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Abstract

In this article, we propose a dynamic model of the three-dimensional eel swim. This model is analytical
and suited to the on-line control of eel-like robots. The proposed solution is based on the Large Amplitude
Elongated Body Theory of Lighthill and a working frame recently proposed in [1] for the dynamic modeling
of hyper-redundant robots. This working frame was named "macro-continuous" since at this macroscopic
scale, the robot (or the animal) is considered as a Cosserat beam internally (and continuously) actuated.
This article proposes new results in two directions. Firstly, it achieves an extension of the Lighthill
theory to the case of a self propelled body swimming in three dimensions, while including a model of the
internal control torque. Secondly, this generalization of the Lighthill model is achieved due to a new set
of equations which is also derived in this article. These equations generalize the Poincaré equations of a
Cosserat beam to the case of an open system containing a �uid strati�ed around the slender beam.

Keywords
Swim dynamics, eel-like robots, hyper-redundant locomotion, Lie groups, Lagrangian reduction, Poincaré-
Cosserat equations.

1 Introduction
Performances of �shes in terms of manoeuvrability and e�ciency are very much higher than

those of our technological under-water devices today. As far as underwater manoeuvrability is
more particularly concerned, anguilliform �shes like the moray-eel or the eel represent "an op-
timum" selected by natural evolution. In fact, their high number of internal degrees of freedom
(the european eel has more than 120 vertebrae) make of these animals some hyper-redundant
locomotors capable of moving with a high agility in very unstructured environments such as the
submarine caves of coral reefs. Based on these preliminaries, several "eel like robots" appeared
these last years [2, 3, 4]. However, in spite of this increasing interest for these systems, the quest
of elongated �sh swim models devoted to on-line control (in particular for autonomous naviga-
tion) is still a challenging task for bio-mimetic robotics [5]. In fact, computing the interactions
between a swimming �sh and a �uid is a very involved problem which in itself requires the inte-
gration of Navier-Stokes equations coupled with the nonlinear dynamics of a body enduring �nite
transformations [6, 7, 8, 9]. More simply, several e�cient numerical solvers based on the inviscid
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�uid model have been proposed during the last decade [10, 11, 12]. Under this restriction, the
propulsion of the �sh originates only in the exchanges of kinetic amounts of the �uid and its
body. Consequently, such models are named "reactive" in [13], and their use is justi�ed by the
high Reynolds number that most of the �shes reach when swimming. To these reactive models,
a "resistive" model taking into account the e�ect of the viscosity can be added by invoking the
theory of "boundary layer" [10]. However, in spite of these simpli�cations, these solutions are
again too computationally involved to be used for one-line control. Thus, analytical modeling
seems to be the most realistic solution for robotics. As far as analytical modeling is concerned,
let us remember that in 1960, two models of �sh swim appeared which are untill today, conside-
red as references in the �eld of "bio-�uid-dynamics". The �rst one, due to Wu [14] is based on
the undulating in�nite height plate, while the second, due to James Lighthill [13], is based on
the Slender-Body Theory (S.B.T.). In both cases, the modeling pro�ts from the particularities
of �shes' geometry in order to approximate the 3-D �ow around their body by a strati�cation
(horizontal in the �rst case, vertical in the second) of planar potential ones. Due to its slender
geometry, here we essentially consider the �uid dynamics around the eel (and the robot which
mimics it) as governed by the S.B.T.. Originally devoted to hydrodynamics of rigid vessels in
small perturbations (small angle of attack, small "thickness/length" ratio...) [15], the S.B.T. was
extended in [13] to the case of the undulatory swimmers (like the eel) through the "Elongated
Body Theory" (E.B.T.), and the "Large Amplitude Elongated Theory" (L.A.E.B.T.) [16], de-
pending if the body endures "small" or "�nite amplitudes" deformations respectively. For the
purpose of robotics, the L.A.E.B.T. represents an interesting perspective for the on-line control
of "eel-like robots". In fact, it gives an analytical simple model of the eel's hydrodynamics while
its body achieves realistic swimming gaits of �nite amplitude. Nevertheless as far as robotics is
concerned, the L.A.E.B.T. is not su�cient in several ways. In fact, like most of his successors
until today, his author restricted his study (essentially focused onto the Gray's paradox [17]) to
the �uid dynamics submitted to the unsteady boundary conditions due to the imposed motion of
the body. Furthermore, the L.A.E.B.T. only deals with the planar straight forward swim. On the
other hand, in the article here presented, the case of all the dynamics (�uid + body) is conside-
red. Secondly, the body is self-propelled and not submitted to an imposed motion. Thirdly, the
internal dynamics of the control torque law are also solved. Finally, all these problems are solved
in real-time (in fact less), and in the case of the three dimensional swim, which until today and
to our knowledge, has never been studied.

The solution is based on recent results from [1] and in particular : 1�) on the modeling of the
�sh body as a non-linear Cosserat beam continuously actuated through a �eld of internal control
torque ; 2�) on a "slice by slice" contact model which combines a resistive model of the drag
and viscous forces and a reactive model of inertial (added mass) ones ; 3�) on a fast algorithm
which solves the �sh head motions and the internal control torques from the given internal strain
law applied along the �sh body. Furthermore, the solution here presented goes beyond [1] in
three ways. Firstly, the reactive model of inertial forces is actually deduced from a balance of
the kinetic amounts applied to the �uid and the body considered as a whole. Secondly, coming
back to the original Lighthill theory of [16], in order to take into account the in�uence of the
wake onto the �sh, this balance is applied to the �uid which is contained in the control volume
D as shown on �gure.1. Lastly, in parallel to these modeling works the solution here proposed
has been successfully calibrated and tested [18], thanks to comparisons with the Navier-Stokes
solver of [9]. Lastly, note that in [19] the anguilliform swim is also modeled as an internally actua-
ted rod, but for the study of the muscle dynamics and in the case of the planar anguilliform swim.

These results are derived from the extension of a variational calculus historically initiated by
Poincaré [20] and today known as the foundation of the Lagrangian reduction theory [21, 22, 23].
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Fig. 1 � The volume control D used by Lighthill to isolate the rotational wake from the potential
�ow laterally bounding the body. Note that π is the plane perpendicular to the backbone passing
through the trailing edge of the caudal �n.

This calculus is one of the essential Geometric Mechanics tools thanks to which many of the
recent advances have been produced in the �eld of bio-mimetic locomotion (see [24, 25, 26]). In
the case of the eel swim, we will �rst recall this calculus to the case of a Cosserat beam [27]. Then,
due to the slender-body assumption, the �ow will be strati�ed in D, and the Hamilton principle
extended to the case of this strati�ed �uid �owing out ofD. We will derive two dynamics from this
principle. The �rst ones named "internal-dynamics" are merely the partial di�erential equations
(p.d.e.'s) which govern the internal control torques. The second dynamics, named "external
dynamics", rule the eel's head motions driven by the internal shape law. Finally, these results
were obtained in the working-frame of a research project whose purpose is to design and control
an eel-like robot capable of swimming in the three dimensions. This robot is an assemblage of
pairs of parallel platforms or "vertebrae". Two consecutive vertebrae are connected by parallel
kinematics which are equivalent to a universal two degrees of freedom (d.o.f.) joint, one d.o.f.
corresponding to the pitch angle and the second, to the yaw.
Lastly, the article is structured as follows. In section 2, we brie�y recall the Lighthill theory
of anguilliform swim. Section 3 is devoted to the Cosserat beam theory from the point of view
of Poincaré variational calculus on Lie groups. In section 4, starting from the E.B.T., the �ow
laterally surrounding the slender body is strati�ed into a �eld of �uid slices transverse to the
beam. Based on this strati�cation, the Poincaré-Cosserat construction is extended to the case of
a swimming slender �sh in section 5, which ends with the p.d.e.'s of the �sh dynamics. These
equations encode all the information about the �uid-structure interactions and the internal forces
of the beam body. Then, in section 6, the previous p.d.e.'s are reconsidered in order to deduce
the external head's dynamics, i.e. the dynamics of the �sh head when its body is submitted to
an imposed internal strain law. Then the resulting model is used in section 7 for the purpose of
simulation. The same section gives a three-dimensional numerical example validated in [18] with
a Navier-Stokes solver. Finally, the article ends with concluding remarks (section 8).

