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Abstract

Starting from the requirement that risk measures of financial portfolios
should be based on their losses, not their gains, we define the notion of loss-based
risk measure and study the properties of this class of risk measures. We charac-
terize loss-based risk measures by a representation theorem and give examples
of such risk measures. We then discuss the statistical robustness of estimators
of loss-based risk measures: we provide a general criterion for qualitative ro-
bustness of risk estimators and compare this criterion with sensitivity analysis
of estimators based on influence functions. Finally, we provide examples of
statistically robust estimators for loss-based risk measures.

Contents

1 Loss-Based Risk Measures 3
1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Representation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Loss-based statistical risk measures . . . . . . . . . . . . . . . . . . . 8
1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Robustness of risk estimators 12
2.1 A Family of Distribution-based Risk Measures . . . . . . . . . . . . . 13
2.2 Qualitative Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Statistical robustness of risk estimators . . . . . . . . . . . . . . . . . 18

3 Sensitivity analysis of risk estimators 21
3.1 Unbounded sensitivity functions . . . . . . . . . . . . . . . . . . . . . 21
3.2 Boundedness of sensitivity functions for robust risk estimators . . . . 22

A Lebesgue Continuity 26

1



A main focus of quantitative modeling in finance has been to measure the risk
of financial portfolios. In connection with the widespread use of Value-at-Risk and
related risk measurement methodologies, a considerable theoretical literature Acerbi
(2002, 2007); Artzner et al. (1999); Cont et al. (2010); Föllmer and Schied (2002);
Föllmer and Schied (2004); Frittelli and Rosazza Gianin (2002); Heyde et al. (2010);
McNeil et al. (2005) has focused on the design of appropriate risk measures for finan-
cial portfolios. In this approach, a risk measure is represented as a map ρ : L∞ → R

assigning to each (bounded) random variable X ∈ L∞(Ω,F ,P)—representing the
gain of a portfolio—a number which measures the risk of this portfolio. A framework
often used as a starting point is the axiomatic setting of Artzner et al. (1999), which
defines a coherent risk measure as a map ρ : L∞ → R that is

1. Monotone (decreasing): ρ(X) ≤ ρ(Y ) provided X ≥ Y .

2. Cash-additive (additive with respect to cash reserves): ρ(X + c) = ρ(X)− c for
any c ∈ R.

3. Positive homogeneous : ρ(λX) = λρ(X) for any λ ≥ 0.

4. Sub-additive: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Artzner et al. (1999) argue that these axioms correspond to desirable properties of a
risk measure, such as the reduction of risk under diversification.

However, some of these axioms have unintended consequences and have been re-
vised in various ways. Replacing positive homogeneity property by the more general
convexity property leads to the class of convex risk measures (Föllmer and Schied,
2002; Föllmer and Schied, 2004; Frittelli and Rosazza Gianin, 2002); replacing sub-
additivity by co-monotonic sub-additivity (Heyde et al., 2010; Song and Yan, 2009)
allows to restore the robustness of risk estimators (Cont et al., 2010).

Even more basic issues arise when considering the above axioms as the sole char-
acterization of a “risk measure”. Intuitively, the risk of a portfolio is associated with
the magnitude of its losses, not its gains. In the case of a statistical risk measure,
this means that the risk measure should be defined in terms of the left tail of the
portfolio gain (distribution). Indeed, the most popular risk measures—Value at Risk
and expected shortfall—are based on the left tail of the loss distribution. However,
this natural property is not implied by any of the axioms of coherent risk measures
as outlined in Artzner et al. (1999).

If one further distinguishes, as in Heyde et al. (2010), ‘external’ risk measures used
for determining capital requirements from ‘internal’ risk measures used for a firm’s
risk management –determining position limits, allocation of capital, etc.—then the
seemingly innocent axiom of cash-additivity—that the risk of a portfolio decreases
by c if combined with a cash position of size c—also comes under question. This
axiom makes sense if ρ(X) is interpreted as a capital requirement for portfolio X ,
i.e., for external risk measures. But if ρ(X) is used to gauge the risk of the portfolio
X , this axiom implies that if one combines a risky position X with a cash position
c = ρ(X) then the combined position X + c has a “zero risk”: ρ(X + c) = 0, which is
meaningless in a risk management context. Also, as noted already by Jarrow (2002),
the axiom of cash-additivity excludes some natural examples of risk measures, such
as the value of the put option on a portfolio’s net value (Jarrow, 2002).
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El Karoui and Ravanelli (2009) challenge the axiom of cash additivity from a dif-
ferent angle. They show that, when considering risk measures defined on future
(instead of discounted) value of portfolio gains in order to take into account interest
rate risk , cash additivity is inevitably violated and needs to be replaced by cash
subadditivity.

Another issue, very important in practice but somewhat neglected in the litera-
ture on risk measures, is the issue of statistical estimation of risk, and the design of
robust estimators for risk measures: lack of robustness of a risk estimation procedure
makes it difficult, if not impossible, to use in practice. Unfortunately, as shown in
Cont et al. (2010), another unintended consequence of the axioms of coherent risk
measures is that lead to non-robust risk estimators: the subadditivity property re-
quires dependence on extreme tail events, which leads to high sensitivity to outliers
Cont et al. (2010).

We consider in this paper an alternative approach to defining risk measures which
addresses these concerns. Starting from the requirement that risk measures of finan-
cial portfolios should be based on their losses, not their gains, we define the notion
of loss-based risk measure and study the properties of this class of risk measures.

We claim that our theoretical framework is a more natural one for the purpose
of risk measurement and management of financial portfolios, and englobes various
natural examples of risk measures used in practice. Examples of such loss-based
risk measures have been considered by Jarrow (2002), who studied the put option
premium as a risk measure, and Staum (2011), in the context of a finite dimensional
probability space. Our analysis extends these results to a more general setting: we use
a slightly different set of axioms and obtain a characterization of these risk measures
on a general probability space.

Section 1 defines loss-based risk measures and provides a representation theorem in
terms of a penalty function (Theorem 1), which adapts the results of Föllmer and Schied
(2004) to our setting. This representation result is made more explicit in the case of
distribution-based risk measures (Theorem 2) and examples are given in Section 1.5.
We then study the statistical robustness, in the sense of Cont et al. (2010), of esti-
mators for loss-based risk measures. In the case of statistical (i.e. distribution-based)
risk measures we present a general criterion for qualitative robustness of such risk es-
timators (Section 2). These results extend results of Cont et al. (2010) to loss-based
risk measures. In Section 2.3 we provide statistically robust versions of these risk es-
timators. The theoretical results on the qualitative robustness of these estimators are
confirmed by a quantitative sensitivity analysis based on influence functions (Section
3).

1 Loss-Based Risk Measures

1.1 Notations

Consider an atomless probability space (Ω,F ,P) representing market scenarios.
For a random variable X , denote by FX(·) its cumulative distribution function and
GX(·) its left-continuous quantile function. For any p ∈ [1,∞), let Lp(Ω,F ,P) be the

space of random variables X with the norm ‖X‖p := (E[|X|p])
1

p , and let L∞(Ω,F ,P)
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be the space of bounded random variables.
Let

P(Ω,F ,P) := {X ∈ L1(Ω,F ,P) : X ≥ 0, ||X||1 = 1},

and

M(Ω,F ,P) := {X ∈ L1(Ω,F ,P) : X ≥ 0, ||X||1 ≤ 1}.

Then P(Ω,F ,P) can also be regarded as the set of P-absolutely continuous probability
measures on (Ω,F ,P), andM(Ω,F ,P) as the set of P-absolutely continuous measures
µ such that µ(Ω) ≤ 1.

Denote by P((0, 1)) the set of probability measures on the open unit interval (0, 1),
and M((0, 1)) the set of positive measures µ on (0, 1) such that µ((0, 1)) ≤ 1. Let

Ψ((0, 1)) : =

{
φ : (0, 1) 7→ R+ | φ(·) is decreasing on (0,1) and

∫ 1

0

φ(z)dz ≤ 1

}
,

(1)

Φ((0, 1)) : =

{
φ : (0, 1) 7→ R+ | φ(·) is decreasing on (0,1) and

∫ 1

0

φ(z)dz = 1

}
,

(2)

both of which can be identified as subsets of M((0, 1)). Finally, for any random
variables X , let X ∧ 0 := min(X, 0).

1.2 Definition

Consider a map ρ : L∞(Ω,F ,P) → R which associates to each random variable
X , representing the future payoff of a portfolio, a number ρ(X) representing its risk.
Artzner et al. (1999) have argued that, in order for ρ to qualify as a monetary risk
measure, it has to satisfy at least the two following properties:

(i) Cash additivity: adding cash to a portfolio reduces the risk by the same amount.

∀X ∈ L∞(Ω,F ,P), ∀α ∈ R, ρ(α +X) = ρ(X)− α

(ii) Monotonicity: if a portfolio X has higher payoff than a portfolio Y in all sce-
narios, then it has lower risk.

∀X, Y ∈ L∞(Ω,F ,P), X ≤ Y ⇒ ρ(X) ≥ ρ(Y ).

