S. Pan and Q. Yang, A Survey on Transfer Learning, IEEE Transactions on Knowledge and Data Engineering, vol.22, issue.10, pp.1345-1359, 2010.
DOI : 10.1109/TKDE.2009.191

S. Ben-david, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira et al., A theory of learning from different domains, Machine Learning, vol.60, issue.1-2, pp.151-175, 2010.
DOI : 10.1007/s10994-009-5152-4

A. Bergamo and L. Torresani, Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach, Proceedings of NIPS, 2010.

H. Daumé and I. , Frustratingly easy domain adaptation, Proceedings of ACL, 2007.

G. Schweikert, C. Widmer, B. Schölkopf, and G. Rätsch, An empirical analysis of domain adaptation algorithms for genomic sequence analysis, Proceedings of NIPS, pp.1433-1440, 2008.

Y. Mansour, M. Mohri, and A. Rostamizadeh, Domain adaptation: Learning bounds and algorithms, Proceedings of COLT, pp.19-30, 2009.

J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled data, Proceedings of NIPS, pp.601-608, 2006.

M. Sugiyama, S. Nakajima, H. Kashima, P. Bünau, and M. Kawanabe, Direct importance estimation with model selection and its application to covariate shift adaptation, Proceedings of NIPS, 2007.

L. Bruzzone and M. Marconcini, Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.5, pp.770-787, 2010.
DOI : 10.1109/TPAMI.2009.57

M. Balcan, A. Blum, and N. Srebro, Improved guarantees for learning via similarity functions, Proceedings of COLT, pp.287-298, 2008.

S. Ben-david, T. Lu, T. Luu, and D. Pal, Impossibility theorems for domain adaptation, JMLR W&CP, vol.9, pp.129-136, 2010.

H. Xu and S. Mannor, Robustness and generalization, Proceedings of COLT, pp.503-515, 2010.
DOI : 10.1007/s10994-011-5268-1

URL : http://arxiv.org/abs/1005.2243

E. Zhong, W. Fan, Q. Yang, O. Verscheure, and J. Ren, Cross Validation Framework to Choose amongst Models and Datasets for Transfer Learning, Proceedings of ECML-PKDD, ser. LNCS, pp.547-562, 2010.
DOI : 10.1007/978-3-642-15939-8_35

V. Vapnik, Statistical Learning Theory, 1998.

T. Joachims, Transductive inference for text classification using support vector machines, Proceedings of ICML, pp.200-209, 1999.

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, 2001.
DOI : 10.1145/1961189.1961199

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, International Journal of Computer Vision, vol.73, issue.2, 2007.
DOI : 10.1007/s11263-009-0275-4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Smeaton, P. Over, and W. Kraaij, High-Level Feature Detection from Video in TRECVid: a 5-Year Retrospective of Achievements, " in Multimedia Content Analysis, Theory and Applications, pp.151-174, 2009.

S. Ayache, G. Quénot, and J. Gensel, Image and Video Indexing Using Networks of Operators, EURASIP Journal on Image and Video Processing, vol.5, issue.1, pp.1-1, 2007.
DOI : 10.1109/MMUL.2006.63

URL : https://hal.archives-ouvertes.fr/hal-00953803

C. Seah, I. Tsang, Y. Ong, and K. Lee, Predictive Distribution Matching SVM for Multi-domain Learning, Proceedings of ECML PKDD, ser. LNCS, pp.231-247, 2010.
DOI : 10.1007/978-3-642-15880-3_21

H. Daumé, I. , A. Kumar, and A. Saha, Co-regularization based semi-supervised domain adaptation, Proceedings of NIPS, 2010.

L. Duan, I. Tsang, D. Xu, and T. Chua, Domain adaptation from multiple sources via auxiliary classifiers, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, p.37, 2009.
DOI : 10.1145/1553374.1553411

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=