2 Elongated body theory of Lighthill
Firstly we recall the great lines of the Lighthill's modelling (E.B.T. and L.A.E.B.T.) where

E.B.T. can be seen as a linear perturbation theory of the original S.B.T. with respect to the body
deformations of the �sh. Before all, the body is considered as slender with a rounded nose and
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a tail (caudal �n) modeled by a sharp trailing edge. Secondly, the �uid is assumed to be perfect
(inviscid) and irrotational everywhere except in the wake which is modeled by a free vortex
sheet. Thirdly, in order to circumvent the complex modeling of the wake, Lighthill restricts his
considerations to the �uid contained in an hemispheric control volume D including the eel's body
and separated from the wake by the plane π passing through the caudal �n and perpendicular
to the eel's backbone (cf. �gure 1). In these conditions, only the kinetic exchanges of the �uid
contained in D, where the �ow is assumed to be potential, with the wake are considered. Finally,
because the �uid has no viscosity, the forces applied on the body have a pure inertial nature and
can be modeled by some "added" or "virtual inertia" in accordance to what Lighthill named
a "reactive" model, and that he opposed to a "resistive" one as required by the study of low
Reynolds swimmers like worms [28]. With these choices, Lighthill �rst considered in [13] a slender
�sh maintaining its head �xed in a steady �ow of velocity U by imposing to its body a given
undulation law of small amplitude. Then, he extended his study in reference [29] to the case of a
slender body enduring planar �nite amplitude undulations in a �uid at rest far from the �sh. In
this Large Amplitude Elongated Body Theory, like in the small perturbations one (or Elongated
Body Theory), each slice of the �uid stays at rest axially but is laterally accelerated by the
beam cross sections as it sweeps past the body. Hence, the �uid kinetic amounts of the slice grow
along the beam (from the head to the tail) before to be shed into the wake, so generating the
�sh thrust by reaction. Beyond this ampli�cation mechanism, Lighthill gave in his L.A.E.B.T.
of [29] the following expression for the forces applied to a slender inextensible undulating body
of normalized length, swimming along e1 (cf. Figure 2.) :

Te1 + Le2 = − ∂

∂t

∫ 1

0
mV2t2dX1 +

[
mV2V1t2 − 1

2
mV 2

2 t1

]

X1=1

, (1)

where, (o, e1, e2, e3) is a �xed Galilean frame, while (t1, t2, t3)(X1) is the ortho-normed mobile
basis attached to the body cross section cX1 of added mass m(X1), positioned at the distance X1

along the backbone w.r.t. the nose, with t1 being tangent to the backbone, and t3 normal to the
swimming plane. Finally, "(V1t1 + V2t2)(X1)" denotes the velocity of cX1 . Physically, we �nd in
(1) and from left to right : 1�) the thrust (T ) and lateral (L) forces (the eel swimming in straight
line), 2�) the rate of change of �uid momentum within D due to the body motion, 3�) the rate
of change of momentum within D due to momentum transport across the plane π. Moreover,
following Lighthill's conclusions, this is this last contribution whose time-averaged value is non
null, which is essentially at the origin of the undulating �sh thrust.
Before closing this presentation of the Lighthill model, let us remark that (1) is based on the fact
that the axial (i.e. along the �sh backbone) perturbations of the velocity �eld of the �uid w.r.t.
the �sh is negligible due to the slenderness of its body. Nevertheless, if this can be legitimated
rigorously from perturbation theory in the case of the E.B.T. [13], this is not the case when the
amplitude of the �sh undulations increase. In fact, the curvature of the �sh backbone will generate
some mixing of the transverse �uid slices incompatible with the S.B.T. Hence, the extension of
the E.B.T. to the Large Amplitude E.B.T. introduces a sort of heuristic, summarized as follows
by the author. The �uid kinematics from which the added mass density is computed - which
generates the density of hydrodynamic force applied onto the �nite deformed �sh con�guration
- are de�ned slice by slice as if each of the �sh sections cX1 would be axially prolonged by an
in�nite cylinder of constant section moving with the transverse motion of cX1 . Lastly, let us point
out that Lighthill derived (1) through the kinetic energy conservation law applied to the �uid
in D. Furthermore, in this balance, all the terms of (1) appear as some inertial forces. Hence,
the L.A.E.B.T. should be founded on a variational calculus where all the hydrodynamic forces
of (1) can be derived from the �uid kinetic energy. This is one of the purposes of this article to
contribute to these foundations.
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3 Poincaré equations of an internally actuated Cosserat beam
In all the article, we use the following notations. The contracted product of two tensors is

denoted by a point, ⊗ is the usual tensor product and × the cross product in R3. For any
W ∈ R3, Ŵ = W∧ is the skew-symmetric tensor such that Ŵ .X = W × X, ∀X ∈ R3 and
Ŵ∨ = (W∧)∨ = W . Any tensor �eld can depend on time in two ways as its time evolution
is known (i.e. imposed or computed by integration) or only ruled by the dynamics. In the �rst
case the time is explicitly indicated as an argument, while it does not appear in the second
case. Finally, if V denotes a closed set of Rn, then ∂V is its boundary set, while dV and d∂V
are respectively the volume and surface elements of V. Finally following the notations of the
geometrically exact beam theory of [30], the spatial tensors are denoted by small characters
while the material ones are denoted by large ones. Lastly, the notations of the previous section
will be systematically used (and augmented) in all the following.

3.1 Basic picture
We �rst recall the usual Poincaré-Cosserat picture as it is proposed in [27]. For the moment,

we ignore the �uid and just consider that the �sh is submitted to any arbitrary external load.
Due to its slenderness, the �sh can be modeled as a beam of unit length where the cross sections
cX1 , X1 ∈ [0, 1] remain rigid while moving, i.e. by a one dimensional Cosserat medium whose
con�guration space is de�ned by the functional set of curves in the Lie group SE(3) :

C , {g : X1 ∈ [0, 1] 7→ g(X1) ∈ SE(3)}. (2)
In a tensorial representation, any g(X1) is de�ned by the homogeneous transformation :

g(X1) =
(

R(X1) r(X1)
0 1

)
, (3)

where R(X1) and r(X1) are respectively the rotation and position operators which map the
material frame (O, E1, E2, E3) onto the current mobile frame (G, t1, t2, t3)(X1) attached to the
X1 cross section of mass center G(X1) (cf. �gure 3).

Now, the Poincaré-Cosserat construction consists in deriving from a Lagrangian approach the
dynamics of the beam directly on the de�nition (2) of the beam con�guration space. Technically,
this is achieved by applying the extended Hamilton principle [31] :

δ

∫ t2

t1

Lbdt = δ

∫ t2

t1

∫ 1

0
LbdX1dt =

∫ t2

t1

δWextdt, (4)

where δ denotes any variation applied along the trajectory of the system while the con�gu-
ration at the two ends of [t1, t2] are maintained �xed, and δWext is the virtual work produced
by the (non-conservative) external loads. Furthermore, Lb and Lb respectively denote the La-
grangian and the Lagrangian density of the beam free of external load. In the Poincaré-Cosserat
approach, Lb is directly de�ned as a function of the cross sections transformations and their space
and time derivatives Lb

(
g, ∂g

∂X1
, ∂g

∂t

)
; and not, like in the case due to Lagrange, as a function

of any parametrization of the g's in R6. Then, let us remember that the variation is applied
onto any motion in C while the space and time variables are maintained �xed. In fact, δt = 0 in
accordance to the D'Alembert principle of virtual works, while δX1 = 0 since the variable X1

is a material (con�guration independent) label (note here that this imposes to δ. to follow cX1

along any virtual displacement, a property that will play a crucial role in the generalization of
this construction to the �uid, see B.4 in the appendix).

5
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Fig. 2 � Basic picture of a Cosserat beam.