The cash-additivity property (i) is necessary to interpret ρ(X) in terms of capital
requirements for X : the capital requirement for a portfolio X may be satisfied by
combining it with a position in cash equal to ρ(X) since ρ(X + ρ(X)) = ρ(X) −
ρ(X) = 0. However if one uses ρ(X) as a measure of risk, one might be tempted
to think that the position X + c has “no residual risk”, which is counterintuitive
and, indeed, nonsensical if taken literally. This observation suggests that the cash-
invariance property may not be a reasonable requirement for a good risk measure.
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Also, as noted by Jarrow (2002), the cash-additivity requirement excludes a nat-
ural risk measure, the premium of a put on the loss:

ρ(X) = E[max(−X, 0)]

Moreover, the initial motivation of risk measures is to quantify the risk associated
with portfolio’s losses. Thus, a risk measure should focus on the loss of a portfolio,
and two portfolios which have the same losses should lead to the same risk measure.

With these concerns in mind, we define a class of risk measures, which we call
loss-based risk measures, as follows.

Definition 1 (Loss-based risk measures) A mapping ρ : L∞(Ω,F ,P) → R+ is
called a loss-based risk measure if it satisfies

(a) Cash Loss: for any α ∈ R+, ρ(−α) = α;

(b) Monotonicity: for any X, Y ∈ L∞(Ω,F ,P),

if X ≤ Y, then ρ(X) ≥ ρ(Y ).

(c) Convexity: for any X, Y ∈ L∞(Ω,F ,P) and 0 < α < 1,

ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ).

(d) Loss-dependency: the risk of a portfolio only depends on its losses, i.e.,

∀X ∈ L∞(Ω,F ,P), ρ(X) = ρ(X ∧ 0)

.

Property (a) is a “normalization” property which states that the risk of a (non-
random) cash liability is its face value. Properties (b) and (c) have well-known in-
terpretations in terms of increasing loss diversification, see e.g. Föllmer and Schied
(2002). Property (d) entails that portfolios with the same losses have the same risk.
This implies that in fact the monotonicity property (b) may be replaced by the weaker

X ∧ 0 ≤ Y ∧ 0 ⇒ ρ(X) ≥ ρ(Y ).

Note that property (d) prevents the risk measure from satisfying the cash-additivity
property (i): a loss-based risk measure is not “coherent” in the sense of Artzner et al.
(1999).

Loss-based risk measures are related to the class of cash subadditive risk mea-
sures defined by El Karoui and Ravanelli El Karoui and Ravanelli (2009). Indeed,
properties (a) and (d), together with a weak semi-continuity condition, imply the
cash subadditivity property defined in El Karoui and Ravanelli (2009, Def 3.1). To
see this, let us first assume the following semi-continuity condition: for any Xn → X
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in L∞(Ω,F ,P), ρ(X) ≤ liminfn→∞ρ(Xn). This condition is weaker than the Fa-
tou property commonly assumed in the risk measure literature. Now, consider any
X ∈ L∞(Ω,F ,P) and α ≥ 0. For any ǫ ∈ (0, 1), we have

ρ((1− ǫ)X − α) = ρ((1− ǫ)X + ǫ(−α

ǫ
))

≤ (1− ǫ)ρ(X) + ǫρ(−α

ǫ
))

= (1− ǫ)ρ(X) + α,

where the inequality is due to the convexity property (c) and the last equality is due
to the Cash Loss property (a). Letting ǫ ↓ 0 and using semi-continuity, we have

ρ(X − α) ≤ ρ(X) + α, ∀X ∈ L∞(Ω,F ,P), α ≥ 0,

which also implies

ρ(X + α) ≥ ρ(X)− α, ∀X ∈ L∞(Ω,F ,P), α ≥ 0.

Thus, loss-based risk measures are cash–subadditive. On the other hand, it is easy to
see that cash subadditivity in the sense of El Karoui and Ravanelli (2009) does not
imply the Cash Loss property (a).

However, our focus in this study is not only on cash-subadditivity: the Loss-
dependency property (d) is at least as important as replacing cash additivity by
cash subadditivity in a risk management context. Thus, loss-based risk measures
deserve to be highlighted and treated separately although they are special cases of
cash subadditive risk measures El Karoui and Ravanelli (2009).

The following useful lemma shows that that Convexity (c) and Monotonicity (b)
together imply L∞(Ω,F ,P) continuity for a risk measure.

Lemma 1 Any map ρ : L∞(Ω,F ,P) → R which is monotone and convex is contin-
uous on L∞(Ω,F ,P).

Proof Consider a sequence (Xn)n≥1 that converges to X in L∞(Ω,F ,P). Then the
sequence εn := ||Xn − X||∞, n ≥ 1, converges to zero and we can assume without
loss of generality that εn ≤ 1, n ≥ 1. Let αn :=

√
εn, βn := εn

αn
+ ||X||∞ + 1, then

(1− αn)Xn − αnβn = Xn − εn − αn(||X||∞ + 1 +Xn) ≤ X

where the inequality is because Xn −X ≤ ||Xn −X||∞ and ||X||∞ +1+Xn ≥ 0. By
the monotonicity and convexity of ρ, we derive

ρ(X) ≤ ρ((1− αn)Xn − αnβn)

≤ (1− αn)ρ(Xn) + αnρ(−βn)

≤ (1− αn)ρ(Xn) + αnρ(−(||X||∞ + 2)),

which leads to

ρ(Xn) ≥
ρ(X)− αnρ(−(||X||∞ + 2))

1− αn

.

Letting n → ∞ and using the fact that αn converges to zero, we immediately have
lim infn→∞ ρ(Xn) ≥ ρ(X), i.e., ρ is lower semi-continuous in L∞(Ω,F ,P). A similar
argument leads to the upper semi-continuity of ρ in L∞(Ω,F ,P).
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1.3 Representation Theorem

We give now a characterization of loss-based risk measures that have a semi-
continuity property, the Fatou property. A (loss-based) risk measure ρ satisfies the
Fatou property if, for any sequence (Xn)n≥1 uniformly bounded in L∞(Ω,F ,P) such
that Xn → X almost surely, we have

ρ(X) ≤ lim inf
n→∞

ρ(Xn). (3)

Theorem 1 The following are equivalent

1. ρ is a loss-based risk measure satisfying Fatou property (3).

2. There exists a convex function V : M(Ω,F ,P) → [0,∞] satisfying

inf
‖Y ‖1≥1−ǫ

V (Y ) = 0 for any ǫ ∈ (0, 1), (4)

such that

ρ(X) = − inf
Y ∈M(Ω,F ,P)

{E[(X ∧ 0)Y ] + V (Y )}, ∀X ∈ L∞(Ω,F ,P). (5)

Proof Assume ρ is a loss-based risk measure satisfying the Fatou property. First, fol-
lowing Theorem 2.1 in Delbaen and Schachermayer (1994) or Theorem 3.2 in Delbaen
(2002), ρ is lower semi-continuous under weak* topology if and only if it satisfies
the Fatou property. By Frittelli and Rosazza Gianin (2002, Theorem 6) there exists
V : L1(Ω,F ,P) → (−∞,∞] such that

ρ(X) = − inf
Y ∈L1(Ω,F ,P)

{E[XY ] + V (Y )}

= − inf
Y ∈L1(Ω,F ,P)

{E[(X ∧ 0)Y ] + V (Y )}, ∀X ∈ L∞(Ω,F ,P),

where the second equality is due to the Loss-dependency property (d) of the loss-based
risk measure. Furthermore, we have the dual relation

V (Y ) = sup
X∈L∞(Ω,F ,P)

{−ρ(X)− E[XY ]}, ∀Y ∈ L1(Ω,F ,P).

For any Y ∈ L1(Ω,F ,P), let A := {Y < 0}. If P(A) > 0,

V (Y ) ≥ sup
n≥1

{−ρ(n1A)− E[n1AY ]}

= sup
n≥1

{−E[n1AY ]}

= +∞,
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where the first equality holds because n1A ≥ 0 and ρ is monotone with ρ(0) = 0.
Now, if Y ≥ 0 and ‖Y ‖1 > 1, we have

V (Y ) ≥ sup
α≥0

{−ρ(−α)− E[(−α)Y ]}

= sup
α≥0

{(E[Y ]− 1)α}

= +∞.

Thus the domain of V lies in M(Ω,F ,P). Next, it is easy to see that V (Y ) ≥ 0 for
any Y ∈ L1(Ω,F ,P), because ρ(0) = 0. Finally, for any ǫ ∈ (0, 1) and any α > 0,

α = ρ(−α) = sup
Y ∈M(Ω,F ,P)

{αE[Y ]− V (Y )}

= max

(
sup

Y ∈M(Ω,F ,P),‖Y ‖1<1−ǫ

{αE[Y ]− V (Y )}, sup
Y ∈M(Ω,F ,P),‖Y ‖1≥1−ǫ

{αE[Y ]− V (Y )}
)

≤ max

(
α(1− ǫ), sup

Y ∈M(Ω,F ,P),‖Y ‖1≥1−ǫ

{αE[Y ]− V (Y )}
)

≤ max

(
α(1− ǫ), α− inf

Y ∈M(Ω,F ,P),‖Y ‖1≥1−ǫ
{V (Y )}

)
.

