparticle normal products, in short):

âX âY . (54)

Again, for X and Y running (separately) through all the nondegenerate nonequiv-
alent index strings of the length N = 0, 1, . . . ,M , one finds that there are exactly
22M different normal products of the form (54), which make a linearly-independent
set of operators. This set becomes a new basis set in the vector space AFD.

5.3. Quasiparticle representation of operators (I)

A general linear operator in F, see Eq. (28), may be written as

Λ̂ = λX
Y âX âY , (55)

where the quasiparticle normal products (54) are employed as the basis set in
AFD. In Eq. (55), the (complex) linear coefficients λX

Y are now referred to as the
quasiparticle amplitudes of operator Λ̂. As before, when operator Λ̂ is Hermitian
with respect to the scalar product (13), one has λY

X = (λX
Y )∗.

The matrix elements of operator Λ̂ corresponding to the Fock basis (43) will be
called, in short, the quasiparticle matrix elements of this operator, and denoted by
ΛX

Y . These matrix elements may be expressed by the λ-amplitudes of Eq. (55)
as in Eq. (29). Again, a linear one-to-one correspondence between the Λ-matrix
elements and the λ-amplitudes is established.

The quasiparticle amplitudes λX
Y and the quasiparticle matrix elements ΛX

Y

are complementary sets of numbers that characterize a given linear operator Λ̂ in
the quasiparticle representation. Both sets may be viewed as consisting of tensor
components of the valency (nX , nY ) with respect to the unitary transformations
(47).

5.3.1. Quasiparticle-number operator

Once the quasiparticle representation is introduced to the Fermi-Dirac algebra,
another unique operator (see Sec. 4.2.1) emerges: this is the quasiparticle-number
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operator :

N̂q = δi
j âiâj . (56)

The invariant subspaces of N̂q are equal to subspaces F(Nq), and correspond to the
eigenvalues Nq = 0, 1, 2, . . . ,M . The quasiparticle-number operator is invariant
with respect to the unitary transformations (47) corresponding to the U(M) group.

5.4. Subalgebras of Fermi-Dirac algebra in quasiparticle representation

By introducing the quasiparticle representation, one defines new subalgebras of the
Fermi-Dirac algebra, analogous to those of Sec. 4.3: A(>)

FD , A(<)
FD , and A(=)

FD , which
are spanned by the quasiparticle normal products (54) that fulfill the conditions:
nX > nY , nX < nY , and nX = nY , respectively. As the vector space, the Fermi-
Dirac algebra may now be expressed as a direct sum:

AFD = A(>)
FD ⊕ A(=)

FD ⊕ A(<)
FD . (57)

Algebra A(>)
FD is called the quasiparticle excitation FD algebra, and algebra A(<)

FD is
called the quasiparticle de-excitation FD algebra, since the corresponding operators
increase and decrease (respectively) the number of quasiparticles (when acting on
a Fock-space vector corresponding to a given number of quasiparticles). Operators
belonging to algebra A(=)

FD do not change the number of quasiparticles – it is thus
called the quasiparticle-number conserving algebra. All the operators that commute
with the quasiparticle-number operator (56) belong to A(=)

FD .
Another resolution of the vector space AFD may be given by an analog of Eq. (36),

with A(even)
FD and A(odd)

FD being vector subspaces, of the dimension 22M−1 each, which
are spanned by the normal products (54) that fulfill the conditions: nX +nY = even
and nX + nY = odd, respectively. The vector space A(even)

FD is a subalgebra of the
Fermi-Dirac algebra, and one arrives at an analog of Eq. (37):

A(even)
FD = A(even,>)

FD ⊕ A(=)
FD ⊕ A(even,<)

FD . (58)

Algebras A(>)
FD and A(<)

FD , as well as their respective subalgebras, A(even,>)
FD and

A(even,<)
FD , are nilpotent algebras, see Sec. 4.3. Therefore, analogs of Eqs. (38), (39),

and (40) hold also for any operator Ĉ belonging to one of these algebras. From
now on we shall restrict our considerations to the operators that belong to algebra
A(even)

FD , i.e., the operators of the form (55) built of the normal products (54) with the
even number of the quasiparticle fermion operators. For any operator Λ̂ ∈ A(even)

FD ,
written in the form of Eq. (55), one may find the following unique decomposition:

Λ̂ = Λ̂(even,>) + Λ̂(=) + Λ̂(even,<) , (59)

where Λ̂(even,>) ∈ A(even,>)
FD , Λ̂(=) ∈ A(=)

FD , and Λ̂(even,<) ∈ A(even,<)
FD

5.5. Special forms of quasiparticle transformation

In order to obtain a manageable quasiparticle formalism, the form of the transfor-
mation operator R̂ has to be considerably restricted. In particular, it seems that
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R̂ should not mix Fock-space vectors corresponding to even and odd numbers of
electrons: thus R̂ ∈ A(even)

FD . In this case the resolution (18) of the Fock space is kept
unchanged in the quasiparticle representation: F(even) = F(even) and F(odd) = F(odd).
The same holds for the resolution (36) of the Fermi-Dirac algebra: A(even)

FD = A(even)
FD

and A(odd)
FD = A(odd)

FD . In addition, the forms of the quasiparticle fermion operators
defined via transformation (48) should not be very complicated [i.e., approach the
general form of the operator in Eq. (28)].

5.5.1. Bogoliubov-Valatin transformation

The above desiderata are fulfilled by the Bogoliubov-Valatin transformation [17,
18], generated by the R̂ operator of the form

R̂BV = exp(iΥ̂) , Υ̂ = υi
j âiâj +

1
2
υij

0 âij +
1
2
υ0

ij âij , (60)

where operator Υ̂ is Hermitian, and hence υj
i = (υi

j)∗ and υ0
ij = (υij

0)∗. Oper-
ators of the form (60) form a group isomorphic to O(2M,R), the real orthogonal
group in 2M dimensions. The corresponding transformations (48) may be written
in the following form:

âk = âlK l
k + âlL

l,k ,

âk = âl(K l
k)∗ + âl(Ll,k)∗ , (61)

where, due to Eq. (50), one has K l
k = K l

k and Ll,k = Ll,k; additional constraints
come from the antcommutation conditions (51). The K- and L-parameters are
functions of the υ-amplitudes of operator Υ̂; however, there is no need for the
explicit use of these amplitudes in our further considerations. The quasiparticles
corresponding to the fermion operators (61) are called the Bogoliubov quasiparti-
cles.

It is useful to write down the reverse transformation with respect to that of
Eqs. (61):

âk = âlKl
k + âlL

l,k ,

âk = âl(K
l
k)∗ + âl(Ll,k)∗ , (62)

where K l
k = Kl

k and Ll,k = Ll,k; these parameters are functions of the K- and
L-parameters of transformations (61). By inserting Eqs. (62) into Eq. (28), which
provides a general form of an operator acting in the Fock space, one may now
express the normal products of the fermion operators (27) through the normal
products of the quasiparticle fermion operators (54); the necessary reordering of
the quasiparticle creation and annihilation operators can be performed by means
of the Wick theorem [9]. One then arrives at the quasiparticle representation of
the operator, Eq. (28), with the λ-amplitudes expressed as some linear functions
of the original λ-amplitudes [these functions depend on the K- and L-parameters
of transformations (62)].