3.2 Reduced dynamics of a one-dimensional Cosserat medium
Now, let us de�ne the following space and time twist �elds :

η , g−1 ∂g

∂t
(X1) , ξ , g−1 ∂g

∂X1
(X1), (5)

where η and ξ are both de�ned in the (E1, E2, E3, Ê1, Ê2, Ê3) basis of se(3), in agreement
with the "material setting" of the rigid body geometry [32]. Furthermore, in the following we
identify se(3) with R6, and η and ξ with :

η =
(

(RT .(∂R/∂t))∨

RT .(∂r/∂t)

)
,

(
Ω
V

)
, ξ =

(
(RT .(∂R/∂X1))∨

RT .(∂r/∂X1)

)
,

(
K
Γ

)
, (6)

where Ω, V (respectively K and Γ) respectively denote the material angular and linear velocity
(respectively the material "curvature-twist" and tangent vector) �elds along the beam. Then,
introducing the de�nitions (5) into the Lagrangian density of the beam, allows one to rewrite (4)
as :

Lb =
∫ 1

0
Lb

(
g,

∂g

∂X1
,
∂g

∂t

)
dX1 =

∫ 1

0
Lb(g, η, ξ)dX1, (7)

where Lb is a new function named "reduced Lagrangian density" (in the Lie algebra of SE(3)),
when it does not depend explicitly of the transformation g. In fact, this property is named "left
invariancy" and traduces the symmetry of the dynamics as seen by an observer attached to the
beam material. In the rest of this section, we shall assume that the Lagrangian of the beam free
of load is left invariant and we will see later how this is actually the case when we consider the eel
swimming in a perfect �uid. Now, let us derive the beam dynamics by applying the variational
principle (4) with Lb de�ned by (7). For this, we have to invoke the constraints of variation at
�xed time and material label :

δ
∂g

∂t
=

∂δg

∂t
, δ

∂g

∂X1
=

∂δg

∂X1
, (8)

6
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where δζ = g−1δg ∈ se(3) is a �eld of material variation of g, with δζ(t1) = δζ(t2) = 0. Then
inserting "δg = gδζ" into (8.a) and (8.b) gives the following relations, as historically revealed by
Poincaré [20], relations which play a key role in the variational calculus on Lie groups :

δη =
∂δζ

∂t
+ ad∗η(δζ) , δξ =

∂δζ

∂X1
+ ad∗ξ(δζ). (9)

Finally, applying the standard uses of variational calculus to (4), with (9) running before
the usual by part integrations (here in "space" and "time"), gives the Poincaré equations of a
Cosserat-beam in the material setting (see Appendix A) :

∂

∂t

(
∂Lb

∂η

)
− ad∗η

(
∂Lb

∂η

)
+

∂

∂X1

(
∂Lb

∂ξ

)
− ad∗ξ

(
∂Lb

∂ξ

)
= F, (10)

with the boundary conditions (also deduced from (4)) :

∂Lb

∂ξ
(0) = F− , and : ∂Lb

∂ξ
(1) = −F+, (11)

where, we assume that the external load is de�ned by the density �eld of wrench X1 ∈]0, 1[7→
F ∈ se(3)∗, and the two boundary wrenches F− ∈ se(3)∗ and F+ ∈ se(3)∗ respectively applied
onto the �rst and last cross section of the beam, i.e., we assume that δWext =

∫ 1
0 F .δζdX1 +

F−.δζ(0) + F+.δζ(1) in (4). Finally, these external wrenches generally depend on the beam
con�guration. Nevertheless, when this is not the case, the external load is said to be left invariant.
This is particularly the case of the most of the contact forces involved in animal locomotion. In
the following, we will see that because of their inertial nature, all the contact forces of the reactive
model (1) can in fact be directly derived from the left hand side (l.h.s.) of (4). However, we shall
use in the simulations of 7 the external load of the right hand side (r.h.s.) of section (4) in order
to improve the L.A.E.B.T. of some corrections.

3.3 Application to an internally actuated Cosserat beam
Following [1], we propose to model the hyper-redundant eel-robot as a Cosserat beam sub-

mitted to a �eld of curvature Kd(t) : X1 ∈ [0, 1] 7→ Kd(X1, t) ∈ so(3), imposed at each instant t
along its back-bone. Furthermore, the rigid cross sections of the beam, model the parallel plat-
forms (which mimic the vertebrae of the animal) linked together through the pitch-yaw universal
joints (see introduction). With these choices, the internal beam kinematics has to satisfy the
following constraints :

∀X1 ∈]0, 1[: K(X1) = Kd(X1, t) , Γ(X1) = E1, (12)
where the rotational part of (12) (with Kd(t) = Kd,2(t)E2 + Kd,3(t)E3) stands for the de-

sired control inputs, while the translational one stands for the "inextensibility" and "Kirchho�
constraints" of beam theory [33]. Finally, note that (12) can be rewritten as the single space-twist
relation :

ξ(X1)− ξd(X1, t) = 0, ∀X1 ∈]0, 1[, (13)
with ξd = (KT

d , ET
1 )T . Once the internal constraints so de�ned, we are now able to �x the

Lagrangian density of (7) as :

Lb(η, ξ, t) = Tb(η)− Ub(ξ, t), (14)
where we introduced :

7
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� The left invariant density of internal energy U imposed by the constraints as :

Ub(ξ, t) = λ.(ξ − ξd(t)), (15)
where λ : X1 ∈ [0, 1] 7→ λ(X1) ∈ se(3)∗ is the �eld of internal wrench which forces the
constraint (13), i.e. λ = (CT , NT )T where C and N are the density �elds of internal torque
(Cα = C.Eα, α = 2, 3 are the two control torque laws) and internal reaction force respec-
tively.

� The left invariant density of beam kinetic energy Tb, de�ned by :

Tb(η) =
1
2
η.(Jb.η), (16)

and Jb(X1) is the 6 × 6 density of material inertia tensor, which in the case of an elliptic
cross-sectional pro�le is given by :

Jb =
(

Jb 0
0 Mb

)
, (17)

with : Jb = ρb(J1E1⊗E1+J2E2⊗E2+J3E3⊗E3), Mb = ρbA(E1⊗E1+E2⊗E2+E3⊗E3),
ρb is the mass per unit of beam volume, and A, Ji, (i = 1, 2, 3) are the area and geometric
moments about ti, (i = 1, 2, 3) of the X1 beam cross section respectively.

Finally, let us insert (14) with (16) and (15), into (10)-(11) gives :

∂(Jb.η)
∂t

− ad∗η (Jb.η)− ∂λ

∂X1
+ ad∗ξ(λ) = F, (18)

with the boundary conditions :

λ(0) = F− , and : λ(1) = −F+. (19)
Then, identifying se(3) and se(3)∗ to R6, the explicit expression of the co-adjoint action of

any twist Ξ = (ΩT , V T )T ∈ se(3) onto any wrench Θ = (CT , NT )T ∈ se(3)∗ is given by [34] :

ad∗Ξ(Θ) =
(

C × Ω + N × V
N × Ω

)
, (20)

Furthermore, if we denote by Jb.η = ∂Tb/∂η = (ΣT
b , P T

b )T the density of material kinetic
wrench along the body and by F = (CT

, N
T )T , the density of external material wrench, we �nd

after simple computations starting from (18) and using (20) :

∂

∂t

(
Σb

Pb

)
+

(
Ω× Σb + V × Pb

Ω× Pb

)
=

∂

∂X1

(
C
N

)
+

(
K × C + Γ×N

K ×N

)
+

(
C

N

)
.

(21)

Finally, the �eld equations (21), once completed with the boundary conditions (19) which
can now be detailed, with F± , (CT±, NT±)T , as :

(
C(0)
N(0)

)
=

(
C−
N−

)
,
(

C(1)
N(1)

)
= −

(
C+

N+

)
, (22)

plus the internal constraints (12), and the de�nitions (6), form a closed form of the internally
actuated Cosserat beam dynamics.

8
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3.4 Computational algorithm
From the beam theory point of view, the closed form (6,12,21,22) corresponds to the dyna-

mics of a torque-actuated Kirchho� inextensible beam [33] once they are stated in the larger
con�guration space (2) of Reissner-Timoshenko beams [35]. In the passive case, such a closed
form can be solved by applying the geometrically-exact �nite-element method of Simo [36, 33].
Here, we will not follow this approach but rather a computational algorithm recently proposed
in [1] for the dynamics of hyper-redundant robots ("trunk robots", "snake-like" or "eel-like" ro-
bots...). This algorithm is based on a slight di�erent formulation from (6,12,21,22) that we now
detail as following. Firstly, let us explicitly force the constraints (12) in (21) which can then be
rewritten in the spatial setting (we use small characters for denoting the spatial counterparts of
the material tensors previously de�ned), as :

∂

∂t

(
σb

pb

)
=

∂

∂X1

(
c
n

)
+

(
t1 × n

0

)
+

(
c
n

)
. (23)

Secondly, as far as the boundary conditions are concerned, they are unchanged, and we can
write them in the spatial setting as :

(
c(0)
n(0)

)
=

(
c−
n−

)
,

(
c(1)
n(1)

)
= −

(
c+

n+

)
. (24)

Thirdly, (6) is used to rewrite the constraints (12) as :

∂R

∂X1
= R.K̂d(t) , ∂r

∂X1
= R.E1 = t1. (25)

Hence, this second formulation is obtained in two steps : 1�) the Hamilton principle (4) is
developed on the Reissner-Timoshenko con�guration space, i.e. with any δξ de�ned by (9.b), 2�)
once all the variational calculus is achieved, the constraint ξ = ξd is forced. Now, the reader
familiar with "robot dynamics" will recognize in ((23)-(25)) the (closed) Newton-Euler formu-
lation of manipulators [37], here extended to the case of a continuous locomotive robot where
the body index is replaced by the cross section label X1. In this context, we proposed in [1] a
fast algorithm enable to solve the following dynamic problem : "Compute the head motion of
the beam (i.e. that of (G, t1, t2, t3)(0)), and the internal torque law C, from the knowledge of
the internal strain law Kd(t)". From the point of view of robotics, this algorithm is nothing but
a continuous version of the Newton-Euler computed torque algorithm of manipulators [38], here
extended to the case of locomotion. In order to illustrate this, let us consider the more simple
case of a continuous manipulator rigidly linked in X1 = 0 to a mobile platform of given motion
t 7→ go(t) and submitted to the known wrench (cT

