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Abstract—We address the problem of domain adaptation
for binary classification which arises when the distributions
generating the source learning data and target test data are
somewhat different. We consider the challenging case where no
target labeled data is available. From a theoretical standpoint,
a classifier has better generalization guarantees when the two
domain marginal distributions are close. We study a new direc-
tion based on a recent framework of Balcan et al. allowing to
learn linear classifiers in an explicit projection space based on
similarity functions that may be not symmetric and not positive
semi-definite. We propose a general method for learning a good
classifier on target data with generalization guarantees and
we improve its efficiency thanks to an iterative procedure by
reweighting the similarity function - compatible with Balcan et
al. framework - to move closer the two distributions in a new
projection space. Hyperparameters and reweighting quality are
controlled by a reverse validation procedure. Our approach is
based on a linear programming formulation and shows good
adaptation performances with very sparse models. We evaluate
it on a synthetic problem and on real image annotation task.

Keywords-Machine Learning; Transfer Learning; Domain
Adaptation; Binary Classification; Similarity Functions

I. INTRODUCTION

In machine learning, many approaches for learning binary
classifiers are built under the assumption that learning data
are representative of test data. While this assumption can be
relevant for some tasks, it is not always true for every appli-
cations. To overcome this drawback, some transfer learning
methods [1] have been proposed to adapt a model from a
source domain to a target one. In this paper, we address the
problem of domain adaptation (DA) where the test data are
supposed to be drawn according to a distribution - the target
domain - different from the one used for generating learning
data - the source domain [2]. DA is an important issue for the
efficient application of machine learning methods and many
approaches have been proposed in the literature. While some
of them proposed to use a few labeled data from the target
domain [3], [4], [5], [6], we consider the more challenging
problem where no target labeled data is available.

Some theoretical DA frameworks [3], [7] indicate that
a classifier learned only from the labeled source data can
perform well on the target data if the source and target
marginal distributions are relatively close, under the assump-
tion that the two domains are related. This suggests a natural
approach for a successful DA: move closer the source and
target distributions while keeping a good classifier on the

source domain. Following this idea, several methods - based
on different hypothesis or discrepancy measures - have been
proposed for reweighting the learning data [7], [8], [9].
Bruzzone et al. [10] have designed a SVM-based procedure
that iteratively removes source labeled points and adds self
labeled target points to the learning sample. Another idea
consists in finding a common relevant feature space where
the two distributions are close [3]. However, this principle
relies mainly on heuristics specific to particular tasks.

In this article, we propose a new DA approach for binary
classification, based on a recent framework of Balcan et
al. [11], [12] allowing to learn in an explicit projection space
defined by good similarity functions that may be not sym-
metric nor positive semi-definite (PSD) i.e. that generalize
kernel functions. They show that it is possible to learn a
good linear classifier in a space defined by similarities to
some relevant landmark examples. These landmarks offer a
natural set of features to transfer. Our idea is to automatically
modify this projection space for moving closer source and
target points, leading to a good adaptation on the target
domain. For this purpose, we present a general approach
based on a regularizer focusing on landmark points close to
both source and target examples. We formulate it in a 1-norm
regularized linear program leading naturally to very sparse
models. Our approach is then more flexible than SVM-based
methods. Moreover, we propose an iterative process based on
the absence of PSD and symmetric requirements to improve
the tractability of the method. We evaluate it on a synthetic
problem and on real image annotation corpora.

The paper is organized as follows. Section II introduces a
classical DA theory [3]. Section III deals with the framework
of Balcan et al. [11]. Our approach is presented in Section IV
and its iterative enhancement in Section V. Finally, the
algorithm is experimentally evaluated in Section VI.