5.5.2. Particle-hole transformation

The particle-hole (ph) transformation is a special case of the Bogoliubov-Valatin
transformation (61). One uses a special form, denoted by R̂ph, of the transformation
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operator (60), such that

Φ0 = R̂phΦ0 = Φ12···N , (63)

where N = 2n0, and Φ12···N is an element of the Fock basis (14), corresponding to
the determianatal function φ12···N , built of the first N spinorbitals of the set (4).
Interestingly, the transformation (44) becomes now simply a permutation of the
Fock basis (14). Thus, the quasiparticle vacuum (63), and the remaining members
of the Fock basis (43), are now eigenfunctions of the particle-number operator (30).
The quasiparticle vacuum (63) is often referred to as the Fermi vacuum.

The ph transformations of the fermion operators are a special case of transfor-
mations (61) and read:

âk =
{
âk , for k = 1, 2, . . . , N ,
âk , for k = N + 1, N + 2, . . . ,M ,

âk =
{
âk , for k = 1, 2, . . . , N ,
âk , for k = N + 1, N + 2, . . . ,M .

(64)

The quasiparticles corresponding to indices k = 1, 2, . . . , N are called holes, while
those corresponding to indices k = N + 1, N + 2, . . . ,M are called particles.

5.5.3. Reference eigenstate and optimization of quasiparticle vacuum

The choice of a particular BV (or ph) transformation depends on a purely phys-
ical argument: the requirement that the quasiparticle vacuum Φ0 provides an ad-
equate approximation to some reference eigenstate of the Fock-space Hamiltonian
Ĥ, hereafter denoted by Ψ0. The basic criteria for Ψ0 are as follows: it should
be the spin-singlet state, and correspond to the lowest nondegenerate energy level
for the given value of N = 2n0. Moreover, Ψ0 should also be of some importance
for the studied electronic system: most often it represents the ground state of the
electrically neutral system (this works for the majority of molecules and solids).
However, to meet the basic criteria, it is sometimes necessary to consider ionized
systems: in calculations for the carbon atom, Ψ0 should represent the ground state
of C2+; in calculations for the oxygen atom, Ψ0 should represent the ground state
of O2−, etc.

In the case of the BV quasiparticle representation of Sec. 5.5.1, the K- and L-
parameters may be optimized within the Hartree-Fock-Bogoliubov procedure, in
which Φ0 ≡ ΦHFB is determined from the variational condition:

〈ΦHFB|ĤΦHFB〉 = minimum , (65)

subject to the constraint

〈ΦHFB|N̂ΦHFB〉 = N . (66)

However, the resulting BV quasiparticle vacuum ΦHFB is not, in general, an eigen-
function of N̂ . Alternatively, one may invoke the maximum-overlap condition
(3), with Ψ ≡ Ψ0, and optimize the Brueckner-Bogoliubov quasiparticle vacuum,
Φ0 ≡ ΦBB.

In the case of the ph quasiparticle representation of Sec. 5.5.2, it is understood
that the spinorbitals occupied in the Slater determinant φ12···N are somehow op-
timized before the ph transformation corresponding to Eqs. (63) and (64) is per-
formed. The Hartee-Fock procedure, leading to Φ0 ≡ ΦHF is a standard, but one
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may also employ the maximum-overlap condition (3), with Ψ ≡ Ψ0.

5.5.4. Symmetry breaking

Our Fock-space Hamiltonian (32) commutes with the particle-number operator
(30), and it is hereafter assumed that it commutes also with the spin operators, see
Sec. 4.2.2. With the time-reversal symmetry present, and possibly some point-group
symmetry as well, one arrives at a fairly rich symmetry group of the Hamiltonian,
GH (however, this is not the full symmetry group of Ĥ, see Sec. 6.1). By design
(see Sec. 5.5.3), our reference eigenstate Ψ0 is nondegenerate, and hence belongs
to a one-dimensional irreducible representation of GH .

The optimization of the BV quasiparticle vacuum, Eq. (63), either within the
Hartree-Fock, or maximum-overlap procedure, may lead to symmetry-broken solu-
tions with respect to some symmetry operations of GH . The resulting symmetry-
broken quasiparticle vacuum may be of physical importance in applications to ex-
tended systems [6]. The symmetry-breaking is reflected in the properties of the
corresponding quasiparticles: for example, the Bogoliubov quasiparticles may have
an indefinite electric charge, see Sec. 5.6.1; however, even in this case a spin-adapted
BV formalism is possible.

The requirement that the particle-number symmetry is kept, necessarily restricts
one’s considerations to the ph transformation of Sec. 5.5.2. It is important to note
that only in this case, with the quasiparticle vacuum of the form (63), the full
symmetry of the reference eigenstate Ψ0 can be recovered. In Sec. 6.4.2 we shall
point out that only in this case it is possible to arrive at the Fock-space coupled-
cluster formalism which is fully symmetry-adapted with respect to GH .

5.6. Quasiparticle representation of operators (II)

We now write down some important operators in the Bogoliubov-Valatin quasipar-
ticle representation introduced in Sec. 5.5.1. Istead of the particle-number operator
(30), it will be useful to consider a closely related operator, the pseudocharge op-
erator [2]:

Q̂ = N̂ −N 1̂ , (67)

which “measures” the number of electrons relative to the electron content N = 2n0

in the reference eigenstate Ψ0. Assume that our electronic system is electrically neu-
tral in the Ψ0 state. Then each eigenvalue of operator (67), multiplied by −e (where
e is the elementary charge), represents the net electric charge of the corresponding
eigenstate.

5.6.1. Pseudocharge operator in quasiparticle representation

In the BV quasiparticle representation the pseudocharge operator (67) assumes
the following general form

Q̂ = qi
j âiâj +

1
2
qij

0 âij +
1
2
q0

ij âij , (68)

where the quasiparticle amplitudes of Q̂ fulfill the conditions qj
i = (qij)∗ and

q0
ij = (qij0)∗; these amplitudes are functions of the K- and L-parameters of trans-

formations (62). Condition (66) is assumed. For simpler notation, the quasiparticle
amplitudes (here: the q-amplitudes) are not underlined – we shall stick to this
convention if no ambiguity arise.
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In the ph quasiparticle representation of Sec. 5.5.2, the general form of Eq. (68)
simplifies to

Q̂ = qiδi
j âiâj , (69)

where qi = −1 for holes (i = 1, 2, . . . , N), and qi = 1 for particles (i =
N + 1, N + 2, . . . ,M). Parameters qi are new quantum numbers – pseudocharges,
characterizing the quasiparticles (particles and holes).

Let us note that, in the BV quasiparticle representation, the pseudocharge opera-
tor (68) does not commute with the quasiparticle-number operator (56). Therefore,
the Bogoliubov quasiparticles lack a definite pseudocharge (and, hence, a definite
electric charge). This is to be contrasted with the ph quasiparticle representation:
here the pseudocharge operator (69) commutes with N̂q.

5.6.2. Fock-space Hamiltonian in quasiparticle representation

The Fock-space Hamiltonian (32) written in the BV quasiparticle representation
reads:

Ĥ = η0
0 1̂ + ηi

j âiâj +
1
2
ηij

0 âij +
1
2
η0

ij âij

+
1
4
ηij

kl âij âkl +
1
6
ηijk

l âijkâl +
1
6
ηi

jkl âiâjkl

+
1
24
ηijkl

0 âijkl +
1
24
η0

ijklâijkl , (70)

where the quasiparticle amplitudes of Ĥ fulfill the conditions: ηj
i = (ηi

j)∗, η0
ij =

(ηij
0)∗, ηkl

ij = (ηij
kl)∗, ηl

ijk = (ηijk
l)∗, and η0

ijkl = (ηijkl
0)∗. These amplitudes

are linear functions of the amplitudes of operator (32), and (nonlinear) functions
of the K- and L-parameters of transformations (62).