+, nT
+)T at the other tip. In this case, the �rst

natural boundary condition (24.a) is replaced by the geometric one : g(X1 = 0) = go(t) and
at each current time t, the algorithm �rst computes the current con�guration of the beam by
space forward integrating (25) (i.e. w.r.t. X1 and from the earth to the tip), which plays the
role of a continuous kinematic model for the manipulator. Then, time di�erentiating (25) twice,
gives the continuous models of the Galilean beam velocities and accelerations [1], that the al-
gorithm forward space integrates too, in order to compute the desired velocity and acceleration
�elds along the beam. Once all these kinematics known, the p.d.e.'s (23) are backward space
integrated at t �xed (with (24.b) as boundary conditions), in order to obtain the internal force n
and �nally the control torque law C which insures (Kd, ∂Kd/∂t, ∂2Kd/∂t2)(t) with g(0) = go(t),
(∂g/∂t)(0) = ġo(t) , (µogo)(t), and (∂2g/∂t2)(0) = g̈o(t) , ((µ̇o + µ2

o)go)(t) (we denote by a dot
the time derivative of a function which only depends on time). Hence, in the case of a continuous
manipulator, the algorithm of [1] can be summarized as follows :

9
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C(t) = Gint

(
(go, µo, µ̇o) (t),

(
Kd,

∂Kd

∂t
,
∂2Kd

∂t2

)
(t)

)
, (26)

where Gint formally denotes the map which numerically computes the internal torques. In
the case of a continuous locomotor (like a swimming eel-like robot), the previous algorithm
can be extended by replacing the imposed time evolution t 7→ go(t) (i.e. this of the external
d.o.f.), by a dynamic model or "external dynamics", which encodes the e�ect on the head-frame
(G, t1, t2, t3)(X1 = 0) of all the contact forces applied by the environment onto the animal while it
moves its internal d.o.f.. In our case, these external dynamics can be formally written as follows :

(
µ̇o

ġo

)
=

(
Gext

(
go, µo,

(
Kd,

∂Kd
∂t , ∂2Kd

∂t2

)
(t)

)

µogo

)
. (27)

In the following, we propose an e�cient way of computing Gext for a swimming elongated
�sh. As it is proposed in [1], this computation ends with the formula Gext = I−1

o .Fo, where Io is
the 6×6 tensor (with respect to the nose cX1=0) of the inertia and added masses of all the mater
(body+�uid) contained at each instant in D, while Fo is the wrench of all the inertial and external
forces applied onto the robot. As for Gint, it is worth noting here, that in accordance with the
Newton-Euler formalism of robot dynamics [38, 39, 40], Gext (i.e. Io and Fo), will be computed
under an implicit form, giving its programming simplicity and computational e�ciency to the
approach. Finally, this algorithm is based on an extension of the Poincaré-Cosserat equations to
the �uid laterally surrounding the beam, that we are now going to detail.

4 Basic picture of the anguilliform swim
The extension of the previous mathematical construction to the �uid around the beam is

based on the Lighthill model of anguilliform swim. As this model is �rst based on the Elongated
Body Theory (E.B.T.), we start from this context (subject of the two following subsections) but
here extended to the three dimensional case, and we will reconsider (in subsection 4.3) the case
of a 3D Large Amplitude E.B.T. or L.A.E.B.T. (as �rst evoked at the end of section 2).

4.1 Fluid kinematics
Let us �rst recall that in the E.B.T. the beam is assumed to endure small deformations.

Then, if we prolong its material axis in the front of its nose by a rigid line supported by −t1(0),
X1 now belongs to ] −∞, 1], and for any point x ∈ D near to the body, a label X1 ∈] −∞, 1]
exists such that x = r(X1) + (X2t2(X1) + X3t3(X1)) , r(X1) + xX1 . Then, following [13],
due to the slenderness (and small perturbations of the body shape) of the swimming �sh, the
three dimensional potential �ow in D can be approximated by a one-dimensional strati�cation
of planar potential �ows. By "strati�cation" we here understand a continuous juxtaposition of
�uid slices, each one of them being de�ned as the part of �uid contained at each instant in
the geometric section sX1(t) which prolongs the current beam cross section con�guration cX1(t)
(see Figure 3). More precisely, at the �rst order of approximation w.r.t. the small quantities of
the problem, the hydrodynamic forces exerted onto a slender undulating �sh are derived from
the unsteady Bernoulli pressure law with the following approximation of the three-dimensional
velocity potential φ :

∀x ∈ D, φ(x) = φ(r(X1) + xX1) ' φX1
(xX1), (28)

where φX1
= 0 if X1 ∈]−∞, 0], while if X1 ∈]0, 1], each φX1

is solution of the planar Neumann
problem :

10
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∆φX1
= 0, on sX1(t)− cX1(t), (29)

where the �uid is at rest far from the body and submitted to the following boundary conditions
on ∂cX1(t) :

∂φX1

∂nX1

= ((V2t2 + V3t3)(X1) + (Ω1t1)(X1)× xX1) .nX1 , (30)

with nX1 , the outward normal to the planar beam cross section pro�le ∂cX1(t) which veri�es :
n(x = r(X1)+xX1) ' nX1(x) all along the beam except on the rounded nose, where the slender-
body assumption introduces a local negligible error [41]. Finally, in the E.B.T. the �uid kinematics
are replaced by those of a one dimensional strati�ed medium of �uid slices staying axially (i.e.
along the eel backbone) at rest with respect to the ambient space but sweeping past the strati�ed
space of beam slices.

Fig. 3 � Strati�cation of the �uid �ow in D.

4.2 Fluid kinetics
In order to extend the Poincaré picture from the Cosserat beams to the E.B.T. of �uid

mechanics, the previous reduction (strati�cation of kinematics) should be pushed forward to the
kinetics. For that purpose, we use the Kirchho� principle for potential �ow around a rigid body
[42], where in our case the basic rigid elements are the beam cross sections pushing laterally the
�uid in the slices according to (28-30). In this context, the set of planar potentials de�ned by
(28-30) can be rewritten in the Kirchho� form as :

∀X1 ∈ [0, 1] , φX1
(xX1) = Ψ1,X1Ω1 + Ψ2,X1V2 + Ψ3,X1V3, (31)

where the Ψi,X1 's are some harmonic functions of (X2, X3) verifying on ∂cX1(t) the following
time-independent boundary conditions deduced from (30) :

∂Ψ1,X1

∂nX1

= (xX1 × nX1).t1(X1) , ∂Ψα,X1

∂nX1

= (nX1 .tα)(X1), α = 2, 3. (32)

Now if ρf is the �uid mass per unit of volume, the general expression for the kinetic energy
Tf of the �uid contained in the control box D is given by :

Tf =
1
2

∫

D
ρf∇(φ)2dD =

1
2

∫

D
ρf (∇(φ∇(φ))− φ∆φ)dD. (33)

11
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Then from Stokes theorem and because φ is harmonic in D, we �nd :

Tf =
1
2

∫

∂D
ρfφ

(
∂φ

∂n

)
d∂D. (34)

But the �uid being at rest at in�nity and due to the approximation (28-30), (34) can be
rewritten as :

Tf =
1
2

∫ 1

0
ρf

(∫

∂cX1

φX1

(
∂φX1

∂nX1

)
d∂cX1

)
dX1 =

∫ 1

0
Tf dX1, (35)

where Tf is the left invariant density of kinetic energy of the �uid strati�ed inside D, which
can be rewritten by inserting the Kirchho� form (31) into (35), as :

Tf (η) =
1
2
η.(Jf .η), (36)

with Jf (X1), the tensor of added (or "virtual") masses of the X1 cross section which for an
elliptic pro�le, can be detailed as follows :

Jf =
(

Jf 0
0 Mf

)
. (37)

Finally, from complex planar potential �ow theory and conform mapping, we have : Jf =
ρf (π/8)(a2 −b2)2E1 ⊗E1, and Mf = ρfπ(b2E2 ⊗E2 + a2E3 ⊗E3), with 2a(X1) and 2b(X1) the
length of the major and minor axes of the beam elliptic cross section cX1 respectively. Lastly,
thanks to the the slender-body assumption and the Kirchho� potentials approach, we were able
to reduce the con�guration space of the �uid contained in D onto that of the beam de�ned by
(2) as it is done in [25] for the discrete multi-body case.