II. DOMAIN ADAPTATION

Let X ⊆ Rd be the input space of dimension d and
Y = {−1,+1} the label set. A domain is defined as a
probability distribution over X×Y . In a DA framework,
we have a source domain represented by a distribution PS
and a target domain represented by a somewhat different
distribution PT . DS and DT are the respective marginal
distributions over X . A learning algorithm is provided with
a Labeled Source sample LS = {(xi, yi)}dli=1 drawn i.i.d.
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(a) A high domain distance: The
samples are easily separable, the
classifier learned from LS per-
forms badly on TS.
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(b) A low domain distance: The
classifier learned from LS per-
forms well on the two domains.

Figure 1. The intuition behind Theorem 1. The source points (LS) are in
(dark) green (pos.+, neg.−), the target points (TS) are in (light) orange.

from PS , and an unlabeled Target Sample TS = {xj}dtj=1

drawn i.i.d. from DT . Let h : X → Y be an hypothesis
function which is a binary classifier. The expected error
of h over the source domain PS is the probability that
h commits an error: errS(h) = E(x,y)∼PS L01

(
h, (x, y)

)
,

where L01(h, (x, y)) = 1 if h(x) 6= y and zero otherwise,
corresponding to the 0-1 loss function. The target domain
error errT over PT is defined in a similar way, êrrS and
êrrT are the empirical errors. An hypothesis class H is a set
of hypothesis from X to Y . We now review the theoretical
framework of DA based on Ben-David et al. [3], where they
give an upper bound for the target domain expected error.

Theorem 1 ([3]). Let H be a hypothesis class,

∀h ∈ H, errT (h) ≤ errS(h) +
1

2
dH∆H(DS , DT ) + ν,

where the H∆H-distance between DS and DT is
dH∆H(DS ,DT )=2 sup

h,h′∈H∆H
|PrDS[h(x) 6=h′(x)]−PrDT[h(x) 6=h′(x)]|

with H∆H = {h(x) ⊕ h′(x) : h, h′ ∈ H} the symmetric
difference hypothesis space of H, and ν=errS(h∗)+errT (h∗)

with h∗=argminh∈H(errS(h) + errT (h)).

This bound depends on the source domain expected error,
which can be easily minimized by a learning algorithm
based on the ERM principle. ν is related to the ideal joint
hypothesis over the two domains and can be seen as a
quality measure of H for the considered DA task. If this best
hypothesis performs poorly, then it appears hard to obtain a
good hypothesis for the target domain. The other key point is
dH∆H(DS ,DT ) the H∆H-distance between the two marginal
distributions. Theorem 1 suggests that if they are close, then
a low error classifier over the source domain can be a good
classifier for the target one. The intuition behind this idea
is given on Fig. 1. This measure is actually related to H
by measuring a maximum variation divergence over the set
of points on which an hypothesis can commit errors. An
interesting point is that when the VC-dimension of H is
finite, dH∆H can be estimated from finite samples.

Lemma 1 ([3]). If S and T are unlabeled samples of size
m i.i.d. from DS and DT respectively, d̂H∆H(S, T ) is the

empirical H∆H-distance and v is the finite VC-dimension of
H, then for any δ > 0 with probability at least 1− δ,

dH∆H(DS , DT ) ≤ d̂H∆H(S, T )+4

√
2v log(2m)+log 2

δ

m
.

d̂H∆H converges thus to the true dH∆H with the size of the
samples. Consider a labeled sample made of S ∪ T where
each instance of S is labeled as positive and each one of
T as negative, we can estimate directly d̂H∆H (∈ [0, 2]) by
looking for the best classifier able to separate S from T ,

d̂H∆H(S, T ) = 2

(
1− min

h∈H∆H
êrrS∪T (h)

)
, (1)

with êrrS∪T (h)=
1

m

 ∑
x∈S∪T :

h(x)=−1

1x∈S +
∑

x∈S∪T :

h(x)=1

1x∈T

,

where 1x∈A=1 if x∈A and zero otherwise. Finding the
optimal hyperplane is NP-hard in general. However, an
estimation of dH∆H(DS , DT ) allows us to have an insight
of the distribution distance and thus of the difficulty of the
DA task for the class H. Note that, Mansour et al. [7]
have extended the H∆H-distance to real valued functions
and have provided Rademacher generalization bounds.