Some η- amplitudes of Hamiltonian Ĥ have special meaning: in particular, η0
0 =

〈Φ0|ĤΦ0〉. When Φ0 = ΦHFB, see conditions (65) and (66), one finds that η0
ij =

ηij
0 = 0; this is a generalization of the Hylleraas theorem. It is convenient to

perform a unitary transformation (47) of the single-quasiparticle states such that
ηi

j = εiδi
j ; then parameters εi, i = 1, 2, . . . ,M , become approximate energies of

the Bogoliubov quasiparticles; their physical interpretation provide an extension of
the Koopmans theorem. Of course, the above properties are kept also in the case
of the ph quasiparticle representation.

It is seen that, in the BV quasiparticle representation, the Fock-space Hamil-
tonian (70) does not commute with the quasiparticle-number operator (56). This
observation is crucial for the construction of the Fock-space coupled-cluster the-
ory in Sec. 6. In the ph quasiparticle representation, the form of the Fock-space
Hamiltonian is essentially the same as that of Eq. (70), only the corresponding
expressions for the η-amplitudes become simpler, see Eqs. (32) in [2]. Thus, the
problem of noncommutation with the quasiparticle-number operator persists also
in the case of the ph quasiparticle representation.

The commutation of the Fock-space Hamiltonian with the particle-number
operator [or, equivalently, with the pseudocharge operator (67)] is a different story:
these operators commute independently of the representation. However, within
the BV (or even ph) quasiparticle representation, this property is not self-evident.

In the traditional particle-hole second-quantization formalism [9, 14], the central
role is played by the so-called normal product of fermion operators with respect to
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the Fermi vacuum. But instead of the explicit, “static” construction of Eq. (54),
corresponding to the quasiparticle fermion operators defined in Eq. (64), one intro-
duces there an implicit, “dynamical” definition of the normal product, employing
the original fermion operators (21). Witin that approach one defines the so-called
normal-ordered Hamiltonian [14], which is equivalent to our Eq. (70), but looks
very similar to the untransformed form of Eq. (32). At this point the classical
approach and the present one enter the diverging paths.

6. Quasiparticle Fock-space coupled-cluster theory

The departing point for the QFSCC theory is the following observation: finding
the spectrum of the Fock-space Hamiltonian (32) for a small number of electrons,
N = 0, 1 or 2, is very simple – but this part of the spectrum is usually of little
interest. On the other hand, the spectrum of of the Fock-space Hamiltonian (70),
corresponding to a small number of quasiparticles, Nq = 0, 1 or 2, is most inter-
esting – but Hamiltonian (70) does not commute with the quasiparticle-number
operator (56), and thus has to be diagonalized in the whole Fock space. This prob-
lem could be circumvented by performing a similarity transformation of the Fock
Hamiltonian (70), and finding the transformed hamiltonian that commutes with
the quasiparticle-number operator (56).

Below we shall employ the quasiparticle representation corresponding to a general
BV quasiparticle transformation of Sec. 5.5.1. This allows for a most compact and
transparent presentation of the basic ideas of the QFSCC theory. However, it is the
(more specific) ph transformation of Sec. 5.5.2, which is a standard in the treatment
of the electronic states in molecules. Therefore, we shall occasionally discuss some
consequences of working within the ph representation.

6.1. Principle of quasiparticle-number conservation

We are looking for a nonsingular operator Ω̂ ∈ A(even)
FD = A(even)

FD (hereafter called
the wave operator) to perform a similarity transformation of the Fock-space Hamil-
tonian written in the form given in Eq. (70). The transformed operator, hereafter
called the quasiparticle Fock-space Hamiltonian,

Ĝ = Ω̂−1ĤΩ̂ , (71)

is required to commute with the quasiparticle-number operator (56):

[Ĝ, N̂q] ≡ ĜN̂q − N̂qĜ = 0̂ . (72)

The above equations state the principle of quasiparticle-number conservation,
which is the governing principle of the QFSCC theory. It is allowed that the wave
operator Ω̂ is not unitary. Because of a basic algebraic property of similarity trans-
formation, the energy spectra of Ĝ and Ĥ are the same.

Eq. (72) may be backtransformed to give

ĤN̂ ′
q − N̂ ′

qĤ = 0̂ , (73)

where N̂ ′
q = Ω̂N̂qΩ̂−1. We see that operator N̂ ′

q is a constant of motion for the
Fock-space Hamiltonian, and corresponds to a continuous symmetry, governed by
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a unitary group U ′(1), which is a copy of the group U(1) associated with the
particle-number operator (30), see Sec. 4.2.2.

The symmetry operators associated with operator N̂ ′
q do not belong to GH , the

symmetry group of the Fock-space Hamiltonian Ĥ, see Sec. 5.5.4. However, GH

is only a (“very small”) subgroup of the full symmetry group of Ĥ. In the simple
case of a Hermitian Fock-space operator (28) with nondegenerate eigenvalues, the
corresponding full symmetry group is as big as

⊗
U(1)n, n = 1, 2. . . . , 2M . Thus,

the algebraic construction based on Eqs. (71) and (72) effectively recovers one of
the “hidden” U(1)-symmetries of Hamiltonian Ĥ.

6.2. Quasiparticle Fock-space Hamiltonian

By design, the quasiparticle Fock-space Hamiltonian belongs to the quasiparticle-
number conserving subalgebra A(=)

FD , and reads as

Ĝ = g0
0 1̂ + gi

j âiâj +
1

(2!)2
gij

kl âij âkl +
1

(3!)2
gijk

lmn âijkâlmn + . . . , (74)

where, in principle, arbitrary Nq-quasiparticle terms appear, up to Nq = M . How-
ever, in practice one is interested only in the eigenvalues of Ĝ corresponding to
Nq = 0, 1 and 2; in such a case the first three terms on the rhs of Eq. (74) suffice.
The quadratic matrices {gi

j} and {gij
kl} are non-Hermitian in general (since the

wave operator Ω̂ is not unitary). Parameter g0
0 is equal to E0, the eigenvalue of Ĥ

corresponding to the reference eigenstate Ψ0.

6.2.1. Calculation of excitation spectrum

By diagonalizing the shifted quasiparticle Fock-space Hamiltonian, Ĝ− g0
0 1̂, in

the subspaces F(Nq) [see Eq. (45)], Nq > 0, one arrives at the excitation spectrum
with respect to the reference-state energy E0 = g0

0. To this end, one has to build
matrices G′(Nq), with matrix elements

G′
X

Y = 〈ΦX |(Ĝ− g0
0 1̂)ΦY 〉 , (nX = nY = Nq) , (75)

which can be calculated by applying formula (29). Since these matrices are non-
Hermitian, an appropriate diagonalization routine should be used, see, e.g., Hirao
and Nakatsuji [30].

Each subspace F(Nq) represents the so-called “Nq-quasiparticle sector”, corre-
sponding to Nq quasiparticles. In the case of Nq > 1, Hamiltonian Ĝ accounts for
the interactions among quasiparticles; this is reflected in the calculated excitation
spectrum.