4.3 Remark about the Large Amplitude E.B.T.
In the case when the �sh body endures deformations of �nite amplitudes, the previous stra-

ti�cation of the three dimensional �ow in D cannot be achieved in all cases. In fact, due to the
beam curvatures, the geometric planes sX1 prolonging the beam cross sections cX1 will intersect
so forcing the �uid slices to mix together (as in the multi-body case of [25]). Be that as it may,
the author of the L.A.E.B.T. neglects this phenomenon, which is assumed to occur su�ciently
far from the body to have negligible e�ects on its dynamics. Nevertheless, this choice gives to
the L.A.E.B.T. the heuristic character discussed at the end of section 2. Finally, contrary to the
case of the E.B.T. which is funded on the previous kinematics, deduced from an expansion in
perturbations of the slender (rigid) body theory, the L.A.E.B.T. is directly introduced through
the basic �uid kinetics (36) (in fact the density of lateral impulses) which in the case of the
planar swim studied by Lighthill reduces to Tf = (1/2)mV 2

2 (with m = ρfπa2) [29], [10].

5 Generalisation of the Poincaré-Cosserat picture to the L.A.E.B.T.
The purpose of this section is to apply the Poincaré-Cosserat picture to the previous three-

dimensional L.A.E.B.T.. For this, it is worth noting here that the context of section 3 di�ers
from this now studied in two points. Firstly, the �uid kinetic energy has to be added to the body
Lagrangian of (7), in order to de�ne the Lagrangian of the total ("�uid" plus "body") material
system contained at each instant in D :

L =
∫ 1

0
L dX1 =

∫ 1

0
Tb + Tf − Ub dX1. (38)

12
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Secondly, due to the �uid �owing out of D, the material system contained at each instant
in the control box D is an "open material system." Hence, as this is usually the case for this
type of systems [43], we wait for some new inertial terms (for instance modeling the ejection
of matter through the control surface bounding the system) that do not appear in the case of
usual "closed material systems" (like the beam alone for instance). As we will see in this section,
in our case these new terms correspond to the "rate of change of momentum within D due to
momentum transport across the plane π" of (1) here generalized to the three dimensional swim.
Furthermore, they can be completely deduced from the �uid kinetic energy of (38) by using the
following extension of the Hamilton principle (4) to the case of our strati�ed �uid �owing out of
D (see B) :

∫ t2

t1

∫ 1

0
δ(Tf + Tb − Ub) dX1dt =

∫ t2

t1

(
δWext −

[(
V1

∂Tf

∂η
− Tf

(
0

E1

))
.δζ

]1

0

)
dt, (39)

where the boundary term of the r.h.s. is due to the relative motion of the two strati�ed media
(the beam and the strati�cation of �uid slices), de�ned by (see B.1 in the appendix) :

ηf = η − V1ξ, (40)

with ηf , the twist of the �uid slice (which coincides with the geometric slice sX1(t)) prolonging
cX1 at the current time t.

5.1 Generalization of the Poincaré equations to the L.A.E.B.T.
Before developing (39) through variational calculus, one should point out that Tf , de�ned by

(36,37), being mechanically related to the �uid, it should be a quadratic form of the �uid slice
twists ηf rather than η. In fact this is actually the case since taking (12,13) and the sparse form
of (37) into account, allows one to write :

Jf .ξ = Jf .ξd = 0 . (41)
Hence, replacing η by (40) in (36), (41) does impose Tf (η) = Tf (ηf ). Furthermore, if taking

Tf as a function of η or ηf seems indi�erent in (39), however, when developing (39), Tf should
be varied on the Reissner beam con�guration space, i.e. with any δξ de�ned by (9.b). However,
since from (40) we have : (δηf = δη−V1δξ−ξδV1) 6= δη, it is necessary (as it will be con�rmed at
the end of this subsection) for the completeness of the variational calculus to take Tf = Tf (ηf )
in (39), and to write :

δTf =
(

∂Tf

∂ηf

)
.δηf =

(
∂Tf

∂ηf

)
.(D.δη − V1δξ), (42)

where we introduced the tensor D(ξ) = 1 − ξ ⊗ (0T , ET
1 )T such that D.δη = δη − ξδV1 and

where "1" here denotes the unit tensor of R6 ⊗ R6. Then, using (9) and the linearity of the
co-adjoint map, we can write :

δTf =
(

∂Tf

∂ηf

)
.

(
D.

(
∂δζ

∂t
+ ad∗η(δζ)

)
−

(
V1

∂δζ

∂X1
+ ad∗ξ(V1δζ)

))
. (43)

Now inserting (43) into the integral �uid contribution of (39), gives :
∫ t2

t1

∫ 1

0
δTfdX1dt = I1 + I2, (44)
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with : I1 =
∫ t2

t1

∫ 1

0

(
∂Tf

∂ηf

)
.

(
D.

(
∂δζ

∂t
+ ad∗η(δζ)

))
dX1dt = (45)

∫ t2

t1

∫ 1

0
δζ.

(
− ∂

∂t

(
DT .

∂Tf

∂ηf

)
+ ad∗η

(
DT .

∂Tf

∂ηf

))
dX1dt,

and : I2 =
∫ t2

t1

∫ 1

0

(
∂Tf

∂ηf

)
.

(
− ∂δζ

∂X1
V1 − ad∗ξ(V1δζ)

)
dX1dt = (46)

∫ t2

t1

([
δζ.

(
−V1

∂Tf

∂ηf

)]1

0

−
∫ 1

0
δζ.

(
∂

∂X1

(
−V 1 ∂Tf

∂ηf

)
+ V1ad∗ξ

(
∂Tf

∂ηf

))
dX1

)
dt.

Now, in agreement with the subsection 3.4, because all the variational calculations are achie-
ved (i.e. δζ is in factor of all the contributions of I1 and I2), we can force again : ξ = ξd.
Consequently from (41), we have : ∂Tf/∂ηf = Jf .ηf =Jf .(η − V1ξd) = Jf .η = ∂Tf/∂η, and
DT (ξd).(∂Tf/∂ηf ) = (1 − (0T , ET

1 )T ⊗ ξd).(Jf .ηf ) = Jf .ηf − 0 = (∂Tf/∂ηf ), in (45,46). Then,
taking these simpli�cations into account in (44) and (39), allows one to deduce the dynamics of
all the matter contained in the control box D as :

∂

∂t

(
∂(Tb + Tf )

∂η

)
− ad∗η

(
∂(Tb + Tf )

∂η

)
=

∂

∂X1

(
∂Ub

∂ξ
+ V1

∂Tf

∂η

)
− ad∗ξ

(
∂Ub

∂ξ
+ V1

∂Tf

∂η

)
+ F, (47)

with the boundary conditions of the total system :
(

∂Ub

∂ξ

)
(0) = λ(0) = −

(
Tf

(
0

E1

))
(0) + F−, (48)

(
∂Ub

∂ξ

)
(1) = λ(1) = −

(
Tf

(
0

E1

))
(1)− F+. (49)

Furthermore, pre-multiplying each of the two rows of (47-49) by R(X1) allows one to obtain
the dynamics of all the matter in D in the spatial setting :

� Field equations of the total system (�uid + body) :

∂

∂t

(
σb + σf

pb + pf

)
+

(
(∂r/∂t)× pf

0

)

=
∂

∂X1

(
c + V1σf

n + V1pf

)
+

(
t1 × (n + V1pf )

0

)
+

(
c
n

)
. (50)

� Boundary conditions of the total system :
(

c
n

)
(0) =

(
0

−Tf t1

)
(0) +

(
c−
n−

)
,

(
c
n

)
(1) =

(
0

−Tf t1

)
(1)−

(
c+

n+

)
. (51)

Before closing this section it is worth noting here, that for any X1 ∈]0, 1[, the equations (50)
state the balance of kinetic amounts of all the mater contained in the geometric strip bounded
by the planes sX1 and sX1+dX1 , both attached to the beam (see �gure 4). Hence, this balance
contains three types of terms : 1�) the usual terms of the beam alone (23), 2�) the terms modeling
the proper time-rate of changes of the �uid kinetic amounts (they have the same form as the
previous ones with the �uid kinetic amounts replacing the body ones), 3�) those modeling the

14



EMN - IRCCyN Technical Report No. : 07/8/Auto

time-rate of change of the �uid kinetic amounts of the strip due to the fact that the �uid slices
sweep past the body ones (these are the terms containing V1). Finally, let us remark that if (39)
is computed by taking Tf (η) instead of Tf (ηf ), all the terms of the third type disappear although
they should not. Lastly, following [16], the terms containing Tf in (51) can be interpreted as the
resultant forces exerted by the �uid outside D across sX1=0 and sX1=1 = π.