Thus we conclude that V (·) must satisfy (4).
On the other hand, one can check that ρ represented in (5) is a loss-based risk

measure satisfying the lower-semi-continuity under weak* topology and thus the Fatou
property.

We can see in the representation theorem that the domain of the penalty function
V (·) is a subset of M(Ω,F ,P), the set of all measures with total mass less than
one. This property is also observed in El Karoui and Ravanelli (2009) (Theorem 4.3-
(b)). Compared with the representation theorem in El Karoui and Ravanelli (2009),
we have an additional condition (4) due to Cash Loss property. Moreover, the dual
representation formula (5) only depends on the negative part of X due to the Loss-
dependency property (d).

1.4 Loss-based statistical risk measures

Most of the risk measures used in finance are statistical, or distribution-based risk
measures, i.e. they depend on X only through its distribution FX(·):

FX(·) = FY (·) ⇒ ρ(X) = ρ(Y ).

Following ideas from Kusuoka (2001), Frittelli and Rosazza Gianin (2005), and
Jouini et al. (2006), we derive a representation theorem for loss-based statistical risk
measures.

Theorem 2 Let ρ be a loss-based statistical risk measure. There exists a convex
function v : Ψ((0, 1)) → [0,∞] satisfying

inf∫
1

0
φ(z)dz≥1−ǫ

v(φ) = 0 for any ǫ ∈ (0, 1), (6)
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such that

ρ(X) = − inf
φ∈Ψ

{∫ 1

0

(GX(z) ∧ 0)φ(z)dz + v(φ)

}
, ∀X ∈ L∞(Ω,F ,P). (7)

Proof First, we remark that a statistical risk measure necessarily satisfies Fa-
tou property. Indeed, as noted in Theorem 2.2, Jouini et al. (2006), distribution-
based convex functionals in L∞(Ω,F ,P) satisfy Fatou property if and only if they
are lower semi-continuous in L∞(Ω,F ,P) norm. By Lemma 1, any loss-based risk
measures is L∞(Ω,F ,P)-continuous, so automatically satisfies the Fatou property if
it is distribution-based. We then need to build a connection between (5) and (7)
when the risk measure is distribution-based, which can be done following the lines of
Jouini et al. (2006, Theorem 2.1).

Motivated by the representation (7), we sometimes abuse the notation by writing

ρ(G(·)) = − inf
φ∈Ψ

{∫ 1

0

(G(z) ∧ 0)φ(z)dz + v(φ)

}
(8)

for any bounded quantile functions, if we are considering a loss-based statistical risk
measure.

Remark 1 If, in addition, the loss-based risk measure ρ satisfies

(e) Cash-loss Invariance: for anyX ∈ L∞(Ω,F ,P),X ≤ 0, and α ∈ R+, ρ(X−α) =
ρ(X) + α,

then one can select V in the representation (5) and v in the representation (7) such
that the domain of V lies in P(Ω,F ,P) and the domain of v lies in Φ((0, 1)). In other
words, ρ(X) = ρ̃(X ∧ 0) for some convex monetary risk measure ρ̃. Indeed, for any
X ∈ L∞(Ω,F ,P), one can define

ρ̃(X) = ρ(X − αX)− αX ,

where αX is any upper-bound of X . By the Cash-loss Invariance property of ρ, ρ̃ is
well-defined. Furthermore, it is easy to check that ρ̃ is a cash-invariant risk measure
and ρ(X) = ρ(X ∧ 0) = ρ̃(X ∧ 0).

However, even though ρ satisfies the Cash-loss Invariance property, it is still not
cash invariant. Indeed, in general, we only have

ρ(X + α) = ρ̃((X + α) ∧ 0) ≥ ρ̃(X ∧ 0 + α) = ρ̃(X ∧ 0)− α = ρ(X)− α,

for any X ∈ L∞(Ω,F ,P) and α ∈ R.

1.5 Examples

Example 1 (Put option premium) Jarrow (2002) argues that a natural measure
of a firm’s insolvency risk is the premium of a put option on the firms equity,
which is given by the positive part of its net value X (assets minus liabilities), i.e.
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EQ[−min(X, 0)] where Q is an appropriately chosen pricing model. One can general-
ize this to any portfolio whose net value is represented by a random variable X : the
downside risk of the portfolio can be measured by

ρ(X) := E[−min(X, 0)] (9)

This example satisfies all the properties of Definition 1: it is a loss-based risk measure.
In particular, as noted by Jarrow (2002), it is not cash-additive.

Example 2 (Scenario-based margin requirements) When determining margin
requirements for derivative transactions, the objective of a central clearing facility is
to compute the margin requirement of each participant in the clearinghouse in order to
cover losses incurred by the clearing participants portfolio over a liquidation horizon T
(typically, a few days). A popular method for computing such margin requirements
–used for example by various futures and options exchanges– is to select a certain
number of “stress scenarios” for risk factors affecting the portfolio and compute the
margin requirement as the maximum loss over these scenarios. If one denotes the
portfolio P&L over the horizon T by X , then the margin requirement ρ(X) is given
by

ρ(X) = max{−min(X(ω1), 0), ...,−min(X(ωn), 0)} (10)

where ω1, ..., ωn are the stress scenarios. Naturally, the clearinghouse only consider
the losses of the portfolio when computing the margin: as a result, such margin re-
quirements may be viewed as a loss-based risk measure. This example satisfies all
the properties of Definition 1: it is a loss-based risk measure. This is the main idea
behind the SPAN method used by the Chicago Merchantile Exchange (CME). Inter-
estingly, the SPAN method was considered as an initial motivation for the definition
of coherent risk measures in Artzner et al. (1999). Yet it is easy to check that (10) is
loss-dependent and therefore not cash-additive, so is not a coherent risk measure.

Example 3 (Expected tail-loss) This popular risk measure is defined as

ρ(X) := − 1

β

∫ β

0

(GX(z) ∧ 0)dz, X ∈ L∞(Ω,F ,P) (11)

Note that, by construction, this risk measure focuses on the left tail of the P&L dis-
tribution, since it only involves the quantile function on (0, β). Nonetheless, the clas-

sical definition of expected shortfall − 1
β

∫ β

0
GX(z)dz does not satisfy Loss-dependency

property (d) of Definition 1 since GX(β) might be greater that 0 for some X . There-
fore, we insert GX(z) ∧ 0 in its definition to turn it into a loss-based risk measure.
We notice that the put option premium is an expected tail-loss by taking β = 1.

Example 4 (Spectral tail measures) A large class of loss-based statistical risk
measures is obtained by taking weighted averages of quantiles with various weight
functions φ ∈ Φ:

ρ(X) := −
∫ 1

0

(GX(z) ∧ 0)φ(z)dz, X ∈ L∞(Ω,F ,P) (12)
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We call such a risk measures a spectral tail measure : it is a loss-based version of the
spectral risk measures defined by Acerbi (2002). This example satisfies the Cash-loss
Invariance property (e) and is also positively homogeneous: for any λ > 0, ρ(λX) =
λρ(X). Notice that the expected tail loss is a spectral tail measure, with φ(z) =
1
β
1(0,β)(z).

Example 5 (Loss certainty equivalent) Consider u(·) ∈ C4(R+) which is strictly
increasing and strictly convex. Assume u′/u′′ is concave. Consider the following map:

ρ(X) := u−1 (Eu(|X ∧ 0|)) , X ∈ L∞(Ω,F ,P). (13)

It is clear that ρ satisfies Cash Loss, Monotonicity, and Loss-dependency in Definition
1. By Hardy et al. (1959, Theorem 106), ρ is also convex. Thus, ρ is a loss-based
convex risk measure. We call ρ a loss certainty equivalent . By definition, ρ is
distributional-based and

ρ(X) = u−1

(∫ 1

0

u(|GX(z) ∧ 0|)dz
)
, X ∈ L∞(Ω,F ,P). (14)

If u(x) = xp, x ≥ 0 for certain p ≥ 1, we will speak of the Lp loss certainty
equivalent . Here, when p = 1, u(·) is not strictly convex. However, in this case,
(13) is still well-defined and the risk measure is actually the put option premium,
which is also a loss-based risk measure. Thus, we include the case p = 1 here and
identify the put option premium as a special case of Lp loss certainty equivalent in the
following. One can show that the Lp loss certainty equivalent is the only loss certainty
equivalent satisfying positive homogeneity, i.e., for any λ > 0, ρ(λX) = λρ(X). The
Lp loss certainty equivalent has the following dual representation

ρ(X) = − inf
Y ∈Mq(Ω,F ,P)

E [(X ∧ 0)Y ] (15)

where 1 < q ≤ ∞ is the conjugate of p, i.e., 1
p
+ 1

q
= 1, and Mq(Ω,F ,P) is the set of

all nonnegative random variables with Lq norms less than or equal to one. Moreover,
it has the distribution-based representation

ρ(X) = − inf
φ∈Ψq((0,1))

∫ 1

0

(GX(z) ∧ 0)φ(z)dz. (16)

where Ψq((0, 1)) is the set of φ ∈ Ψ((0, 1)) such that
∫ 1

0
φ(z)qdz ≤ 1.