6.2.2. Few-quasiparticle sectors

Within a general BV quasiparticle representation, not only Hamiltonian Ĥ, but
also Hamiltonian Ĝ commute with the pseudocharge operator (67). However, in
the case of Ĝ that property is achieved only when the wave operator Ω̂ is exact,
i.e., the commutation relation (72) is exactly fulfilled. In the ph representation,
Hamiltonians Ĥ and Ĝ commute with the pseudocharge operator (67) at any level
of approximation. Hence, for Nq = np + nh the number of particles np, and the
number of holes nh, are separately conserved. In this case each Nq-quasiparticle
sector corresponding to the subspace F(Nq) splits into several (np, nh)-sectors cor-
responding to subspaces F(np,nh); these (np, nh)-sectors are invariant subspaces of
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Hamiltonian Ĝ). In the spin-adapted case each subspace F(np,nh) splits further
into spin-adapted invariant subspaces 2S+1

MS
F(np,nh), where 2S + 1 is the spin mul-

tiplicity (S = 0, 1/2, 1, 3/2, . . . , Nq/2), and MS is an eigenvalue of the Ŝz operator
(MS = S, S − 1, . . . ,−S).

For the 0-quasiparticle sector, the corresponding subspace F(0) = 1
0F(0p,0h) is

one-dimensional. For the 1-quasiparticle sector one has

F(1) = F(0p,1h) ⊕ F(1p,0h) , (76)

where, for example,

F(0p,1h) = 2
1/2F(0p,1h) ⊕ 2

−1/2F(0p,1h) . (77)

The corresponding excitation energies are: ionization potentials [for the (0p, 1h)-
sector], and electron affinities [for the (1p, 0h)-sector]. The respective excited states
are spin doublets, and hence are doubly degenerate (because of spin).

For the 2-quasiparticle sector one finds that

F(2) = F(0p,2h) ⊕ F(1p,1h) ⊕ F(2p,0h) , (78)

where, for example,

F(1p,1h) = 1
0F(1p,1h) ⊕ 3

1F(1p,1h) ⊕ 3
0F(1p,1h) ⊕ 3

−1F(1p,1h) . (79)

The corresponding excitation energies are: double ionization potentials [for the
(0p, 2h)-sector], “energies of single excitations” [for the (1p, 1h)-sector], and double
electron affinities [for the (2p, 0h)-sector]. The respective excited states are spin
singlets (nondegenerate), or spin triplets (triply degenerate).

6.3. Wave operator

The Fock-space Hamiltonian Ĥ belongs to the particle-number conserving subal-
gebra A(=)

FD ∈ A(even)
FD (= A(even)

FD ). From the resolution (58), the following resolution
may be derived

A(=)
FD = A′(even,>)

FD ⊕ A′(=)
FD ⊕ A′(even,<)

FD , (80)

where A′(even,>)
FD = A(even,>)

FD ∩A(=)
FD , A′(=)

FD = A(=)
FD ∩A(=)

FD , and A′(even,<)
FD = A(even,<)

FD ∩
A(=)

FD are subalgebras of A(=)
FD (since the intersection of two subalgebras of a given

algebra is a subalgebra as well). With an analog of the decomposition (59) applied
to Ĥ, one now seeks the wave operator Ω̂ which would eliminate the excitation and
the de-excitation components of the transformed operator (71), in order to arrive
at the commutation condition (72).

In the ph quasiparticle representation, Sec. 5.5.2, the particle-number symmetry
is preserved, so Ω̂ ∈ A(=)

FD at any level of approximation. Thus, in this case the reso-
lution (80) applies also to Ω̂. On the other hand, in the general BV representation,
Sec. 5.5.1, approximate Ω̂ may have (presumably small) components belonging to
subalgebras A(even,>)

FD and A(even,<)
FD . In this case one has to rely on the resolution

(58) – in our further discussion we shall employ this more general approach.
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6.3.1. The Gauss representation

Let Â ∈ A(even)
FD (= A(even)

FD ) be a unitary operator that diagonalizes the Fock-space
Hamiltonian (70). The Gauss factorization (42) may now be applied to operator Â,
where operators Ĉ, B̂, and D̂ now correspond to the resolution given in Eq. (58).
By eliminating a quasiparticle-number conserving factor B̂, one finds that the wave
operator may be written in the following Gauss representation:

Ω̂ = Ω̂exΩ̂dx , (81)

where

Ω̂ex = 1̂ + Ĉ , Ω̂dx = 1̂ + D̂ . (82)

In the above definition, Ĉ ∈ A(even,>)
FD , D̂ ∈ A(even,<)

FD , and Ω̂ex and Ω̂dx will be
referred to as the excitation wave operator and the de-excitation wave operator,
respectively. The similarity transformation (71) is thus performed in two steps:
After the first similarity transformation, the auxiliary quasiparticle Fock-space
Hamiltonian is obtained:

Γ̂ = Ω̂−1
ex Ĥ Ω̂ex = (1̂ + Ĉ)−1Ĥ (1̂ + Ĉ) . (83)

In the quasiparticle representation given by Eq. (55), operator (83) reads as

Γ̂ = γX
Y âX âY . (84)

After the second similarity transformation, one arrives at the proper quasiparticle
Fock-space Hamiltonian:

Ĝ = Ω̂−1
dx Γ̂ Ω̂dx = (1̂ + D̂)−1Γ̂ (1̂ + D̂) . (85)

Operators (1̂ + Ĉ)−1 = 1̂ + Ĉ ′ and (1̂ + D̂)−1 = 1̂ + D̂′ may be expressed by means
of the expansion (38), and one finds that Ĉ ′ ∈ A(even,>)

FD , D̂′ ∈ A(even,<)
FD .

After the second similarity transformation, the decomposition (59) of Hamilto-
nian Ĝ should give:

Ĝ(even,>) = 0̂ , Ĝ(=) = Ĝ , Ĝ(even,<) = 0̂ . (86)

One may now backtransform Eq. (85) to obtain

Γ̂ = (1̂ + D̂) Ĝ (1̂ + D̂)−1 = (1̂ + D̂) Ĝ (1̂ + D̂′) . (87)

After using the algebraic properties of operators which are listed at the end of
Sec 4.5, one calculates the difference

Γ̂− Ĝ = D̂Ĝ+ ĜD̂′ + D̂ĜD̂′ = Γ̂(even,<) , (88)

where Γ̂(even,<) corresponds to the decomposition (59) of Hamiltonian Γ̂. Because
of Eq. (86), one immediately finds that

Γ̂(even,>) = Ĝ(even,>) = 0̂ , (89)
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and

Γ̂(=) = Ĝ(=) = Ĝ . (90)

Eq. (89) has to be fulfilled after the first similarity transformation (83); this is the
basic condition that determines the operator Ĉ. Let us note that the number of the
c-amplitudes of operator Ĉ (written in the quasiparticle representation) is equal
to the number of (vanishing) γ-amplitudes of operator Γ̂: the number of unknowns
equals the number of equations (conditions).

Eq. (90) brings an important message: the quasiparticle Fock-space Hamiltonian
Ĝ is instantly obtained from the auxiliary quasiparticle Fock-space Hamiltonian Γ̂.
Thus, as far as only the spectrum of the Fock Hamiltonian Ĥ is of interest, there is
no need to perform the second similarity transformation (85), and to determine the
operator D̂. However, without that operator the knowledge of the eigenfunctions
of Ĥ is incomplete. In particular, one needs D̂ (or its equivalent, see Sec. 6.3.4) to
calculate expectation values and transition moments, see Sec. 6.4.1. It is the third
equality in Eq. (86) that provides the condition from which D̂ can be determined.