Fig. 4 � The kinetic amounts of all mater contained in the geometric strip bounded by the planes
sX1 and sX1+dX1 .

6 External (head) dynamics
Devoted to the locomotion control and the study of swimming gaits, the algorithm of [1]

needs to derive the dynamics of the eel on the principal �ber bundle SE(3)× S where the �ber
SE(3) stands for the head con�guration space i.e. the set of all the g(X1 = 0) , go's, while the
shape space S, is here de�ned by the functional set of curves in the Lie algebra so(3) :

S , {K : X1 ∈ [0, 1] 7→ K(X1) = K2E2 + K3E3 ∈ so(3)}. (52)
In fact, when the eel swims, the internal actuators impose the constraint (12.a) at each instant

and the eel propels its head (external d.o.f.) by reaction due to the hydrodynamic forces applied
by the �uid on its body. This dynamic model, formally denoted Gext in (27), is derived from the
weak form of virtual work balance here applied to all the mater in D and consistent with the
strong form (50-51) :

∫ 1

0
δν.

(
∂

∂t

(
σb + σf

pb + pf

)
− ∂

∂X1

(
V1σf

V1pf

)
−

(
t1 × V1pf

0

))
dX1 (53)

=
∫ 1

0

(
δξ.λ + δν.

(
c
n

))
dX1 −

[
δν.

(
0

Tf t1

)]1

0

+ δν(0).
(

c−
n−

)
− δν(1).

(
c+

n+

)
,

where δν = δgg−1 denote any spatial �eld of virtual twist applied along the beam. Then, let
us introduce the two maps : Adg∗ : se(3) → se(3) and Ad∗g : se(3)∗ → se(3)∗ such that :

Adg∗ =
(

1 0
−r̂ 1

)
, Ad∗g =

(
1 r̂
0 1

)
, (54)

where 1 denotes the identity tensor of R3⊗R3, and g ∈ SE(3) is given by (3). Now, in order
to derive the head dynamics, we just have to take in (53) a virtual displacement �eld δν de�ned
by :
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δν(X1) = Adh(X1)∗.δνo, (55)
with h(X1) = g−1

o g(X1), and δνo = (δgg−1)(0) denoting the con�guration of the X1-cross
section with respect to the head frame and the head spatial virtual twist respectively. It is worth
noting here, that with this restriction, the "virtual motion" de�ned by (55) is a rigid one imposed
on the eel (through its head) while it is in its current frozen internal con�guration. Consequently,
with such a virtual �eld, the virtual work of internal wrenches "δUb =

∫ 1
0 δξ.λ dX1" is necessary

zero, and we can rewrite (53) as :

δνo.

∫ 1

0
Ad∗h(X1).

(
∂

∂t

(
σb + σf

pb + pf

)
− ∂

∂X1

(
V1σf

V1pf

)
−

(
t1 × V1pf

0

))
dX1 (56)

= δνo.

{∫ 1

0
Ad∗h(X1).

(
c
n

)
dX1 −

[
Ad∗h(X1).

(
0

Tf t1

)]1

0

+
(

c−
n−

)
−Ad∗h(1).

(
c+

n+

)}
.

Now, let us consider the two last terms of the l.h.s. of (56), we have :

∫ 1

0
Ad∗h.

[
∂

∂X1

(
V1σf

V1pf

)
+

(
V1t1 × pf

0

)]
dX1 (57)

=
∫ 1

0

∂

∂X1

[
Ad∗h.

(
V1σf

V1pf

)]
+

(
V1t1 × pf

0

)
− ∂Ad∗h

∂X1
.

(
V1σf

V1pf

)
dX1.

Hence, because :

∫ 1

0

(
V1t1 × pf

0

)
− ∂Ad∗h

∂X1
.

(
V1σf

V1pf

)
dX1 =

∫ 1

0

(
V1t1 × pf

0

)
−

(
0 t̂1
0 0

)
.

(
V1σf

V1pf

)
dX1 = 0 , (58)

we can rewrite (57) as :

∫ 1

0
Ad∗h.

[
∂

∂X1

(
V1σf

V1pf

)
+

(
V1t1 × pf

0

)]
dX1 =

∫ 1

0

∂

∂X1

[
Ad∗h.

(
V1σf

V1pf

)]
dX1

=
(

V1Ad∗h

(
σf

pf

))
(1) − V1(0)

(
σf (0)
pf (0)

)
. (59)

Finally, inserting (59) into (56), gives with p = pb + pf and σ = σb + σf :

∫ 1

0

(
∂σ/∂t + (∂r/∂t)× pf + r × (∂p/∂t)

∂p/∂t

)
dX1 =

[
Ad∗h

(
V1σf

V1pf − Tf t1

)]1

0

+

+
∫ 1

0
Ad∗h

(
c
n

)
dX1 +

(
c−
n−

)
−Ad∗h(1)

(
c+

n+

)
. (60)

Now, let us remark that because the eel's cross section cX1=0 reduces to a single particle, its
added mass tensor is equal to zero. Hence, splitting the �uid and body kinetic amounts in (60)
and removing the external loads which are not present in the Lighthill reactive modeling, give
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the following expression of the wrench fh (w.r.t. the origin of space), of the hydrodynamic forces
applied onto the eel :

fh = − ∂

∂t

∫ 1

0

(
σf + r × pf

pf

)
dX1 + V1(1)

(
σf + r × pf

pf

)
(1)−

(
r × Tf t1

Tf t1

)
(1).

(61)

Finally, in the case of the planar swim in (e1, e2), we have V3 = Ω1 = 0 and so : σf = 0, pf =
mV2t2 and Tf = (1/2)mV 2

2 . Then taking these considerations into account in (61), gives the
Lighthill Large Amplitude E.B.T. model of (1), whose (61) is nothing but the three dimensional
generalization.

7 Simulations
7.1 Principle of the algorithm

Following the remarks of subsection 3.3, the principle of the algorithm is the following. It
is structured by two spatial integration loops computing Gext and Gint respectively, and both
included in a global time loop. The inputs are the current head state (go, µo) and the internal cur-
vature time law Kd. The �rst space integration loop Gext starts by forward integrating (from the
head to the tail) the beam kinematics (con�guration, velocity). Then making the head accelera-
tions explicitly appear in (60) allows one to write Gext as Gext = I−1

o .Fo where the inertia tensor
Io and the wrench Fo are computed through a forward space integration included in the �rst
space loop (see [1] for more details). Finally, the �rst space-loop ends and (27) is time-integrated
in order to update the head state. Then, Gint starts by computing the beam accelerations by a
forward space-integration initialized by the head acceleration previously computed. Then, for-
ward space integrating (50) gives the internal forces n and �nally the control torque C, which,
once completed with the head accelerations µ̇o, are the outputs of the algorithm at the current
time. Finally, the time is updated and the algorithm resumes.

7.2 A numerical example
In this section, we report a numerical example obtained with the algorithm of subsection

7.1. The concerned result is a "three dimensional rising and falling gait". For more details about
numerical aspects we invite the reader to consult [18] where a complete set of planar gaits is also
tested and compared to Navier-Stokes simulations with many gaits parameters. The algorithm
was implemented in C++ on a workstation with a Pentium IV (3.2 GHz with 1Go of Ram). The
integrations of space and time loops are achieved with a fourth order RK method. All the tests
presented below work between "0.2 and 0.7 times the real time" and are thus compatible with
on-line computation.

7.2.1 Geometric description of the eel-like robot and corrections of the L.A.E.B.T.
The straight reference geometry of the robot is drawn in �gure 5. Its total length l is one

meter. Its material is assumed to be homogeneous with a "mass/volume" ratio equal to that
of water to ensure a buoyancy neutrality (the mass is 1.94Kg). The shape is �rst de�ned as a
cylinder of diameter D = 0.1m for any X1 ∈ [0.05, 1]. This cylinder is covered with an half-
ellipsoid between X1 = 0 and X1 = 0.05. Next, this shape is deformed as follows. For any cross
section, the minor axis (along E2) is multiplied by A(X1), and its major axis (along E3) by
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Fig. 5 � Geometry of the Body.

B(X1), where A and B are two functions de�ned by :

A(X1) = −1
6

[
sin

(
πX1 − π

2

)
+ 1

]
− X2

1

8
+

1
2
, for : 0 ≤ X1 < 1,

B(X1) = 1 , for : 0 ≤ X1 <
1
5
, B(X1) =

3
5
, for : 3

4
≤ X1 < 1,

B(X̃1) = 1− sin(πX̃1 − π/2) + 1
5

, for : 1
5
≤ X1 <

3
4
, with X̃1 =

20X1 − 4
11

.