Following Theorem 1, one solution for a DA algorithm
is to look for a data projection space where both the H∆H-
distance and the source domain expected error of a classifier
are low (see Fig. 1). According to [13], minimizing these two
terms appears necessary to ensure a good adaptation.

III. LEARNING WITH GOOD SIMILARITY FUNCTIONS

In this part, we present the framework proposed by Balcan
et al. of similarity based binary linear classifiers. A similarity
over X is any pairwise function K : X ×X → [−1, 1].
Many algorithms use similarity functions, like support vector
machines where the similarity needs to be a kernel, i.e.
symmetric and PSD, to ensure learning in the implicit high
dimensional space defined by the kernel. Due to the PSD
requirement, considering kernels can be a strong limitation
and defining a good kernel is a tricky task in general. Balcan
et al. [11], [12] consider a rather intuitive notion of a good
similarity function that overcomes some of these limitations.
We review it by beginning with their definition.

Definition 1 ([11]). A similarity function K is an (ε,γ,τ )-
good similarity function for a learning problem P if there
exists a (random) indicator function R(x) defining a set of
reasonable points such that the following conditions hold:

(i) A 1− ε probability mass of examples (x, y) satisfy

E(x′,y′)∼P
[
yy′K(x,x′)|R(x′)=1

]
≥ γ,

(ii) Prx′ [R(x′)=1] ≥ τ .

From this definition, a large proportion of examples must
be on average more similar, with respect to the margin



γ, to the reasonable points of the same class than to the
reasonable points of the opposite class (i). Moreover, at
least a proportion τ of the examples should be reasonable
(ii). Definition 1 includes all valid kernels as well as some
non-PSD similarity functions and is thus a generalization
of kernels [11], [12]. In general the reasonable points are
unknown a priori. Therefore, in the following we denote
by R= {x′j}

du
j=1 a set of potential reasonable points called

landmarks. Given K an (ε,γ,τ )-good similarity function,
the conditions of Balcan et al. are sufficient to learn a
good linear classifier in a φR-space defined by the mapping
function φR, which projects a point in the explicit space of
the similarities to the landmarks such that,

φR :

{
X → Rdu
x 7→ 〈K(x,x′1), . . . ,K(x,x′du)〉.

Let LS a set of dl labeled points, R a set of - enough -
du landmarks. Then, with a high probability, the induced
distribution in the φR-space has a low error separator with
a margin relative to γ. Thus, one can efficiently find a
separator α ∈ Rdu by solving the linear problem of (2)
(based on the hinge loss presented in [11]).

min
α=〈α1,..,αdu〉

1

dl

dl∑
i=1

1− yi
du∑
j=1

αjK(xi,x
′
j)


+

+ λ‖α‖1,

(2)
where [1−z]+=max(0, 1−z) is the hinge loss. The learned
linear model is then denoted by g(x) =

∑du
j=1αjK(x,x′j).

This leads to a natural two steps algorithm for learning the
classifier: select a random set of potential landmarks and
then learn a binary classifier h(x)=sign[g(x)] in the space
induced by the landmarks selected, i.e. those with αj 6=0.
Note that when a φR-space (of dim. d′) has been defined then
the class HφR of linear classifiers learnable in this space has
a finite VC-dimension (d′+1). Thus, according to Lemma 1
we can assess the distribution divergence in the φR-space by
the empirical estimate d̂HφR∆HφR . In the following, a linear
classifier learned in this framework is called a SF classifier
and for sake of simplicity we will denote HφR by H and
each similarity function is assumed to fulfill Definition 1.