6.3.2. Representation of wave functions

The full similarity operator (81) is needed to determine the eigenfunctions of the
Fock Hamiltonian Ĥ. With the help of this operator, and the Fock basis (43), we
define a set of auxiliary wave functions,

ΨX = Ω̂ΦX , (91)

which may be used for representing the true eigenfunctions of the Fock Hamiltonian
Ĥ:

ΨX = ΨYB
Y

X , (nX = nY = Nq) , (92)

for Nq = 1, 2, . . . ,M . The coefficients BY
X are calculated by diagonalizing the

quasiparticle Fock-space Hamiltonian Ĝ within an invariant subspace F(Nq), see
Sec. 6.2.1: they correspond to the right eigenvectors of the matrix defined in
Eq. (75). However, neither the auxiliary wave functions (91), nor the true eigenfunc-
tions (92) are normalized; the intermediate normalization condition, see Eq. (2), is
also not fulfilled in general, except for X = 0 (see below).

For X = 0, one may put B0
0 = 1, and thus Ψ0 = Ψ0. Some further simplifications

are also possible:

Ψ0 = Ω̂Φ0 = Ω̂exΦ0 = (1̂ + Ĉ)Φ0 , (93)

since Ω̂dxΦ0 = (1̂ + D̂)Φ0 = Φ0. Thus, operator Ω̂ex alone is sufficient to determine
the (unnormalized) reference eigenfunction Ψ0. It is seen from Eq. (93), that in
this case the intermediate normalization condition is fulfilled: 〈Φ0|Ψ0〉 = 1.

6.3.3. Exponential Ansatz

The Gauss representation of the wave operator given in Eqs. (81) and (82) is
not useful in practice, since it does not lead to a size-extensive (or size-consistent)
formalism: For instance, the γ-amplitudes of operator Γ̂ calculated by means of
the similarity transformation (83), are not purely connected functions of the η-
amplitudes of operator Ĥ, and the c-amplitudes of operator Ĉ (see further discus-
sion in this Section).
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By applying an analog of Eq. (39), corresponding to the quasiparticle represen-
tation, one may define new operators:

Θ̂ = ln(1̂ + Ĉ) , Ξ̂ = ln(1̂ + D̂) , (94)

where Θ̂ ∈ A(even,>)
FD , Ξ̂ ∈ A(even,<)

FD . Now, with the help of an analog of Eq. (40),
one may define an exponential representation of the wave operators of Eq. (82):

Ω̂ex = exp(Θ̂) , Ω̂dx = exp(Ξ̂) . (95)

The above representation is a generalization of the exponential Ansatz which is
the cornerstone of the single-reference CC method [12–14]. One may now write the
similarity transformation (83) in the form of the (finite) commutator expansion:

Γ̂ = exp(−Θ̂) Ĥ exp(Θ̂)

= Ĥ + [Ĥ, Θ̂] +
1
2!

[[Ĥ, Θ̂], Θ̂] +
1
3!

[[[Ĥ, Θ̂], Θ̂], Θ̂] + . . . . (96)

Thanks to the algebraic properties of commutators involving operators belonging to
the Fermi-Dirac subalgebra A(even)

FD (= A(even)
FD ), see [28], each term in the expansion

(96) may be represented by sum of diagrams of the purely connected character, see
Fig. 2 and the discussion at the end of Sec. 4.4. This means that the γ-amplitudes
of operator Γ̂ are connected functions of the η-amplitudes of operator Ĥ, and the
θ-amplitudes of operator Θ̂.

The equations for the θ-amplitudes of operator Θ̂, corresponding to the condition
(89), may now be written symbolically as

γX
Y

(
θX′

Y ′
)

= 0 , (nX > nY , nX′ > nY ′) , (97)

and the number of unknowns (the θ-amplitudes) is equal to the number of equa-
tions. These equations are linear in the η-amplitudes of operator Ĥ, and nonlinear
in the θ-amplitudes of operator Θ̂. These are the coupled-cluster excitation equa-
tions, corresponding to the exponential Ansatz for the excitation wave operator.

Once the CC equations (97) are solved, yielding the amplitudes θX′Y
′
, one may

use the condition (90) to determine the g-amplitudes of the quasiparticle Fock-
space Hamiltonian (74):

gX
Y = γX

Y
(
θX′

Y ′
)
, (nX = nY , nX′ > nY ′) . (98)

Then the excitation spectrum of our many-electron system can be calculated, as
described in Sec. 6.2.1.

One may apply an analog of Eq. (96) to rewrite Eq. (85), with the de-excitation
wave operator expressed within the exponential Ansatz given in the second of
Eqs. (95). The g-amplitudes of operator Ĝ are now connected functions of the γ-
amplitudes of operator Γ̂, and the ξ-amplitudes of operator Ξ̂. The CC equations
for the ξ-amplitudes of operator Ξ̂, corresponding to the third condition in (86),
may now be written symbolically as

gX
Y

(
ξX′

Y ′
)

= 0 , (nX < nY , nX′ < nY ′) ; (99)

Page 26 of 36

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

August 11, 2010 18:44 Molecular Physics QFSCC˙MP

27

again, the number of unknowns (the ξ-amplitudes) is equal to the number of equa-
tions. These equations are linear in the γ-amplitudes of operator Γ̂, and nonlinear
in the ξ-amplitudes of operator Ξ̂. These are the coupled-cluster de-excitation equa-
tions, corresponding to the exponential Ansatz for the de-excitation wave operator.

In the exponential Ansatz of Eq. (1), the additive separability of the cluster
operator T̂ ensures the multiplicative separability of the wave function Ψ. This is
the basis for the proof that the CC formalism is size-extensive (or size-consistent).
The connected character of the equations from which the amplitudes of T̂ are
determined appears to be a necessary condition for these properties to hold. As
seen, the exponential Ansatz of Eqs. (95) leads to the equations (97) and (99) for
the amplitudes of operators defined in Eqs. (94), that are connected functions of
the respective amplitudes. Thus, the necessary condition for the size-consistency
of the QFSCC formalism is met.

6.3.4. The Lindgren-Jeziorski-Paldus exponential Ansatz

Eqs. (97) and (99) are highly nonlinear equations for the unknown amplitudes;
a closer inspection of these equations indicates that this is due to “connections”
among the unknown amlitudes. Moreover, it turns out that Eqs. (97) are not di-
rectly compatible with the CC equations corresponding to the single-reference CC
method, see Eq. (1), despite that the (unnormalized) reference eigenfunction may
now be expressed as Ψ0 = exp(Θ̂)Φ0, see Eqs. (93) and (95).

Already in the first paper [2] we realized that it is possible to circumvent the
problem of inter-amplitude connections in Eqs. (97): this could be done by intro-
ducing certain connected functions τX

Y (θX′Y
′
), such that the amplitudes of the

operator Ĉ = exp(Θ̂) − 1̂ became purely disconnected functions of parameters
τX

Y (except for the linear term). The underlying idea was to replace in Eqs. (97)
the unknown θ-amplitudes by the τ -parameters as unknowns. This construction
happened to be equivalent to the so-called normal exponential Ansatz invented
by Lindgren [26]. That fact was duly recognized in paper [4], where we rewrote
the Lindgren exponential in an elegant algebraic form proposed by Jeziorski and
Paldus [31].

In paper [31], Jeziorski and Paldus introduced a new operator product in the
Fermi-Dirac subalgebra A(even)

FD , which is defined for the quasiparticle normal prod-
ucts (54) belonging to A(even)

FD . This asterisk product, denoted by ∗, operates as
follows:

(âX1 âY1
) ∗ (âX2 âY2

) := âX1X2 âY1Y2
. (100)

Hence, from the point of view of the contraction theorem [28], it is a “contrac-
tionless” product. In addition, the corresponding asterisk-product algebra A(even)

FD

is commutative. It should be stressed that the asterisk product is here defined
only for operators expressed in the quasiparticle representation, see Eq. (55), and
for different quasiparticle representations different asterisk products are obtained.
It should be noted that the Jeziorski-Paldus construction of the asterisk product
works for the general BV quasiparticle representation, see Sec. 5.5.1, while the orig-
inal Lidgren proposal is limited to the ph quasiparticle reprezentation of Sec. 5.5.2.