Let u(x) = eβx, x ≥ 0 for certain β > 0, then the loss certainty equivalent be-
comes the entropic loss certainty equivalent , a loss-based version of the entropic risk
measure studied in Frittelli and Rosazza Gianin (2002); Föllmer and Schied (2002);
Föllmer and Schied (2004). One can show that the entropic loss certainty equivalent
and L1 loss certainty equivalent are the loss certainty equivalent satisfying Cash-loss
Invariance property. It is well known in the literature that the entropic loss certainty
equivalent has the dual representation

ρ(X) = − inf
Y ∈P(Ω,F ,P)

{E[(X ∧ 0)Y ] + V (Y )}, (17)

11



where

V (Y ) = E [Y lnY ]− inf
Y ∈P(Ω,F ,P)

E [Y lnY ] , (18)

and the distributional-based representation

ρ(X) = − inf
φ∈Φ((0,1))

∫ 1

0

(GX(z) ∧ 0)φ(z)dz + v(φ), (19)

where

v(φ) =

∫ 1

0

φ(z) lnφ(z)dz − inf
φ∈Φ((0,1))

∫ 1

0

φ(z) lnφ(z)dz. (20)

See e.g. Frittelli and Rosazza Gianin (2002); Föllmer and Schied (2002); Föllmer and Schied
(2004); Frittelli and Rosazza Gianin (2005).

2 Robustness of risk estimators

In practice, for measuring the risk of a portfolio, aside from the theoretical choice
of a risk measure, a key issue is the estimation of the risk measure, which requires the
choice of a risk estimator (Cont et al. (2010)). In this section we study the robustness
property of empirical risk estimators built from some distribution-based risk measure.
We follow the ideas in Cont et al. (2010) but we will view risk measures as functionals
on the set of quantile functions, rather than the set of distribution functions. As we
will see, this makes the study of continuity properties of loss-based risk measures
easier.

Moreover, from Theorem 2, a loss-based statistical risk measure can be represented
by (7), which suggests that it is more natural to work directly on quantile functions.

Denote by Q the set of all quantile functions and by D the set of all distribution
functions. The Lévy-Prokhorov metric between two distribution functions F1 ∈ D
and F2 ∈ D is defined as

dP (F1, F2) , inf{ǫ > 0 : F1(x− ǫ)− ǫ ≤ F2(x) ≤ F1(x+ ǫ) + ǫ, ∀x ∈ R}.

This metric appears to be the most tractable one on D and it induces the same
topology as the usual weak topology on D.

The quantile set Q and the distribution set D are connected by the following
one-on-one correspondence

D → Q
F (·) 7→ F−1(·)

where

F−1(t) = inf {x ∈ R | F (x) ≥ t} , t ∈ (0, 1)

is the left continuous inverse of F (·). Such a correspondence, together with the Lévy-
Prokhorov metric on D induces a metric onQ which we denote by d. The convergence
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under this metric can be characterized by the following: for any Gn, G ∈ Q, Gn → G
if and only if Gn(z) → G(z) at any continuity points of G.

Most of the time, we work with quantile functions that are continuous on (0, 1)
in order to avoid irregularities due to the presence of atoms. In practice, it is not
restrictive to focus on continuous quantile functions. Indeed, people do assume the
continuity of quantile functions in many applications, e.g., when computing the Value
at Risk. The study of discontinuous quantile functions is more technical and of little
interest, so we choose not to pursue in this direction. In the following, we denote
by Qc the set of all continuous quantile functions. We also denote by Q∞ the set of
all bounded quantile functions, and Q∞

c the set of all bounded continuous quantile
functions.

2.1 A Family of Distribution-based Risk Measures

Motivated by the representation (7), we consider the following Fenchel-Legendre
transform ρ : Q 7→ [0,∞]:

ρ(G(·)) := − inf
m∈dom(v)

{∫

(0,1)

(G(z) ∧ 0)m(dz) + v(m)

}
, (21)

where v : M((0, 1)) → [0,∞] is the penalty function satisfying

inf
m((0,1))≥1−ǫ

v(m) = 0 for any ǫ ∈ (0, 1), (22)

and dom(v) is the domain of v, i.e.,

dom(v) := {m ∈ M((0, 1)) | v(m) < ∞}. (23)

It is easy to see that ρ(G(·)) is well-defined for any G(·) ∈ Q, and dom(ρ), the domain
of ρ, contains Q∞. It is clear that (21) is a generalization of (7). Such a generalization
in the context of risk measures has been considered by Cont et al. (2010) in the case of
spectral risk measures, by Heyde et al. (2010) for risk measures on finite-dimensional
probability spaces, and by Song and Yan (2009) in a general setting.

The generalization (21) sacrifices the convexity of ρ viewed as a map on L∞(Ω,F ,P).
However, if ρ is a map defined on Q, it satisfies the following properties

1. Cash Loss: for any α ∈ R+, ρ(−α) = α;

2. Monotonicity: for any G1(·), G2(·) ∈ Q such that G1(z) ≤ G2(z), 0 < z < 1,
ρ(G1(·)) ≥ ρ(G2(·));

3. Quantile Convexity: for any G1(·), G2(·) ∈ Q and 0 < α < 1, ρ(αG1(·) + (1 −
α)G2(·)) ≤ αρ(G1(·)) + (1− α)ρ(G2(·)).

4. Loss-dependency: for any G(·) ∈ Q, ρ(G(.)) = ρ(G(.) ∧ 0).

13



2.2 Qualitative Robustness

In practice, in order to compute the risk measure ρ(G(·)) of portfolio whose P&L
has quantile G(·), one has first to estimate the distribution or quantile of the P&L
distribution of the portfolio from data, and then apply the risk measure ρ to the
estimated distribution. One of the popular ways is to apply the risk measure to the
empirical distribution.

A sequence of samples of G(·) ∈ Q is a sequence of random variables X1, X2, · · ·
which are i.i.d and follow the distribution G−1. We denote by X this sequence of
samples and Xn its first n samples. For each sample size n, the empirical distribution
is defined as

F emp
Xn (x) =

1

n

n∑

i=1

1Xi≤x, x ∈ R, (24)

and the empirical quantile is defined as

Gemp
Xn (z) := (F emp

Xn )−1(z) = X(⌊nz⌋+1), z ∈ (0, 1), (25)

where ⌊a⌋ denotes the integer part of a and X(1) ≤ · · · ≤ X(n). In practice, the
quantity ρ̂(Xn) := ρ(Gemp

Xn (·)) is computed as the estimated risk measure ρ(G(·))
given the n samples Xn. The risk estimator ρ̂ is defined on ∪n≥1R

n, the set of all
possible samples (Xn)n≥1, and has values in R+. Since the samples can be regarded
as random variables, so is the risk estimator ρ̂(Xn). We denote by Ln(ρ̂, G) the
distribution function of ρ̂(Xn).

ρ is said to be consistent at G = F−1 ∈ dom(ρ) if

lim
n→∞

ρ̂(Xn) = ρ(F emp
Xn )−1) almost surely. (26)

Because the true risk measure ρ(G(·)) is estimated by ρ̂(Xn), the consistency is the
minimal requirement for a meaningful risk measure. In the following we denote by Qρ

the set of quantiles G at which ρ is well defined and consistent, and Qρ
c the continuous

quantiles in Qρ.
The following definition of robust risk estimator is considered in Cont et al. (2010,

Definition 4):

Definition 2 (Cont et al. (2010)) Let ρ be defined by (21) and C ⊂ Qρ be a a set
of plausible loss quantiles. ρ̂ is C-robust at G ∈ C if for any ε > 0 there exist δ > 0
and n0 ≥ 1 such that, for all G̃ ∈ C,

d(G̃, G) ≤ δ =⇒ dP (Ln(ρ̂, G̃),Ln(ρ̂, G)) < ε, ∀n ≥ n0.

A risk estimator ρ̂ is called C-robust if it is C-robust at any G ∈ C.
The choice of the Lévy-Prokhorov distance is natural in robust statistics (see Huber
(1981)). It is worth mentioning, as pointed out by Huber (1981), that the use of a
different metric, even if it also metrizes the weak topology, may lead to a different
class of robust estimators.

The following proposition which is cited from Cont et al. (2010) shows that the
robustness of the risk estimator ρ̂ is equivalent to the continuity of the risk measure
ρ.

14



Proposition 1 (Cont et al. (2010)) Let ρ be a risk measure and G ∈ C ⊂ Qρ.
The following are equivalent:

1. ρ, when restricted to C, is continuous at G;

2. ρ̂ is C-robust at G.