IV. DOMAIN ADAPTATION WITH GOOD SIMILARITY
FUNCTIONS

We now present our DA method based on learning with
good similarity functions. Recall that following Theorem 1,
the expected target domain error is bounded by three terms:
(A) the source domain error, (B) the divergence between the
distributions, (C) the smallest joint error over the domains.
Our idea is to minimize the expected target error by de-
creasing this bound. According to Balcan et al., solving (2)
involves to learn - only from the source domain - a good
linear classifier in the explicit φR-space of similarities to a
landmark set. Then, it implies a natural decreasing of (A).
For minimizing (B), we want to induce a new projection

space allowing to move closer the domains by selecting land-
marks that are both similar to the source and target examples.
To achieve this goal, we propose to add a regularization term
on α in (2). Due to the lack of information on the target
domain, the last term (C) is hard to decrease. However, we
propose to use a reverse validation approach to try to control
it. In the following, we denote by LS = {(xi, yi)}dli=1 the
labeled source sample drawn from PS (LS|X denoting the
set {xi / (xi, yi) ∈ LS}dli=1 ), by R={x′j}

du
j=1 the landmark

set and by TS the unlabeled target sample drawn from DT .

A. Optimization Problem

Solving (2) not only minimizes the expected source error
but also defines a relevant projection space for the source
domain, since landmarks associated with a null weight in the
solution α will not be considered. According to the notion of
H∆H-distance (Equation (1)), we propose a new additional
regularizer that forces the model to provide similar outputs
for pairs of source and target points, which will tend to
decrease the distance between the marginal distributions. To
define our regularizer, we have investigated the notion of
algorithmic robustness proposed by Xu and Mannor [14]
(see Definition 2 in Section IV-B). Their underlying idea is
based on the fact that “if a testing sample is similar to a
training sample then the testing error is close to the training
error”. To ensure generalization guarantees, this framework
requires that for a test point closed to a training point of
the same label, the deviation between the losses of each
point has to be low. They also introduce a notion of pseudo-
robustness where it is sufficient to fulfill the robustness
property for only a subpart of the training sample. This
result actually assumes that the test and training data are
generated from the same distribution and is thus not valid
in a DA scenario. However, the authors have conjectured that
it would hold for DA by taking into account a divergence
measure. Despite this drawback, we propose to follow this
conjecture in defining an heuristic to move closer the source
and target samples. According to this idea, the samples may
be similar if for pairs (xs,xt) of close source and target
instances of the same class, the deviation between the losses
of xs and xt is low. This leads us to construct a term to
minimize for decreasing this deviation. By considering the
hinge loss of the formulation of (2), for any learned model
g and any such pair (xs,xt) of the class y we obtain,

let (a) =
∣∣L(g, (xs, y))− L(g, (xt, y))

∣∣
(a) =

∣∣∣∣∣[1−y
du∑
j=1

αjK(xs,x
′
j)
]

+
−
[
1−y

du∑
j=1

αjK(xt,x
′
j)
]

+

∣∣∣∣∣.
The hinge loss is 1-lipschitz (|[X]+−[Y ]+|≤|X−Y |), then,

(a) ≤

∣∣∣∣∣
du∑
j=1

αj
(
K(xs,x

′
j)−K(xs,x

′
j)
)∣∣∣∣∣



(a) ≤
du∑
j=1

∣∣αj(K(xs,x
′
j)−K(xt,x

′
j)
)∣∣

(a) ≤
∥∥(tφR(xs)− tφR(xt)) diag(α)

∥∥
1
, (3)

where tφR(·) is the transposed vector of φR(·) and diag(α)
is the diagonal matrix with α as main diagonal. It is hard to
select the best pairs a priori, especially without target labels.
Considering all the possible pairs is clearly intractable and
we suggest, in Section V-C, a solution to build our pairs
of source-target points to be moved closer. Given this pair
set CST ⊂ LS|X×TS, we then propose to add the new
regularization term of line (3) for each pair of CST , weighted
by a parameter β. This term tends to select the landmarks
with similarities close to some source and target points. Let
R be a set of du candidate landmarks, our following global
optimization (4) corresponds to (2) with the addition of our
regularizer and can be easily formulated as a linear program.