As far as the contact model is concerned, the reactive component is �xed by the added mass
tensor of subsection 4.2 with the above geometry which allows one to deduce the minor and major
axes length 2a(X1) and 2b(X1) of any cross section cX1 . As proposed in [18], this model is �rstly
improved with the following axial corrections which model the resistive and reactive forces applied
onto the rounded nose neglected by the slender body assumption : c− = 0 , n− = nreac−+nres−,
with : nreac− = −mo((t1.(∂2r/∂t2))t1)(0), and nres− = −(1/2)ρfko(V1|V1|t1)(0). Secondly, the
e�ects of the �uid viscosity on the body are modeled by the following slice by slice resistive
model : ∀X1 ∈]0, 1[: n(X1) = nres(X1), c(X1) = cres(X1), where : cres = (−1/2)ρfk4Ω1|Ω1|t1,
nres = (−1/2)ρf

∑i=3
i=1 kiVi|Vi|ti ; while no force is applied onto the trailing edge except the

inertial ones of the reactive model, i.e. n+ = 0, c+ = 0. Thirdly, in agreement with the standard
uses of naval engineering [44, 45, 46], we took the following expressions : mo = ρfπkaoboco,
ko = πcpaobo, k4 = c1π(a2 − b2)2, k1 = cfP (where P ' π/2((3/2)(a + b)−

√
ab) stands for the

elliptic cross section perimeter), k2 = 2c2a, k3 = 2c3b. Lastly, according to the robot geometry
and "a trial and error based strategy" using Navier-Stokes simulations [18], we took the following
values (�xed once and for all in all the simulations) : a0 = 0.025m, b0 = c0 = 0.05m, k = 0.32,
cp = 0.036, c1 = 1, c2 = 1.98 and c3 = 1. Finally cf is de�ned as follows in order to take
into account the transition phenomena in the boundary layer (laminar �ow to turbulent �ow) :
cf = 0.664/Re0.5, for : Re ≤ 8.104,cf = 0.059/Re1/5, for : Re > 8.104 ; where we introduced the
local axial Reynolds number Re(X1) = (V1X1)/ν and ν the kinematic viscosity of water.

7.2.2 Example : three-dimensional rising and falling gait
The goal of this example is to achieve a falling gait or "submergence" from one given altitude

to another (see �g.6). This is accomplished with the following "pitch-yaw curvature" law :

Kd(t,X1) = K2(t,X1)E2 + K3(t,X1)E3, (62)
where we adopt the following yaw-curvature law :

K3(t,X1) = fr(t, 0, T )Kf3(t,X1), (63)
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Fig. 6 � Body con�gurations for the falling gait (2fps).

with fr(., ti, tf ), a sinusoid ramp de�ned by :

fr(t, ti, tf ) = 0 , for : 0 ≤ t < ti,

fr(t, ti, tf ) =
t− ti
tf − ti

− 1
2π

sin
(

2π
t− ti
tf − ti

)
, for : ti ≤ t < tf ,

fr(t, ti, tf ) = 1 , for : t ≥ tf , (64)

which has null �rst and second order derivatives at the commutation instants thereby guaran-
teeing smooth time transitions, while Kf3 (with f for "forward"), is the backward sinusoidal
wave (traveling from the head to the tail) of the nominal "straight-line swim" as it has been
extensively studied in the zoological literature [47, 48, 49], i.e. :

Kf3(t,X1) = fa(X1) sin
[
2π

(
X1

λ
− t

T

)]
, with fa(X1) = a2X

2
1 + a1X1 + a0, (65)

where : λ is the wave length, T is its period and a0, a1, a2 are the coe�cients of the amplitude
modulation polynomial function fa. Finally, we also took the following pitch-curvature law :

K2(t,X1) = Kc2 γ(t), (66)

with Kc2 a constant component, and γ(t) = fr(t, t1, t2) , for : t < t2, γ(t) = 1−fr(t, t2, t3), for :
t2 ≤ t < t4, γ(t) = −fr(t, t4, t5), for : t4 ≤ t < t5, and γ(t) = fr(t, t5, t6)− 1, for : t ≥ t5. Finally
all the following results were obtained with the strain law (62) and the following parameters :
λ = 1m, T = 1s, a2 = 2rad.m−3, a1 = 0.5rad.m−2 and a0 = 1rad.m−1, Kc2 = 0.5rad.m−1,
t1 = 1s, t2 = 2s, t3 = 3s, t4 = 6s, t5 = 7s and t6 = 8s.

On Figure 7 the spatial pro�les are plotted (along the eel backbone) of the internal axial
force N1 and those of the two control torques C2 and C3. On �g.8, the same internal stresses are
plotted but with respect to the time and at a point located at the half of the eel length. Lastly,
�g.9 shows the time evolution of the axial head velocity and of its angular roll one. While the
roll dynamics play no role in the de�nition of the locomotion gaits, they are very in�uential on
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(a) N1 at t = 7s. (b) C2 at t = 7s. (c) C3 at t = 7s.

Fig. 7 � "X1 pro�le" of internal force N1, and internal torques C2 and C3 at t = 7s for the
falling gait.

(a) N1 at X1 = 0.5m. (b) C2 at X1 = 0.5m. (c) C3 at X1 = 0.5m.

Fig. 8 � "t pro�le" of internal force N1, and internal torques C2 and C3 at X1 = 0.5m for the
falling gait.

Fig. 9 � Time evolution of V1(0) and Ω1(0) for the falling gait.

their control. For instance, in the case of the falling gait, they break the symmetry of the yaw
dynamics and produce the deviation of �g.6. Thus, the roll dynamics will imperatively require a
stabilization control based on the use of pectoral �ns [50].

8 Conclusion
This article deals with the dynamic modeling of the anguilliform swim of elongated �shes.

Devoted to the on-line control of an eel-like robot capable of swimming in the three dimensions,
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the proposed solution is entirely analytic and once coupled to an algorithm recently proposed in
[1], it works in a fraction of the real-time. The model is a generalization of the Large Amplitude
Elongated Body Theory of Lighthill to the case of the three-dimensional swim. Furthermore,
contrary to the Lighthill result, the swim is self-propelled and the internal body dynamics are
also investigated. In order to derive this model, the article proposes to use a geometric frame-
work due to Poincaré and here applied to a one dimensional Cosserat medium. Such media were
extensively studied by J.C. Simo [30, 51] in the context of his "Geometrically-Exact" theory
of �nite elements. Because, this picture is originally restricted to the �sh body, the article also
extends the Poincaré equations from a standard Cosserat medium to a strati�ed �uid contained in
a control volume laterally surrounding the �sh body. This last extension is based on the Lighthill
theory of anguilliform swim itself originally founded on the Slender Body Theory of aeronautics.
Moreover, it uses a generalization of the Hamilton principle, also derived for this article, to a
material open system. In our case, the open system is assimilated to the strati�ed �uid contained
at each instant in the control volume which moves with the body. Once this generalized Hamilton
principle obtained, its application gives the waited for reactive model of the three-dimensional
anguilliform swim. Furthermore, like any Lagrangian based modeling, all the nonlinear dynamics
forces are derived from the system Lagrangian and a "blind" variation calculus. This advantage
is crucial here because of the "complexity" of �uid-structure interactions. Finally, while being
su�ciently fast for on-line control, the model is su�ciently accurate too. In fact, comparisons
with a Navier-Stokes solver for several gaits show discrepancies inferior to ten per-cents [18].

A Proof of the Cosserat beam equations ((10),(11))
The purpose of this appendix is to compute the �eld equations (10) and boundary conditions

(11) by starting from the extended Hamilton principle (4), that we now restate for a left invariant
density of Lagrangian of the form (7) and, with as external loads, a wrench density �eld F and
the two punctual wrenches F− and F+, both applied onto the two tips of the beam :

δ

∫ t2

t1

∫ 1

0
Tb(η)− Ub(ξ)dX1dt =

∫ t2

t1

∫ 1

0
F.δζdX1 + F−.δζ(0) + F+.δζ(1)dt. (67)

Because the variation δ is achieved while the time t is maintained �xed, we can �rst rewrite
(67) as :

∫ t2

t1

(∫ 1

0
δTb − δUb − δζ.FdX1 − F−.δζ(0)− F+.δζ(1)

)
dt = 0, (68)

where we have :

∫ t2

t1

∫ 1

0
δTb − δUb dX1dt =

∫ t2

t1

∫ 1

0

∂Tb

∂η
δη − ∂Ub

∂ξ
δξ dX1dt. (69)

Then, inserting (9) into (69), and integrating by part with respect to the time and space
variables, gives, the two end times t1 and t2 being maintained �xed :

0 =
∫ t2

t1

∫ 1

0
δζ.