In the following, we are going to investigate the continuity of ρ, which finally
clarifies whether ρ̂ is robust or not. The following lemma is useful.

Lemma 2 Let −∞ < a < b < +∞, and Gn, G be increasing functions on [a, b].
Suppose G(z) is continuous on [a, b] and Gn(z) → G(z) for each z ∈ [a, b], then
Gn(z) → G(z) uniformly on [a, b].

Proof Because [a, b] is a closed interval and G(z) is continuous on [a, b], for each
ǫ > 0, there exists a = z1 < · · · < zm = b such that sup1≤i≤m−1 |G(zi+1)−G(zi)| < ǫ

2
.

On the other hand, there exists N such that when n ≥ N , |Gn(zi) − G(zi)| < ǫ
2
for

every zi, i = 1, . . .m. Now for any z ∈ [a, b] there exist zi, zi+1 such that zi ≤ z ≤ zi+1.
Thus

Gn(z)−G(z) ≤ Gn(zi+1)−G(zi)

= Gn(zi+1)−G(zi+1) +G(zi+1)−G(zi)

< ǫ

when n ≥ N . Similarly, we have Gn(z) − G(z) > −ǫ when n ≥ N . Therefore,
Gn(z) → G(z) on [a, b] uniformly.

The following lemma shows that any risk measure ρ in (21) is consistent on Q∞
c ,

i.e., Q∞
c ⊂ Qρ

c .

Lemma 3 Let ρ be given in (21). Then ρ is consistent at any G ∈ Qc which is
bounded from below. In particular, Q∞

c ⊂ Qρ
c .

Proof Let G ∈ Qc which is bounded from below, and X1, X2, . . . be its samples. By
Glivenko-Cantelli theorem, Gemp

Xn (z) → G(z), 0 < z < 1 almost surely. Furthermore,
inf i=1,...,nXi → essinfX1 almost surely, which shows that Gemp

Xn (0+) → G(0+). Thus
if we extend Gemp

Xn and G from (0, 1) to [0, 1) by setting Gemp
Xn (0) := Gemp

Xn (0+) and
G(0) := G(0+), then G(·) is continuous on [0, 1) and Gemp

Xn (z) → G(z), 0 ≤ z < 1
almost surely.

In the following, for each fixed ω, let Gn := Gemp
Xn . For simplicity, we work with

U(·) := −ρ(·). We want to show that U(Gn(·)) → U(G(·)). On the one hand,

lim sup
n→∞

U(Gn(·)) ≤ inf
m∈dom(v)

[
lim sup
n→∞

∫

(0,1)

(Gn ∧ 0)(z)m(dz) + v(m)

]

≤ inf
m∈dom(v)

[∫

(0,1)

(G(z) ∧ 0)m(dz) + v(m)

]

= U(G(·)),
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where the second inequality is due to Fatou’s lemma. On the other hand, for each
η < 1, by Lemma 2, Gn(z) → G(z) uniformly for z ∈ (0, η]. Thus we have

lim inf
n→∞

U(Gn(·)) = lim inf
n→∞

inf
m∈dom(v)

[∫

(0,1)

(Gn(z) ∧ 0)m(dz) + v(m)

]

≥ lim inf
n→∞

inf
m∈dom(v)

[∫

(0,1)

(Gn(z ∧ η) ∧ 0)m(dz) + v(m)

]

= inf
m∈dom(v)

[∫

(0,1)

(G(z ∧ η) ∧ 0)m(dz) + v(m)

]

= U(G(· ∧ η)),

where the second equality holds because Gn(z∧η) → G(z∧η) for z ∈ (0, 1) uniformly.
Finally,

U(G(·)) ≥ U(G(· ∧ η)) = inf
m∈dom(v)

[∫

(0,1)

(G(z ∧ η) ∧ 0)m(dz) + v(m)

]

= inf
m∈dom(v)

[ ∫

(0,1)

(G(z) ∧ 0)m(dz) + v(m)

−
∫

(0,1)

(G(z) ∧ 0− (G(z ∧ η) ∧ 0))m(dz)
]

≥ U(G(·))−
[
lim
z↑1

G(z) ∧ 0−G(η) ∧ 0

]

→ U(G(·))

as η ↑ 1. Therefore we conclude lim infn→∞ U(Gn(·)) ≥ U(G(·)).
The following result characterizes risk measures ρ : Q 7→ R+ defined by (21) which

are continuous on Q.

Theorem 3 Let ρ be defined by (21) and C be any subset of Qc such that C ⊇ Q∞
c .

The following are equivalent:

(i) ρ(·), when restricted to C, is continuous at any G(·) ∈ C.

(ii) There exists 0 < δ < 1 such that

sup
m∈dom(v)

m((0, δ)) = 0. (27)

Furthermore, if (ii) holds, Qρ
c = Qc.

Proof

(ii) ⇒ (i) The proof is analogous to the proof of Lemma 3. Let (ii) hold for some 0 < δ < 1.
For simplicity, we work with U(.) , −ρ(.) and first show that U is lower semi-
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continuous. For each η < 1, we have

lim inf
n→∞

U(Gn(·)) = lim inf
n→∞

inf
m∈dom(v)

[∫

[δ,1)

(Gn(z) ∧ 0)m(dz) + v(m)

]

≥ lim inf
n→∞

inf
m∈dom(v)

[∫

[δ,1)

(Gn(z ∧ η) ∧ 0)m(dz) + v(m)

]

= inf
m∈dom(v)

[∫

[δ,1)

(G(z ∧ η) ∧ 0)m(dz) + v(m)

]

= U(G(· ∧ η)),

where the second equality holds because Gn(z ∧ η) converges to G(z ∧ η) uni-
formly for z ∈ [δ, 1) where Lemma 2 applies. Then, by monotonicity, we have
0 ≤ U(G(·))− U(G(· ∧ η)). Finally,

U(G(·)) ≥ U(G(· ∧ η)) = inf
m∈dom(v)

[∫

[δ,1)

(G(z ∧ η) ∧ 0)m(dz) + v(m)

]

= inf
m∈dom(v)

[ ∫

[δ,1)

(G(z) ∧ 0)m(dz) + v(m)

−
∫

(0,1)

(G(z) ∧ 0− (G(z ∧ η) ∧ 0))m(dz)
]

≤ U(G(·))−
[
lim
z↑1

G(z) ∧ 0−G(η) ∧ 0

]

→ U(G(·))
as η ↑ 1. Thus we have lim infn→∞U(Gn(·)) ≥ U(G(·)), and can conclude that
U is lower semi-continuous.

Next, we show that U is also upper-semi-continuous.

lim sup
n→∞

U(Gn(·)) ≤ inf
m∈dom(v)

[
lim sup
n→∞

∫

(0,1)

(Gn ∧ 0)(z)m(dz) + v(m)

]

≤ inf
m∈dom(v)

[∫

(0,1)

(G(z) ∧ 0)m(dz) + v(m)

]

= U(G(·)),
where the second inequality is due to Fatou’s lemma. Together with the lower-
semi-continuity, U(·) is continuous at G, and so is ρ.

(i) ⇒ (ii) We prove it by contradiction. If (ii) is not true, there exists δn > 0, and
mn ∈ dom(v), such that δn → 0 and mn((0, δn)) > 0. Define

Gn(z) :=





−βn 0 < z ≤ δn,
βn

δn
(z − 2δn) δn < z ≤ 2δn

0 2δn < z < 1,

n ≥ 1,

where

βn :=
v(mn) + 1

mn((0, δn))
, n ≥ 1.
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It is obvious that Gn ∈ Q∞
c ⊂ C, n ≥ 1. Because δn ↓ 0, Gn(·) → 0 in C. On

the other hand,

U(Gn(·)) ≤
∫

(0,1)

Gn(z)mn(dz) + v(mn) ≤ −1,

and U(0) = 0. Thus, U(·) is not continuous at 0 which is a contradiction.

Finally, if (ii) holds, for any G(·) ∈ Qc, we have ρ(G(·)) = ρ(G(· ∨ δ)). Because
G(·∨δ) is bounded from below, by Lemma 3, ρ is consistent at G(·∨δ), and therefore
consistent at G(·). In other words, Qρ

c = Qc.

Remark 2 Jouini et al. (2006) consider the Lebesgue property of a convex monetary
risk measure and give an equivalent dual characterization. Actually, the Lebesgue
property is a weaker continuity property of ρ compared with the continuity we consider
here. To compare these two continuity properties, we mimic the result in Jouini et al.
(2006) to give a dual characterization in Appendix A.

Combining Proposition 1 and Theorem 3, we have

Corollary 1 Let ρ be defined by (21) and C be any subset of Qρ
c such that C ⊇ Q∞

c .
Then the following are equivalent

1. ρ̂ is C-robust

2. There exists 0 < δ < 1 such that

sup
m∈dom(v)

m((0, δ)) = 0. (28)

Furthermore, if ρ̂ is C-robust, then Qρ
c = Qc.

As the following corollary shows, loss-based statistical risk measures do not lead
to robust risk estimators.