min
α

F (α)=
1

dl

dl∑
i=1

1− yi
du∑
j=1

αjK(xi, x
′
j)


+

+ λ‖α‖1+

β
∑

(xs,xt)∈CST

‖(tφR(xs)−tφR(xt)) diag(α)‖1. (4)

B. Sparsity Analysis and Generalization Bounds

We provide a theoretical sparsity analysis and generaliza-
tion bounds of our method. We suppose (X, ρ) is a compact
metric space and the similarity K is continuous in its first
argument. We also make the following hypothesis on CST ,

∀x′j ∈ R, max
(xs,xt)∈CST

|K(xs,x
′
j)−K(xt,x

′
j)| > 0. (5)

Hypothesis (5) means that for each coordinate x′j , there is
at least one pair of points that brings an information with
different coordinate values, which is not a strong restriction.

We begin with an analysis of the learned model sparsity.

Lemma 2. For any λ > 0, β > 0, and any set CST , let
BR = min

x′j∈R

{
max

(xs,xt)∈CST
|K(xs,x

′
j) − K(xt,x

′
j)|
}

. If α∗ is

the optimal solution of (4), then ‖α∗‖1 ≤
1

βBR + λ
.

Proof: See Appendix A.
According to this lemma, the model sparsity depends on the
parameters λ, β, and on the quantity BR which is related
to the distance between the points in CST . When the two
domains are far from each other, i.e. the task is hard, BR
tends to be high which can imply an increase of the sparsity.

We recall now the robustness definition and its associated
theorem on the generalization ability of robust algorithms.
Actually, this framework (Xu and Mannor [14]) allows us
to consider the regularizers in the generalization bound.

Definition 2 ([14]). Given a learning sample LS, an algo-
rithm A is (M, ε(LS)) robust if X ×Y can be partitioned

into M disjoint sets, denoted as {Ci}Mi=1, such that ∀s ∈ LS,

s, u ∈ Ci ⇒
∣∣L(g, s)− L(g, u)

∣∣ ≤ ε(LS),

with g the model learned fromLS,L the loss function ofA.

Theorem 2 ([14]). If LS = {(xi, yi)}dli=1 is drawn i.i.d.
from a distribution P and if the algorithm A is (M,ε(LS))
robust, then for any δ>0, with probability at least 1− δ,

errP (ALS) ≤ êrrP (ALS) + ε(LS)+

LUP

√
2M ln 2 + 2 ln(1/δ)

dl
,

where errP and êrrP are respectively the expected and the
empirical errors over P , L being upper bounded by LUP .

We can prove that our method is robust on the source domain
which leads to the following generalization bound for the
expected source error.

Theorem 3. If LS={(xi, yi)}dli=1 is drawn i.i.d. from PS ,
then (4) is (2Mη,

Nη

βBR+λ ) robust on the source domain
PS, where Nη= max

xa,xb∼DS
ρ(xa,xb)≤η

‖tφR(xa)−tφR(xb)‖∞with η>0

and Mη is the η-covering number of X (see [14] for more
details). Thus for any δ > 0, with probability at least 1− δ,

errS(h) ≤ êrrS(h) +
Nη

βBR + λ
+

√
4Mη ln 2 + 2 ln 1

δ

dl
.

Proof: See Appendix B.
We now derive a generalization bound for the expected target
domain error directly from Theorems 1 and 3.

Theorem 4. If LS = {(xi, yi)}dli=1 is drawn i.i.d. from the
source domain PS , for every h in the hypothesis class H of
SF classifier, for any δ>0, with probability at least 1− δ,

errT (h) ≤ êrrS(h) +
Nη

βBR + λ
+

√
4Mη ln 2 + 2 ln 1

δ

dl
+

1

2
dH∆H(DS , DT ) + ν,

where ν is the joint error over the domains, dH∆H(DS , DT )
is the H∆H-distance between the marginal distribution.