We now introduce an operator T̂ ∈ A(even,>)
FD , of the form

T̂ = τX
Y âX âY , (nX > nY ) , (101)
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and use it to define the Lindgren-Jeziorski-Paldus (LJP) exponential :

exp ∗(T̂ ) := 1̂ + T̂ +
1
2!
T̂ ∗ T̂ +

1
3!
T̂ ∗ T̂ ∗ T̂ + . . . ; (102)

the above series terminates after the (m0 +1)th term, as in Eq. (40). This new form
of the operator exponential is now used to express the excitation wave operator of
Eq. (95):

Ω̂ex = exp(Θ̂) = exp ∗(T̂ ) . (103)

The operator T̂ of Eq. (101) will be called the excitation cluster operator. The
relations between operators Θ̂ and T̂ are summarized below:

Θ̂ = ln[exp ∗(T̂ )] , T̂ = ln ∗[exp(Θ̂)] , (104)

where the standard operator-logarithm function ln is defined in Eq. (39), and the
asterisk operator-logarithm function ln ∗ is defined in an analogy to the LJP expo-
nential of Eq. (40). A careful analysis of the relations (104), involving the so-called
operator cumulants [31], reveals that the τ -amplitudes of operator T̂ are purely
connected functions of the θ-amplitudes of operator Θ̂, and vice versa.

It is now useful to rewrite Eq. (83) in a form which avoids the explicit use of
operator Ω̂−1

ex :

Γ̂ = Ĥ Ω̂ex − (Ω̂ex − 1̂) Γ̂ . (105)

When Ω̂ex = exp(Θ̂), we know from the commutator expansion of Eq. (96) that
the γ-amplitudes of operator Γ̂ are purely connected functions of the θ-amplitudes
of operator Θ̂ and the η-amplitudes of operator Ĥ. Therefore: all the disconnected
terms at the rhs of Eq. (105) exactly cancel. When Ω̂ex = exp ∗(T̂ ) is substituted
in Eq. (105), the cancellation of the disconnected contributions should hold as
well (since the τ -amplitudes of operator T̂ are purely connected functions of the
θ-amplitudes of operator Θ̂). Thus, one may rewrite Eq. (105) in the following
symbolic form

Γ̂ =
{
Ĥ exp ∗(T̂ )− [exp ∗(T̂ )− 1̂] Γ̂

}
connected

, (106)

which indicates that only the connected terms should be taken into account. The
above formula is the basis for deriving the coupled-cluster (CC) equations which
are discussed in the next Section (a slightly different, but equivalent, route to the
CC equations was chosen in paper [2]).

An analogous construction may be applied also to the de-excitation wave operator
of Eq. (95): in the first step one introduces an operator Ŝ ∈ A(even,<)

FD , of the form

Ŝ = σX
Y âX âY , (nX < nY ) , (107)

and builds an analog of the Lindgren-Jeziorski-Paldus (LJP) exponential of
Eq. (102). However, this time it is advantageous to use the following construc-
tion involving the inverse of the de-excitation wave operator of Eq. (95):

Ω̂−1
dx = exp(−Ξ̂) = exp ∗(Ŝ) . (108)
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The operator Ŝ of Eq. (107) will be called the de-excitation cluster operator. In
order to arrive at the more manageable form of conditions (99), we shall use an
analog of Eq. (106), adapted to the representation given in Eq. (108):

Ĝ =
{

exp ∗(Ŝ) Γ̂− Ĝ [exp ∗(Ŝ)− 1̂]
}

connected
. (109)

The above formula (but not in an explicit form) was behind some of the derivations
in paper [4]).

6.4. Quasiparticle coupled-cluster equations

Our goal is to find analogs of Eqs. (97) and (98) corresponding to the LJP exponen-
tial Ansatz for the excitation wave operator, given in Eqs. (102) and (103). To this
end one uses the representation (106) of the operator Γ̂, with only the connected
terms taken into account. The presence of Γ̂ at the rhs of Eq. (106) gives rise to
some entanglement, but it is easily resolved in practice. Eqs. (97) now read as

γX
Y

(
τX′

Y ′
)

= 0 , (nX > nY , nX′ > nY ′) , (110)

and the number of unknowns (the τ -amplitudes) is equal to the number of equa-
tions. These equations are linear in the η-amplitudes of operator Ĥ, and nonlinear
in the τ -amplitudes of operator T̂ . However, at this point there is a big difference
with respect to Eqs. (97): due to the lack of contractions among the τ -amplitudes,
each connected contribution to the γ-amplitudes is due to contractions between a
given η-amplitude and a few τ -amplitudes. Since the η-amplitudes have at most
four indices, the lhs of Eq. (110) is a polynomial (in the unknown τ -amplitudes)
of the fourth degree (at most). Eqs. (110) are called the coupled-cluster excitation
(CCex) equations, corresponding to the LJP exponential Ansatz for the excitation
wave operator.

The g-amplitudes of the quasiparticle Fock-space Hamiltonian (74) are obtained
by means of the following analogs of Eqs. (98):

gX
Y = γX

Y
(
τX′

Y ′
)
, (nX = nY , nX′ > nY ′) . (111)

It turns out that in the above equations the γ-amplitudes are polynomials of at
most second degree.

It should be added that now Eq. (93) can be written in the form of Ψ0 =
exp ∗(T̂ )Φ0, and it becomes equivalent to Eq. (1) (for Φ0 ≡ Φ and Ψ0 ≡ Ψ).
This property holds despite that the forms of the operator T̂ are different in these
equations: it turns out that the part of operator (101) corresponding to Y = 0 is
the same as the whole operator T̂ of Eq. (1).

The derivation of the explicit form of Eqs. (110) and (111) can be done most
easily by applying the diagrammatic representation of the amplitude algebra, see
Sec. 4.4. A few most important diagrammatic equations corresponding to Eqs. (110)
and (111) are presented in paper [2].

The analog of Eqs. (99), corresponding to the LJP exponential Ansatz for the
de-excitation wave operator, given in Eq. (108), can be derived by using the rep-
resentation (109) of the operator Ĝ, with only the connected terms taken into
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account:

gX
Y

(
σX′

Y ′
)

= 0 , (nX < nY , nX′ < nY ′) ; (112)

as before, the number of unknowns (the σ-amplitudes) is equal to the number
of equations. These equations are linear in the γ-amplitudes of operator Γ̂, and
nonlinear in the σ-amplitudes of operator Ŝ. However, it can be shown [4] that there
is a general decoupling scheme which reveals a very important property: Eqs. (112)
are equivalent to linear equations for the unknown σ-amplitudes. Eqs. (112) are
called the coupled-cluster de-excitation (CCdx) equations, corresponding to the LJP
exponential Ansatz for the de-excitation wave operator.