Corollary 2 Let ρ be a loss-based statistical risk measure and C be any subset of Qρ
c

such that C ⊇ Q∞
c . Then ρ̂ is not C-robust.

Proof By Theorem 2, ρ can be represented as (7) where the penalty function v

satisfies (6). As a result, there exists a φ ∈ Ψ((0, 1))∩dom(v) such that
∫ 1

0
φ(z)dz ≥ 1

2
.

Because φ(·) is decreasing on (0,1), we must have
∫ δ

0
φ(z)dz > 0 for any δ > 0. By

Corollary 1, ρ̂ is not C-robust.

2.3 Statistical robustness of risk estimators

Corollary 1 gives a sufficient and necessary condition for a loss-based risk mea-
sure ρ represented by equation (21) to be continuous and therefore lead to a robust
empirical risk estimator. In particular, loss-based statistical risk measures lead to
non robust risk estimators. In the following, we provide one way to robustify risk
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estimator computed from loss-based statistical risk measures. Fixed some δ ∈ (0, 1),
for any loss-based statistical risk measure ρ, consider its δ-truncation

ρδ(G(·)) := ρ(G(· ∨ δ)), G ∈ Q. (29)

Note that we could also consider risk measures given by representation (21) and
propose a modified version of this larger class of risk measures leading to robust risk
estimators. The restriction to loss-based statistical risk measures is only made to
illustrate further the conflict between robustness and convexity.

From the representation (7), we can find the representation of ρδ, which in turns
shows that ρ̂δ is robust. Define the map π : Ψ 7→ M((0, 1)) which associates to any
density function φ in Ψ a measure m defined by

m(dz) :=





φ(z)dz, δ < z < 1,(∫
(0,δ]

φ(t)dt
)
δz, z = δ,

0, 0 < z < δ,

where δz is the Dirac measure at z. Noticing that π is not a bijective map leads
to an additional definition since the penalty function v(m) for m ∈ π(Ψ((0, 1))) :=
{m | m = π(φ) for some φ ∈ Ψ((0, 1))} cannot be derived uniquely from v(φ) where
m = π(φ). Therefore by denoting π−1(m) = {φ ∈ Ψ((0, 1)) | π(φ) = m}, we define
for m ∈ π(Ψ),

vδ(m) := inf
φ∈Ψ∩π−1(m)

v(φ).

From the representation (7), we have

ρδ(G) = − inf
φ∈Ψ

{
(G(δ) ∧ 0)

∫

(0,δ]

φ(z)dz +

∫

(δ,1)

(G(z) ∧ 0)φ(z)dz + v(φ)

}

= − inf
m∈π(Ψ)

{∫

(0,1)

(G(z) ∧ 0)m(dz) + vδ(m)

}
. (30)

Finally, from (6), it is easy to see that vδ satisfies (22).
From the representation (30), it is immediate to see that the δ-truncation ρδ is no

longer convex since measures m ∈ π(Ψ((0, 1))) have a point mass at δ and therefore
do not admit a density on (0, 1). On the other hand, it is also straightforward to see
that ρ̂δ is Qc-robust because each m ∈ π(Ψ((0, 1))) satisfies m((0, δ)) = 0.

Example 6 The δ-truncation of the spectral tail measure (12) is given by

ρδ(G) =

∫ 1

δ

(G(z) ∧ 0)φ(z)dz +G(δ)

∫ δ

0

φ(z)dz, G ∈ Q. (31)

Example 7 The δ-truncation of the loss certainty equivalent is given by

ρδ(G(·)) = u−1

(∫ 1

0

u(|G(t ∨ δ) ∧ 0|)dt
)
, G ∈ Q. (32)
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In particular, the δ-truncation of the Lp risk measure is given by

ρδ(G) =

[∫ 1

0

|G(z ∨ δ) ∧ 0|pdz
] 1

p

, G ∈ Q, (33)

and its representation is expressed as

ρδ(G) = − inf
m∈π(Ψq((0,1)))

∫ 1

0

(G(z) ∧ 0)m(dz), G ∈ Q. (34)

The δ-truncation of the entropic risk measure is given by

ρδ(G) =
1

β
log

(∫

(0,1)

e−β G(z∨δ)∧0 dz

)
, G ∈ Q, (35)

and its representation is expressed as

ρδ(G) = − inf
m∈π(Φ((0,1)))

{∫

(0,1)

(G(z) ∧ 0)m(dz) + vδ(m)

}
, G ∈ Q (36)

where for each m ∈ π(Φ((0, 1)))

vδ(m) = inf
φ∈Φ∩π−1(m)

v(φ)

=
1

β

∫

(δ,1)

m′(z) log (m′(z)) dz +
1

β
lim
z↓δ

(m′(z) log (m′(z)) z)− inf
φ∈Φ((0,1))

∫ 1

0

φ(z) lnφ(z)dz.

Here m′(z), δ < z < 1 denotes the density of m on (δ, 1) w.r.t to Lebesgue measure.
This density is well-defined because m ∈ π(Φ((0, 1))).

Remark 3 In the case of the Expected Shortfall, Cont et al. (2010) have proposed
another truncation for ESα

ESδ,α(G) =
1

α− δ

∫

(δ,α)

G(z) dz.

Hence, applying this idea to the larger class of loss-based statistical risk measures
would lead to defining the following δ−truncation

ρ̃δ(G) = − inf
φ̃∈π̃(Ψ)

{∫

(0,1)

(G(z) ∧ 0)φ̃(z)dz + ṽδ(φ̃)

}
,

where the map π̃ : Ψ → M((0, 1)) associates to any function φ ∈ Ψ another function

φ̃ ∈ M((0, 1)) defined by

φ̃(z) :=
φ(z)1(δ,1)(z)∫
(δ,1)

φ(z)dz
6∈ Ψ,

and where the penalty function is given by

ṽδ(φ̃) := inf
φ∈Ψ∩π̃−1(φ̃)

v(φ).

In this context, such truncations ρ̃δ are less tractable than ρδ since they cannot be
computed from the initial risk measure ρ as in (29).
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3 Sensitivity analysis of risk estimators

In the previous section, we have studied the robustness of risk estimators in a
qualitative sense. One may argue that the above results rely on the choice of a
topology (weak topology) together with a distance (Lévy-Prokhorov distance) on the
space of probability distributions. As illustrated in Appendix A, the choice of a
weaker topology could lead to different robustness properties. Nonetheless, as noted
in Huber (1981), the choice of the weak continuity to study robustness is natural in
statistics. To further illustrate this statement in this section, we study sensitivity
properties of risk estimators without relying on any topology and show that it leads
to the same conclusions as before, singling out the same class of risk estimators as
non-robust.

This may be done by quantifying the sensitivity of risk estimators using influence
functions (Cont et al., 2010; Hampel, 1974). Fix a risk estimator ρ̂ for which the
estimation is based on applying the risk measure ρ to empirical quantile functions.
Then, its sensitivity function at the quantile function G of a distribution F , in the
direction of the Dirac mass at z is equal to

S(z;G) , lim
ǫ→0+

ρ(ǫδz + (1− ǫ)F )− ρ(F )

ǫ
,

for any z ∈ R such that the limit exists. Note that S(z;G) is nothing but the direc-
tional derivative of the risk measure ρ at F in the direction δz ∈ D. S(z, G) measures
the sensitivity of the risk estimator based on a large sample to the addition of a new
data point. It has already been used in the field of risk measure by Heyde et al.
(2010); Cont et al. (2010). In the latter, the authors consider different estimation
methods, using both empirical and parametric distributions. In that case, the defi-
nition of the sensitivity function should be considered with more attention since the
risk measure ρ would have to be replaced with an effective risk measure incorporat-
ing both the choice of the risk measure and the estimation method as explained in
Cont et al. (2010).

3.1 Unbounded sensitivity functions

In this section, we compute the sensitivity function of the loss certainty equivalent.
We find that this risk measure has unbounded sensitivity function which is consistent
with our findings of Section 2. Note that, unlike the setting of Section 2, this result
makes no reference to any topology on the set of loss distributions.

Proposition 2 The sensitivity function of the loss certainty equivalent (13) is given
by

S(z;G) =
u(|z ∧ 0|)− u(ρ(G))

u′(ρ(G))
. (37)
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Proof By denoting Gǫ(·) the quantile function corresponding to the distribution
function Fǫ(·) = (1− ǫ)F (·) + ǫδz(·), we have

ρ(Gǫ) = u−1

(∫

R

u(|x ∧ 0|)dFǫ(x)

)

= u−1

(
(1− ǫ)

∫

R

u(|x ∧ 0|)dF (x) + ǫu(|z ∧ 0|)
)
.

Now, simple calculus leads to (37).

From Proposition 2, if limx→∞ u(x) = ∞, limz↓−∞ S(z;G) = +∞, showing that
the sensitivity function is unbounded. In particular, for the Lp and entropic risk
measures, the sensitivity functions are unbounded.