The constant Nη
βBR+λ depends on our regularizers and on Nη

that can be obtained as small as wished by continuity of K.

C. Reverse Classifier and Validation

A crucial point is the choice of the hyperparameters of our
method. We propose to follow the idea of TrCV from Zhong
et al. [15]. However, this approach relies on valid kernels
and some few target labels. Since we may consider non-PSD
and non-symmetric similarity functions and no label on the
target domain, we make a little adaptation. We use their
concept of reverse validation based on a reverse classifier
evaluated on the source domain (Fig. 2), but directly in
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Figure 2. The reverse validation. Step 1: Learning h with (4). Step 2:
Auto-labeling the target sample by h. Step 3: Learning hr on the auto-
labeled target sample with (2). Step 4: Evaluation of hr on LS.

the projection space found. The justification of this choice
comes from the fact that if the domains are sufficiently
close and related, then the reverse classifier must be also
efficient on the source task [10]. In other words, in the
projection space it is possible to pass from one problem
to another. Since we do not have any information on the
target distribution we define the reverse classifier hr as the
best SF classifier learned with (2), in the φR-space, from the
target sample {(x,h(x))}x∈TS self-labeled by the classifier
h learned with (4). Given k-folds on the source sample
(LS = ∪ki=1LSi), we use k− 1 labeled folds as labeled
examples for learning h and we evaluate hr on the last kth

fold. The error corresponds to the mean of the error over the
k-folds: êrrS(hr) = 1

k

∑k
i=1êrrLSi(h

r). We finally consider
the DA capability of the classifier as an empirical estimation
of the last term ν of the bound of Theorem 1 defined by
ν̂=êrrS(hr)+êrrT (hr), where êrrT (hr) being evaluated by
cross-validation over the auto-labeled target sample. We then
select the hyperparameters minimizing ν̂. Note that with this
choice and the minimization of (4), we try to minimize the
three terms of the bound of Theorem 1.

V. AN ITERATIVE REWEIGHTING: A WAY TO LIGHTEN
THE SEARCH OF THE PROJECTION SPACE

Building the pair set CST is a priori hard since we have
no target label. Moreover, the set of relevant pairs allowing
a good adaptation depends generally on the considered task
and testing all the possible sets, with the reverse validation,
is clearly intractable. To tackle this problem, we propose an
iterative approach based on a selection of a limited number
of pairs and a reweighting scheme of the similarities keeping
close distributions. We finally present a stopping criterion
based on the empirical estimation of the joint error.

A. Selecting the pairs of CST
We propose to construct pairs from two subsets of the two

samples US ⊆LS|X and UT ⊆TS of equal size. We select
them, at a given iteration l, according to the reverse model
grl−1 associated with the reverse classifier hrl−1 computed
in the previous iteration. They correspond to the examples

on which this model is highly or weakly confident on the
labels. Let δHS , δ

H
T , δ

L
S , δ

L
T a set of positive parameters, US

and UT are defined as follows such that |US |= |UT |≤N ,{
US =

{
x ∈ LS|X : |grl (x)| > δHS OR |grl (x)| < δLS

}
UT =

{
x ∈ TS : |grl (x)| > δHT OR |grl (x)| < δLT

}
.

Using these two sets, we build CST ⊂US×UT as a bipartite
matching by minimizing the euclidean distance in the φRl -
space:

∑
(xs,xt)∈CST ‖

tφRl (xs) − tφRl (xt)
∥∥2

2
. This is a way

to infer pairs of close source-target points in the φRl -space
considered at iteration l. Limiting the subsets to small1 N
allows us to build efficiently this bipartite matching, which
is not a too restrictive heuristic since the notion of pseudo-
robustness does not require to consider all the points.