(
− ∂

∂t

(
∂Tb

∂η

)
+ ad∗η

(
∂Tb

∂η

)
− F

)
dX1dt−

∫ t2

t1

[
δζ(1)

(
∂Ub

∂ξ
(1) + F+

)
− δζ(0)

(
∂Ub

∂ξ
(0)− F−

)]
dt

−
∫ t2

t1

∫ 1

0
δζ.

(
− ∂

∂X1

(
∂Ub

∂ξ

)
+ ad∗ξ

(
∂Ub

∂ξ

) )
dX1dt, (70)
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which has to be veri�ed for any δζ so proving (10) and (11) when we insert in them a
Lagrangian density of the form (7).

B Proof of the statement (39)
The purpose of this appendix is to prove (39). This extension of the Hamilton principle

requires the use of a one-dimensional version of the transport Reynolds theorem (subsection B.2)
devoted to the kinematics of two strati�ed media moving axially, the one w.r.t. the other (B.1).
Once these results are in hand, the variational principle is deduced from the D'Alembert principle
of virtual works here revisited for our particular case (subsection B.3). Finally, the appendix ends
with (B.4) where (39) is stated.

B.1 More about kinematics
The purpose of what follows is to give more insight about the kinematics of the beam with

respect to the �uid. Let us �rst introduce the particular derivative d./dt which follows a �uid
slice. If d./dt is applied to a given function f , mechanically related to the strati�ed �uid state,
but parameterized by the beam base variables (X1, t), we have :

df

dt
(X1, t) =

∂f

∂t
(X1, t) +

(
∂f

∂X1

dX1

dt

)
(X1, t), (71)

where dX1/dt = −V1(X1, t) is the axial velocity of the X1- beam cross section measured by
an observer attached to the �uid slice which prolongs the beam cross section to D at the current
time t. Now applying (71) to g(X1, t), gives (40), i.e. the twist of the �uid slice which prolongs
the body slice cX1 at the current time t. Corresponding to "∂./∂t" and "d./dt", we introduce two
"variations", respectively denoted "δ." and "∆.". The �rst one (δ) is the variation related to the
beam con�guration space as already de�ned in the section 3, while the second one (∆), follows
the �uid slices, and as such can be named "particular variation". It is de�ned by replacing the
time t in (71) by a variation parameter ε ∈ R. Thus :

∆f = δf − ∂f

∂X1
δζ4, (72)

where "δζ4 = δζ.(0T , ET
1 )T ", is the axial component of the virtual displacement applied to

the X1 body cross section.

B.2 One dimensional Reynolds transport theorem
Once these de�nitions introduced, a one dimensional version of the Reynolds transport theo-

rem can be deduced of :

d

dt

∫ 1

0
f(X1, t) dX1 =

∫ 1

0

df

dt
dX1 + f

d

dt
(dX1), (73)

where because the space of cross sections moves with respect to the space of �uid slices,
we do not have d(dX1)/dt = 0 but rather : d(dX1)/dt = d(dX1/dt) = (∂(dX1/dt)/∂X1)dX1.
Furthermore, since we also have dX1/dt = −V1, we can rewrite (73), thanks to (71) as :

d

dt

∫ 1

0
f(X1, t) dX1 =

∫ 1

0

(
∂f

∂t
− ∂f

∂X1
V1 − f

∂V1

∂X1

)
dX1. (74)
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And we �nally �nd :

d

dt

∫ 1

0
f dX1 =

∂

∂t

∫ 1

0
f dX1 − [fV1]

1
0 . (75)

Finally (75) is merely a one-dimensional version of the Reynolds Transport theorem [41],
where the boundary term stands for the �ow of f outside of D after its strati�cation.

B.3 Coming back to the principle of virtual works
The purpose of this appendix is to prove that for any one-dimensional Cosserat medium S of

Lagrangian L = T −U =
∫ 1
0 T−U dX1 with L = T−U having the reduced form (14), we have :

δL =
∂

∂t

∫ 1

0

(
∂T

∂η

)
.δζdX1 + δWext, (76)

where "δWext" is still the virtual work of the external load. For this, let us start from the
D'Alembert principle of virtual works applied to S :

δWacc =
∫ 1

0

(
∂

∂t

(
∂T

∂η

)
− ad∗η

(
∂T

∂η

))
.δζdX1 = −δU − δWext, (77)

where "δWacc" and "−δU" are respectively the virtual works of the acceleration amounts,
and this of the internal forces which are assumed to be conservative.

Then, let us remark that we also have :

δWacc =
∂

∂t

∫ 1

0

(
∂T

∂η

)
.δζdX1 −

∫ 1

0
ad∗η

(
∂T

∂η

)
.δζ +

(
∂T

∂η
.
∂δζ

∂t

)
dX1. (78)

Thus, inserting (9) into (78), gives :

δWacc =
∂

∂t

∫ 1

0

(
∂T

∂η

)
.δζdX1 − δT +

∫ 1

0
ad∗η

(
∂T

∂η

)
.δζ − adη,∗ (δζ) .

∂T

∂η
dX1. (79)

But by the de�nition of the co-adjoint map, we can rewrite (77) as :

δWacc =
∂

∂t

∫ 1

0

(
∂T

∂η

)
.δζdX1 = δ(T − U)− δWext, (80)

and (80) does allow one to state (76). Finally, let us remark that in all the above computations
δ. is a Lagrangian variation, i.e. it follows the cross sections along their virtual motion while X1

plays the role of a continuous label.

B.4 Proof of (39)
Now let us consider the Cosserat medium S constituted by the beam (of Lagrangian Lb =∫ 1

0 Tb − Ub dX1) and the strati�ed �uid in D (of Lagrangian Lf = Tf =
∫ 1
0 Tf dX1). From the

concluding remark of the previous subsection, let us apply (76) to S with (δ., ∂./∂t) for the beam,
and (∆., d./dt) for the �uid, we �nd :
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δLb + ∆Tf =
∂

∂t

∫ 1

0

(
∂Tb

∂η

)
.δζdX1 +

d

dt

∫ 1

0

(
∂Tf

∂η

)
.∆ζdX1 + δWext, (81)

where δWext is still given by (67). Then let us apply to the �uid term of the r.h.s. of (81)
the Reynolds theorem (75) with d./dt and f = (∂Tf/∂η).∆ζ. We �nd, after time integration on
[t1, t2] with δζ(t1) = δζ(t2) = 0 :

∫ t2

t1

δLb +
(

∆
∫ 1

0
Tf dX1

)
dt =

∫ t2

t1

δWext −
[
V1

∂Tf

∂η
.∆ζ

]1

0

dt, (82)

where we used the fact that from (72) applied to g, we have : ∆ζ = δζ − δζ4ξ, and so
δζ(t1) = δζ(t2) = 0 ⇒ ∆ζ(t1) = ∆ζ(t2) = 0. Furthermore, applying now (75) to the l.h.s.
of (82), i.e. with "∆." instead of "d./dt", and f = Tf , we �nd, by remarking from (72) that
∆X1 = −δζ4 = −δζ.(0T , ET

1 )T , the following new form of (4) :
∫ t2

t1

δLb +

(∫ 1

0
δTfdX1 +

[
V1

∂Tf

∂η
.∆ζ − Tf

(
0

E1

)
.δζ

]1

0

)
dt =

∫ t2

t1

δWextdt. (83)

But, introducing ∆ζ = δζ − δζ4ξ, into the boundary term of (83), we obtain :

∫ t2

t1

(δWext − δLb)dt = (84)
∫ t2

t1

(∫ 1

0
δTfdX1 +

[(
V1

∂Tf

∂η
−

(
Tf + V1

∂Tf

∂η
.ξ

)(
0

E1

))
.δζ

]1

0

)
dt.

Now, since all the variational calculations are achieved, we can force "ξ = ξd" into the
boundary term of (84) (see subsection 3.4). Hence, taking (41) into account in (84), gives the
waited for "Extension of the Hamilton principle to the Cosserat beam surrounded by the strati�ed
�uid inside D" :

∫ t2

t1

∫ 1

0
δ(Tf + Tb − Ub) dX1dt =

∫ t2

t1

(
δWext −

[(
V1

∂Tf

∂η
− Tf

(
0

E1

))
.δζ

]1

0

)
dt, (85)

that replaces (4) in order to generalize the Poincaré-Cosserat equations to the L.A.E.B.T. of
Lighthill.
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