6.4.1. Expectation values and transition moments

It should be stressed that one may single out a relatively small subset of the CCex
equations (110), and approximately decouple it from the rest of these equations,
see Sec. 6.5.1. The calculated τ -amplitudes are then fed into Eqs. (111), and a
subset of the g-amplitudes is calculated. This allows one to determine the ground-
state energy g0

0 = E0, and a part of the excitation spectrum, see Sec. 6.2.1. When
(a subset of) the CCdx equations (112) is solved in addition to that, one can
determine the eigenfunctions of the Fock-space Hamiltonian Ĥ, corresponding to
the ground state and to the calculated excitation spectrum, see Sec. 6.3.2. The
normalization of these wave functions is not an easy task, however (they are of an
FCI complexity). Despite of that, as shown in [5], the unnormalized wave function
of the form given in Eq. (92) may be used for calculating expectation values and
transition moments of various operators; to this end, one may obtain [5] the density
matrices and the transition matrices corresponding to the eigenfunctions (92). The
necessary formulas can be derived by using the diagrammatic language employed
in the derivation of the CC equations (110), (111), and (112). Applications of this
approach may be found in the papers by Barysz et al. [32, 33].

6.4.2. Symmetry adaptation of QFSCC theory

As indicated in Sec. 5.5.4, our optimized quasiparticle vacuum Φ0 may correspond
to broken symmetry with respect to the symmetry group of the Fock-space Hamil-
tonian, GH . We shall say that Φ0 retains the symmetry of a subgroup G′

H ⊂ GH ,
if it belongs to a one-dimensional representation of G′

H . There is a very important
theorem [1, 2] which applies to the QFSCC theory: in such a case the wave operator
Ω̂, as well as all the related operators, including the CC operators T̂ and Ŝ, and
the quasiparticle Fock-space Hamiltonians Γ̂ and Ĝ, commute with the symmetry
operators belonging to G′

H .
In the case of the continuous symmetries, the above-listed operators commute

with the Hermitian generators Q̂cs of the respective symmetries, for instance,

[T̂ , Q̂cs] = [Ŝ, Q̂cs] = 0̂ . (113)

Specifically:

(1) If the ph quasiparticle representation of Sec. (5.5.2) is chosen, the conditons
(113) hold for Q̂cs = Q̂, the pseudocharge operator of Eqs. (67) and (69).
(2) If, in addition, Φ0 is at least of the unrestricted Hartree-Fock (UHF) quality,
the conditons (113) hold for Q̂cs = Ŝz, the spin operator for z-projection of the
total spin, see Sec. 4.2.2.
(3) If Φ0 corresponds to the restricted Hartree-Fock (RHF) wave function for
the closed shell, the conditons (113) hold also for Q̂cs = Ŝx and Q̂cs = Ŝy (how-
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ever, if one of these conditions is fulfilled, the other one follows automatically).
At this point the QFSCC theory is spin adapted..

One may now use the appropriate commutation conditions (113) for the sym-
metry adaptation of the amplitudes of operators T̂ and Ŝ (and Γ̂ and Ĝ as well);
the discrete symmetries of G′

H may be handled accordingly. Such a procedure is
quite straightforward: some amplitudes of operators T̂ , Ŝ, Γ̂ and Ĝ have to vanish
identically, and some are related by symmetry to other amplitudes. At this point, it
is often advantageous to define a set of unique symmetry-adapted amplitudes. This
approach results in a tremendous simplifications in the CC equations (110), (111),
and (112), and does not require advanced group-theoretical tools. By arriving at
the symmetry-adapted quasiparticle Fock-space Hamiltonian (74), one may take
advantage of the symmetry-splitting of the F(Nq) subspaces, discussed in Sec. 6.2.2.

In dealing with a particular set of equations (110), (111), or (112), it is strongly
advocated to follow a step-by-step procedure:
(i) derive the necessary diagrammatic equations for the general BV quasiparticles
(this provides the most compact diagrammatic representation possible!),
(ii) “translate” each diagram into the corresponding algebraic expressions by using
the general rules of papers [2] and [4],
(iii) in the obtained algebraic equations, express the general amplitudes through
the symmetry-adapted ones.
In practice the above procedure may be carried out “manually”, and gives a full
control over the obtained symmetry-adapted equations.

6.5. Practical aspects

Our paper with Maria Barysz [7] provided a test of the QFSCC method (within
the ph representation) at the so-called CCD level, which is the simplest meaningful
level of the theory. In that paper we discussed also the emerging challenge: the
problem of the so-called intruder states, which may be traced to the existence of
multiple solutions to the (nonlinear) CC equations. Fortunately, during last 20
years a great progress has been made in the theory and the practice of the FSCC
approach originating from the papers [22–26]: in particular, in taming the intruder
states. Below, we use the modern perspective to discuss a few practical aspects of
the QFSCC method.

6.5.1. CCSDT level

In the single-reference CC method, see Eq. (1), the so-called CCSDT level of
theory corresponds to the approximation T̂ ≈ T̂1 + T̂2 + T̂3; thus, S stands for
the single, D for the double, and T – for the triple excitations from the reference
Slater determinant [34, 35]. In the computational FSCC method, the CCSDT level
of theory is currently the state of the art [36–44]: this corresponds to the CC
operator T̂ of Eq. (101) being truncated such that only the τ -amplitudes with
nX + nY = 2 (S), nX + nY = 4 (D), and nX + nY = 6 (T) are retained.

We now write down Eqs. (110) and (111) in a more explicit form, compatible
with the CCSDT level of theory. A natural stratification of these equations, corre-
sponding to Y = Nq (where Nq is the number of quasiparticles of the sector F(Nq),
see Sec. 6.2.2), emerge:

(1) The vacuum sector, Nq = 0. The CCex-SDT equations read symbolically
as (the primes to indices of the τ -amplitudes are suppressed for better read-
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ability):

γij
0(τij0, τijkl

0, τijklmn
0) = 0 ,

γijkl
0(τij0, τijkl

0, τijklmn
0) = 0 ,

γijklm
0(τij0, τijkl

0, τijklmn
0) = 0 , (114)

and the corresponding g-amplitude is simply

g0
0 = γ0

0(τij0, τijkl
0)

= η0
0 +

1
2
η0

ijτij
0 +

1
8
η0

ijklτij
0τkl

0 +
1
24
η0

ijklτijkl
0 . (115)

The equations for the vacuum sector are completely decoupled from the rest of
the CCex equations, and are identical to the CC equations corresponding to
the single-reference Ansatz, see Eq. (1).
(2) The 1-quasiparticle sector, Nq = 1. The CCex-SDT equations:

γijk
l(τij0, τijkl

0, τijklmn
0, τijk

l, τijklm
n; γi

j) = 0 ,

γijklm
n(τij0, τijkl

0, τijklmn
0, τijk

l, τijklm
n; γi

j) = 0 , (116)

and the corresponding g-amplitudes:

gi
j = γi

j(τij0, τijkl
0, τijk

l, τijklm
n) . (117)

The equations for the 1-quasiparticle sector are completely decoupled from the
CCex equations corresponding to Nq ≥ 2, but their solutions depend on the
τ -amplitudes of the vacuum sector. The dependence of Eqs. (116) on the γi

j-
amplitudes is explicitly indicated. This depndence has interesting implication:
while Eqs. (116) are apparently linear in the amplitudes τijkl and τijklm

n, they
become quadratic when the (linear) dependence on these amplitudes of the
amplitudes γi

j is taken into account.
(3) The 2-quasiparticle sector, Nq = 2. The CCex-SDT equations:

γijkl
mn(τij0, τijkl

0, τijklmn
0, τijk

l, τijklm
n, τijkl

mn; γi
j , γij

kl) = 0 , (118)

and the corresponding g-amplitudes:

gij
kl = γij

kl(τij0, τijkl
0, τijk

l, τijklm
n, τijkl

mn) . (119)

The equations for the 2-quasiparticle sector are completely decoupled from the
CCex equations corresponding to Nq ≥ 3, but their solutions depend on the
τ -amplitudes of the preceding sectors. The dependence of Eqs. (118) on the
amplitudes γi

j and γij
kl is explicitly indicated. Again, Eqs. (118) are apparently

linear in the amplitudes τijkl
mn, but they become quadratic, for similar reason

as discussed in the case of the 1-quasiparticle sector.