3.2 Boundedness of sensitivity functions for robust risk esti-
mators

In this section, we compute the sensitivity functions of the δ−truncated versions
of the loss certainty equivalents. These truncated versions were introduced in Section
2.3 in order to obtain robust risk estimators. The conclusion of the following propo-
sition is that by truncating these risk measures, their sensitivity functions become
bounded. Therefore, the robustness properties of risk estimators derived in Section 2
are consistent with the sensitivity functions computed in this section.

Proposition 3 Consider the δ-truncation of the certainty equivalent (32) with 0 <
δ < 1. Assume F (z) < 1 and G(·) is differentiable at δ. Then the sensitivity S(z;G)
can be computed as follows:

(i) When G(δ) > 0,

S(z;G) = 0. (38)

(ii) When G(δ) = 0,

S(z;G) =
1

u′(ρδ(G))

{
0, z ≥ G(δ),

δ (1− δ)G′(δ), z < G(δ).
(39)

(iii) When G(δ) < 0,

S(z;G) =
1

u′(ρδ(G))


−u(ρδ(G)) +





u(|z ∧ 0|)− δ2u′(|G(δ)|)G′(δ), z > G(δ),

u(|z ∧ 0|), z = G(δ),

u(|G(δ)|) + δ(1− δ)u′(|G(δ)|)G′(δ), z < G(δ).




(40)

Proof First let us recall some properties of left-continuous inverse functions. For
any distribution function F̃ , denote by F̃−1 its left-continuous inverse. Then for any
t ∈ [0, 1], x ∈ R,

F̃ (x) ≥ t ⇐⇒ x ≥ F̃−1(t), F̃ (x) < t ⇐⇒ x < F̃−1(t), (41)
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and thus

F̃ (x−) < t ≤ F̃ (x) ⇐⇒ x = F̃−1(t). (42)

In the following, we denote by F (·) the distribution function associated with G(·).
By assumption, G(·) is differentiable and thus continuous at δ. We claim that

F (z−) ≤ δ ≤ F (z) ⇐⇒ z = G(δ), F (z) > δ ⇐⇒ z > G(δ), F (z) < δ ⇐⇒ z < G(δ).
(43)

Indeed, from (41), we deduce that F (z) < δ if only if z < G(δ). From (42), we deduce
that if z = G(δ), then F (z−) ≤ δ ≤ F (z). Thus, to prove (43), we only need to show
that if F (z−) ≤ δ ≤ F (z), z = G(δ). Suppose F (z−) ≤ δ ≤ F (z). On the one hand,
from (41), z ≥ G(δ). On the other hand, for any ε > 0 small enough, F (z−ε) < δ+ε,
which again by (41) leads to z − ǫ < G(δ + ε). Letting ε ↓ 0, by the continuity of
G(·) at δ, we conclude that z ≤ G(δ).

Denote by Gǫ(·) the quantile function corresponding to the distribution function
Fǫ(·) = (1− ǫ)F (·) + ǫδz(·). We only need to compute

A := lim
ǫ↓0

∫ 1

0
u(|Gǫ(t ∨ δ) ∧ 0|)dt−

∫ 1

0
u(|G(t ∨ δ) ∧ 0|)dt

ǫ
,

and S(z;G) follows from the chain rule.
Straightforward computation shows that

Gǫ(t) =





G
(
t−ǫ
1−ǫ

)
, t > ǫ+ (1− ǫ)F (z),

G
(

t
1−ǫ

)
, t ≤ (1− ǫ)F (z−),

z, (1− ǫ)F (z−) < t ≤ ǫ+ (1− ǫ)F (z).

Thus
∫ 1

δ

u(|Gǫ(t) ∧ 0|)dt

=

∫ 1

δ

u(|G
(
t− ǫ

1− ǫ

)
∧ 0|)1{t>ǫ+(1−ǫ)F (z)}dt+

∫ 1

δ

u(|G
(

t

1− ǫ

)
∧ 0|)1{t≤(1−ǫ)F (z−)}dt

+

∫ 1

δ

u(|z ∧ 0|)1{(1−ǫ)F (z−)<t≤ǫ+(1−ǫ)F (z)}dt

=(1− ǫ)

∫ 1

δ−ǫ
1−ǫ

u(|G (t) ∧ 0|)1{t>F (z)}dt+ (1− ǫ)

∫ 1

δ
1−ǫ

u(|G (t) ∧ 0|)1{t≤F (z−)}dt

+

∫ 1

δ

u(|z ∧ 0|)1{(1−ǫ)F (z−)<t≤ǫ+(1−ǫ)F (z)}dt

=(1− ǫ)

∫ 1

δ

u(|G (t) ∧ 0|)dt+ (1− ǫ)

∫ δ

δ−ǫ
1−ǫ

u(|G (t) ∧ 0|)1{t>F (z)}dt

− (1− ǫ)

∫ δ
1−ǫ

δ

u(|G (t) ∧ 0|)1{t≤F (z−)}dt− (1− ǫ)

∫ 1

δ

u(|G (t) ∧ 0|)1{F (z−)<t≤F (z)}dt

+

∫ 1

δ

u(|z ∧ 0|)1{(1−ǫ)F (z−)<t≤ǫ+(1−ǫ)F (z)}dt.
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It is easy to compute that

∫ δ

δ−ǫ
1−ǫ

u(|G (t) ∧ 0|)1{t>F (z)}dt =

{
0, F (z) ≥ δ,

(1− δ)u(|G(δ) ∧ 0|)ǫ+ o(ǫ), F (z) < δ,
∫ δ

1−ǫ

δ

u(|G (t) ∧ 0|)1{t≤F (z−)}dt =

{
δu(|G(δ) ∧ 0|)ǫ+ o(ǫ), F (z−) > δ,

0, F (z−) ≤ δ.

Noticing (42), we can compute that

∫ 1

δ

u(|G (t) ∧ 0|)1{F (z−)<t≤F (z)}dt =





0, F (z) < δ,

(F (z)− δ)u(|z ∧ 0|), F (z−) ≤ δ ≤ F (z),

(F (z)− F (z−))u(|z ∧ 0|), δ < F (z−).

Similarly, we can compute that

∫ 1

δ

u(|z ∧ 0|)1{(1−ǫ)F (z−)<t≤ǫ+(1−ǫ)F (z)}dt =





o(ǫ), F (z) < δ,

[(1− ǫ)(F (z)− δ) + ǫ(1− δ)]u(|z ∧ 0|), F (z−) ≤ δ ≤ F (z),

[(1− ǫ)(F (z)− F (z−)) + ǫ]u(|z ∧ 0|), δ < F (z−).

Therefore

∫ 1

δ

u(|Gǫ(t) ∧ 0|)dt = (1 − ǫ)

∫ 1

δ

u(|G (t) ∧ 0|)dt+





[u(|z ∧ 0|)− δu(|G(δ) ∧ 0|)] ǫ+ o(ǫ), δ < F (z−),

(1− δ)u(|z ∧ 0|)ǫ+ o(ǫ), F (z−) ≤ δ ≤ F (z),

(1− δ)u(|G(δ) ∧ 0|)ǫ+ o(ǫ), δ > F (z).

On the other hand

Gǫ(δ) ∧ 0−G(δ) ∧ 0 =





G
(
δ−ǫ
1−ǫ

)
∧ 0−G(δ) ∧ 0, δ > ǫ+ (1− ǫ)F (z),

G
(

δ
1−ǫ

)
∧ 0−G(δ) ∧ 0, δ ≤ (1− ǫ)F (z−),

z ∧ 0−G(δ) ∧ 0, (1− ǫ)F (z−) < δ ≤ ǫ+ (1− ǫ)F (z).

We discuss case by case.

1. G(δ) > 0. Because G(·) is continuous at δ, it is easy to show that Gǫ(δ) ∧ 0 −
G(δ) ∧ 0 = 0 when ǫ is sufficiently small.

2. G(δ) = 0. In this case, we have

Gǫ(δ) ∧ 0−G(δ) ∧ 0 =





G
(
δ−ǫ
1−ǫ

)
, δ > ǫ+ (1− ǫ)F (z),

0, δ ≤ (1− ǫ)F (z−),

z ∧ 0, (1− ǫ)F (z−) < δ ≤ ǫ+ (1− ǫ)F (z)

when ǫ is sufficiently small. Recalling (43), we conclude that

Gǫ(δ) ∧ 0−G(δ) ∧ 0 =





0, δ < F (z−),

0, F (z−) ≤ δ ≤ F (z),

−(1 − δ)G′(δ)ǫ+ o(ǫ), δ > F (z).
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3. G(δ) < 0. In this case, we have

Gǫ(δ) ∧ 0−G(δ) ∧ 0 =





G
(
δ−ǫ
1−ǫ

)
−G(δ), δ > ǫ+ (1− ǫ)F (z),

G
(

δ
1−ǫ

)
−G(δ), δ ≤ (1− ǫ)F (z−),

z −G(δ), (1− ǫ)F (z−) < δ ≤ ǫ+ (1− ǫ)F (z).

when ǫ is small enough, leading to

Gǫ(δ) ∧ 0−G(δ) ∧ 0 =





δG′(δ)ǫ+ o(ǫ), δ < F (z−),

0, F (z−) ≤ δ ≤ F (z),

−(1 − δ)G′(δ)ǫ+ o(ǫ), δ > F (z).