An important observation follows: the CC equations (110), (111), and (112), and
the CCSDT equations of the present section in particular, are explicitly covariant
with respect to the unitary transformations of Eq. (47).

Page 32 of 36

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

August 11, 2010 18:44 Molecular Physics QFSCC˙MP

33

6.5.2. BHF approach

When the Brueckner (maximum-overlap) optimization of the quasiparticle vac-
uum Φ0 is undertaken, see Eqs. (3) and Sec. 5.5.3, the necessary condition for the
maximum reads as

τij
0 = 0 . (120)

The above condition may be imposed while solving the CCex equations (110) for
the vacuum sector, to this effect one may use the BHF procedure described in
papers [1] and [3]. The optimization of Φ0 which employs the condition (120) has
several advantages:
(i) At a given approximation level (e.g., the CCSDT one), it should provide the
best representation of the reference eigenstate through Eq. (1). The focus on the
“quality” of the calculated ground-state energy, Eq. (115), may be misleading in
this respect, since the value of g0

0 lacks the property of being the upper-bound to
the exact E0.
(ii) A great simplification of Eqs. (114), (116), and (118) is achieved: the saving in
the number of included diagrams is substantial.
(iii) The degree of nonlinearity in Eqs. (114) is reduced: they are at most quadratic
in the corresponding τ -amplitudes.

6.5.3. Active quasiparticles

In the atomic and molecular applications of the FSCC method one has to face
a broad spectrum of the quasiparticle energies. In the ph quasiparticle represen-
tation, Sec. 5.5.2, the holes corresponding to the core orbitals, and the particles
corresponding to high empty orbitals, are often of little interest, but due to their
high energies they may contribute to the intruder-state problem. As a solution, in
the FSCC method one often considers only the quasiparticles with relatively low
energies: they become the so-called active (or valence) quasiparticles (active holes
and particles within the ph representation). The purpose is to arrive at the quasi-
particle Fock-space Hamiltonian (74) which depends on the active quasiparticles
only. It can be shown that this can be achieved by introducing relatively small
modifications of the CCex equations of Sec. 6.5.1:

(1) The vacuum sector, Nq = 0. Eqs. (114) and (115) are left unchanged.
(2) The 1-quasiparticle sector, Nq = 1. Let us consider Ma (< M) active quasi-
particles. One has to introduce new τi′′

j′
amplitudes, which are responsible for

a decoupling of the states corresponding to the active (i′, j′, . . . = 1, 2, . . . ,Ma)
and inactive (i′′, j′′, . . . = Ma + 1,Ma + 2, . . . ,M) quasiparticles; indices
i, j, . . . = 1, 2, . . . ,M enumerate general quasiparticles (active or inactive). The
decoupling conditions, of the form γi′′

j′
= 0, constitute the CCex equations for

the τi′′j
′

amplitudes [these equations derive from Eqs. (117)]. The τi′′j
′

ampli-
tudes become additional variables in Eqs. (116), now of the form γijk

l′ = 0 and
γijklm

n′
= 0, and in Eqs. (117), now of the form gi′

j′
= γi′

j′
.

(3) The 2-quasiparticle sector, Nq = 2. One introduces additional τi′′jk′l′ am-
plitudes, corresponding to the decoupling conditions of the form γi′′j

k′l′ = 0
[these equations derive from Eqs. (119)]. The τi′′

j′
amplitudes from the 1-

quasiparticle sector, and the τi′′jk′l′ amplitudes, become additional variables
in Eqs. (118), now of the form γijk

l′m′
= 0, and in Eqs. (119), now of the form

gi′j′k
′l′ = γi′j′k

′l′ .

As a rule: by introducing the active quasiparticles, one increases the number of
different kinds of unknowns (the τ -amplitudes), and the number of different types
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of the CC equations. However, the overall number of (nonzero) unknowns and
equations may be considerably reduced.

6.5.4. Factorization of CC equations

While implementing the single-reference CC metod at the CCSDTQ level,
Kucharski and Bartlett [45, 46] introduced a very useful tool for handling the
corresponding diagrammatic equations. They found that these equations can be,
step by step, factorized by introducing certain diagram intermediates. This leads to
an effective linearization of the CC equations. This factorization technique is cur-
rently a standard in the FSCCSDT method developed in Bartlett’s group [36–44].
Needless to say, this technique may be applied also to the CCex-SDT equations of
Sec. 6.5.1.

6.5.5. Intruder states in 1-quasiparticle sector

As numerical experience indicates, the active-quasiparticle approach of Sec. 6.5.3
is insufficient to fully cure the intruder-state problem. In the 1-quasiparticle sector,
see Sec. 6.5.1, the practical solution [36–38] involves using the equation-of-motion
(EOM) approach, which can be shown to be (formally, but not computationally!)
equivalent to directly solving Eqs. (116).

6.5.6. Intruder states in 2-quasiparticle sector

In the case of the 2-quasiparticle sector, see Sec. 6.5.1, the EOM method is
not equivalent to directly solving Eqs. (118). However, Meissner [47, 48] adpted
the so-called intermediate-Hamiltonian (IH) technique to cope with the intruder
states within the FSCCSD method. This technique has been recently implemented
also at the CCSDT level by Musia l and Bartlett [40–44].

The QFSCC theory described in the present paper should be augumented to
absorb the developments mentioned in Secs. 6.5.3 – 6.5.6. However, that seems to
be only a technical matter.

7. Concluding remarks

The QFSCC theory is a completely general, comprehensive approach to many-
electron systems. It builds a consistent physical model: the quasiparticle model
of many-electron systems, which is based on the quasiparticle representation of
the fermionic Fock space and the corresponding Fermi-Dirac algebra of operators.
Moreover, it provides a new, general and flexible, algebraic and diagrammatic lan-
guage which is effective in deriving a necessary system of equations for calculating
system’s properties: the excitation spectrum, and the expectation values and tran-
sition moments (with the purpose of approaching the FCI values).

The QFSCC theory may be considered a generalization of the single-reference CC
theory [12, 13]: it builds a hierarchy of states, corresponding to different numbers
of electrons, which stem from a certain reference eigenstate Ψ0 of the Fock-space
Hamiltonian (by assumption: a nondegenerate, closed-shell one). As a computa-
tional tool, the QFSCC method can be formulated such that it becomes equivalent
to the FSCC methods, see the corresponding references in the recent review by
Bartlett and Musia l [14]. However, the algebraic QFSCC methodology offers con-
siderable simplifications in deriving the basic FSCC equations – in the QFSCC
approach there is no need for: handling incomplete model spaces and the corre-
sponding projectors, imposing the subsystem-embedding conditions, relaxing the
intermediate normalization of the wave functions, explicit working with various op-
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erators and their commutators, dealing with the proliferating Brandow diagrams,
resorting to a computer-assisted generation of the working CC equations, etc.

The quasiparticle model of many-electron systems offered by the QFSCC theory
is not of a universal utility, however. Its hierarchical structure has to be confronted
with a strictly egalitarian structure of the multireference CC Ansatz of Jeziorski
and Monkhorst [21]. The latter approach is indispensable for treating strongly cou-
pled, quasidegenerate states, with the same number of electrons (as, e.g., in weakly
interacting open-shell systems, corresponding to breaking of chemical bonds).
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