Notice that
∫ 1

0

u(|Gǫ(t ∨ δ) ∧ 0|)dt−
∫ 1

0

u(|G(t ∨ δ) ∧ 0|)dt =
∫ 1

δ

u(|Gǫ(t) ∧ 0|)dt−
∫ 1

δ

u(|G(t) ∧ 0|)dt

+δ (u(|Gǫ(δ) ∧ 0|)− u(|G(δ) ∧ 0|)) .

Then, when G(δ) > 0,

lim
ǫ↓0

∫ 1

0
u(|Gǫ(t ∨ δ) ∧ 0|)dt−

∫ 1

0
u(|G(t ∨ δ) ∧ 0|)dt

ǫ

= lim
ǫ↓0

∫ 1

δ
u(|Gǫ(t) ∧ 0|)dt−

∫ 1

δ
u(|G(t) ∧ 0|)dt+ δ (u(|Gǫ(δ) ∧ 0|)− u(|G(δ) ∧ 0|))

ǫ

= lim
ǫ↓0

∫ 1

δ
u(|Gǫ(t) ∧ 0|)dt−

∫ 1

δ
u(|G(t) ∧ 0|)dt− δu′(|G(δ) ∧ 0|) (Gǫ(δ) ∧ 0−G(δ) ∧ 0)

ǫ

=0.

Similarly, when G(δ) = 0,

lim
ǫ↓0

∫ 1

0 u(|Gǫ(t ∨ δ) ∧ 0|)dt−
∫ 1

0 u(|G(t ∨ δ) ∧ 0|)dt
ǫ

=





0, δ < F (z−),

0, F (z−) ≤ δ ≤ F (z),

u′(0)δ(1− δ)G′(δ), δ > F (z).

When G(δ) < 0,

lim
ǫ↓0

∫ 1

0
u(|Gǫ(t ∨ δ) ∧ 0|)dt−

∫ 1

0
u(|G(t ∨ δ) ∧ 0|)dt

ǫ

=−
∫ 1

δ

u(|G(t) ∧ 0|)dt+





u(|z ∧ 0|)− δu(|G(δ)|)− δ2u′(|G(δ)|)G′(δ), δ < F (z−),

(1− δ)u(|z ∧ 0|), F (z−) ≤ δ ≤ F (z),

(1− δ)u(|G(δ)|) + δ(1− δ)u′(|G(δ)|)G′(δ), δ > F (z).

=−
∫ 1

0

u(|G(t ∨ δ) ∧ 0|)dt+





u(|z ∧ 0|)− δ2u′(|G(δ)|)G′(δ), δ < F (z−),

u(|z ∧ 0|), F (z−) ≤ δ ≤ F (z),

u(|G(δ)|) + δ(1− δ)u′(|G(δ)|)G′(δ), δ > F (z).

Finally, applying chain rule and (43), we immediately have (38)-(40).
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From Proposition 3, it is easy to compute that

sup
z∈R

S(z;G) ≤ 1

u′(ρδ(G))
×





0, G(δ) > 0,

δ(1− δ)G′(δ), G(δ) = 0,

−u(ρδ(G)) + u(|G(δ)|) + δ(1− δ)u′(|G(δ)|)G′(δ), G(δ) < 0.

Thus the truncated loss certainty equivalent has bounded sensitivity functions, which
is consistent with the robustness properties of risk estimators derived in Section 2.

Remark 4 If F has a continuous positive density f in the neighborhood of G(δ),
then G(·) is differentiable at δ and

G′(δ) =
1

f(G(δ))
.

Moreover, denoting by SVaRδ(z;G) the sensitivity function of VaRδ at G, which, from
the proof of Proposition 3, is

SVaRδ(z;G) =





δ
f(G(δ))

, z > G(δ),

0, z = G(δ),

− 1−δ
f(G(δ))

, z < G(δ),

we can rewrite, for G(δ) < 0, the sensitivity of the δ−truncation of the loss certainty
equivalent as:

S(z;G) =
1

u′(ρδ(G))
[−u(ρδ(G)) + u(|(z ∨G(δ)) ∧ 0|)− δu′(|G(δ)|)SVaRδ(z;G)] .

A Lebesgue Continuity

Following Jouini et al. (2006), we consider a weaker continuity property for ρ:

Definition 3 (Lebesgue continuity) Let ρ be defined in (21). ρ is Lebesgue con-
tinuous at G ∈ Q if for any Gn ∈ Q such that Gn is uniformly bounded and Gn → G,
ρ(Gn) → ρ(G).

The following result gives the dual characterization of the Lebesgue continuity and
shows how Theorem 3 is modified when weak continuity is replaced by Lebesgue
continuity.

Theorem 4 Let ρ be defined as in (21). Then, the following are equivalent

(i) ρ(·) is Lebesgue continuous at any G ∈ Q∞
c .

(ii) For each c > 0,

lim
δ↓0

sup
v(m)≤c

m((0, δ)) = 0.

Proof We work with U(·) := −ρ(·).
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(i) ⇒ (ii) If (ii) does not hold, there exists c > 0, ǫ0 > 0, δn ↓ 0, and mn ∈ P((0, 1)) with
v(mn) ≤ c, such that mn((0, δn)) ≥ ǫ0. Define

Gn(z) :=





−β, 0 < z ≤ δn,
β

δn
(z − 2δn), δn < z ≤ 2δn,

0, 2δn < z < 1,

n ≥ 1,

where β := 2c
ǫ0
. Then we have

U(Gn(·)) ≤
∫

(0,1)

(Gn(z) ∧ 0)mn(dz) + v(mn)

≤ −2c+ c = −c < 0.

On the other hand, Gn(·) is uniformly bounded, and because δn ↓ 0, Gn(·) →
G(·) ≡ 0. Because U(0) = 0, U(·) is not Lebesgue continuous at 0, which is a
contradiction.

(ii) ⇒ (i) Suppose G,Gn ∈ Q∞
c are uniformly bounded and Gn → G. On the one hand

lim sup
n→∞

U(Gn(·)) ≤ inf
m∈P((0,1))

{
lim sup
n→∞

∫

(0,1)

(Gn(z) ∧ 0)m(dz) + v(m)

}

= inf
m∈P((0,1))

{∫

(0,1)

(G(z) ∧ 0)m(dz) + v(m)

}

= U(G(·)),

where the first equality is due to bounded convergence theorem.

On the other hand, letM > 0 be a uniform bound ofGn, i.e., supn≥1,z∈(0,1) |Gn(z)| ≤
M . For each fixed 0 < ǫ < 1, and n ≥ 1, we can find mn ∈ dom(v) such that

U(Gn(·)) ≥
∫

(0,1)

(Gn(z) ∧ 0)mn(dz) + v(mn)− ǫ. (44)

Let cn := v(mn) < ∞, then

cn ≤ U(Gn(·))−
∫

(0,1)

(Gn(z) ∧ 0)mn(dz) + ǫ

≤ 2M + 1 =: c.

Thus we have

U(Gn(·)) ≥ inf
v(m)≤c

{∫

(0,1)

(Gn(z) ∧ 0)m(dz) + v(m)

}
− ǫ, n ≥ 1.

By monotonicity of U , we can find 0 < η < 1 such that U(G(·∧η)) ≥ U(G(·))−
ǫ. Because limδ↓0 supv(m)≤c m((0, δ)) = 0, we can find 0 < δ < η such that
supv(m)≤c m((0, δ)) < ǫ/M . By Lemma 2, Gn(z) → G(z) uniformly on [δ, η].
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Thus, there exists N such that for any n ≥ N , supz∈[δ,1) |Gn(z∧η)−G(z∧η)| < ǫ.
Now, for each n ≥ N , we have

U(Gn(·)) ≥ inf
v(m)≤c

{∫

(0,1)

(Gn(z ∧ η) ∧ 0)m(dz) + v(m)

}
− ǫ

= inf
v(m)≤c

{∫

(0,1)

(G(z ∧ η) ∧ 0)m(dz) +

∫

(0,δ)

[(Gn(z ∧ η) ∧ 0)− (G(z ∧ η) ∧ 0)]m(dz)

+

∫

[δ,1)

[(Gn(z ∧ η) ∧ 0)− (G(z ∧ η) ∧ 0)]m(dz) + v(m)
}
− ǫ

≥ inf
v(m)≤c

{∫

(0,1)

(G(z ∧ η) ∧ 0)m(dz)− 2M · ǫ

M
− ǫ+ v(m)

}
− ǫ

= inf
v(m)≤c

{∫

(0,1)

(G(z ∧ η) ∧ 0)m(dz) + v(m)
}
− 4ǫ

≥ U(G(· ∧ η))− 4ǫ

≥ U(G(·))− 5ǫ.

Thus we have lim infn→∞ U(Gn(·)) ≥ U(G(·)). In summary, U is Lebesgue
continuous at G and so is ρ.
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