B. A New Projection Space by Iterative Reweighting

The landmarks selected by solving (4), i.e. those with
non null αj , define a projection space where the distribu-
tions tend to be close. We propose to re-use these αj to
force the new space to move closer the distributions by
reweighting the similarity function according to α. Suppose
at a given iteration l, with a similarity function Kl, we
obtain new weights αl. Then, we propose to define Kl+1 by
weighting Kl conditionally to each landmark of R such that,
∀x′j ∈R, Kl+1(x,x

′
j)=α

l
jKl(x,x

′
j) (eventually normalized

to ensure Kl+1 ∈ [−1, 1]). It can be seen as a kind of
contraction of the space to keep the d̂H∆H low. Indeed, in
this new φRl+1-space defined by Kl+1, the points of each pair
of CST are naturally close since, by construction, our reg-
ularizer corresponds exactly to minimize their L1-distance
in the φRl+1-space. Actually, we have, ∀(xs,xt) ∈ CST ,
‖tφRl+1(xs)−tφRl+1(xt)‖1=‖t(φRl (xs)−tφRl (xt))diag(αl)‖1.
An illustration of this procedure is provided on Fig. 3. We
then iterate the process in the new φRl+1-space. The possible
reweightings are related to the different hyperparameters
δ
H/L
S/T (linked to CST ) and λ, β of (4) that are selected

according to reverse validation. Recall that, since we are
not interested in using valid kernels, we do not have to keep
any notion of symmetry or positive semi-definiteness for
Kl+1. However, our normalization remains valid only if the
new similarity function is still good on the source domain,
which can be empirically estimated by evaluating ε and γ
from Definition 1 on LS. In fact, we pay attention to keep
only those that offer the best (ε,γ)-guarantees, ensuring a
sufficiently good similarity. Note that a bad similarity would
lead to a dramatic increase of the expected source error.

C. Stopping Criterion

We consider here the estimated joint error ν̂ related to
the adaptation capability in the current space. Controlling
this term and its decreasing during the iterative process
can provide a nice way to stop the algorithm. Following

1In our experiments we take N ≤ 30.
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Figure 3. An iteration of the reweighting process. The source points are (dark) green (pos. +, neg. −), the unlabeled target ones are (light) orange circle.

Algorithm 1 DASF: Domain Adaptation with Similarity Function
input similarity function K, set R, samples LS and TS
output classifier hDASF
h0(·)← sign

[
1
|R|
∑|R|
j=1K(·,x′j)

]
; K1 ← K ; l← 1

while The stopping criterion is not verified do
Select US ⊆ LS|X , UT ⊆ TS with hrl−1 ; Build CST
αl ← Solve our Problem with Kl and CST
Kl+1 ← Update Kl according to αl

Update R ; l + +
end while
return hDASF (·) = sign

[∑
x′j∈R

αljKl(·,x′j)
]

Section IV-C, at a given iteration l this term is defined
by ν̂l = êrrS(hrl )+êrrT (hrl ). An increasing of ν̂l between
two iterations means that the new projection space found is
no longer relevant and the current one must be preferred.
Then, our process stops at iteration l when ν̂l+1 has reached
a convergence point or has increased significantly. This
criterion allows us to ensure the algorithm stops since the
joint error is positive and bounded by 0. The global iterative
algorithm (named DASF) is described in Algorithm 1.

VI. EXPERIMENTS

In this section, we evaluate our approach DASF on a
synthetic toy problem and on a real image annotation task.
The similarity function used is based on a Gaussian kernel.
To obtain a non-symmetric and non-PSD similarity K∗, we
apply the following normalization from a Gaussian kernel
K: given a set of landmarks R, for every x′j ∈ R,

K∗(.,x′j) =



K(.,x′j)−µx′
j

σx′
j

if −1≤
K(.,x′j)−µ̂x′

j

σ̂x′
j

≤1,

−1 if −1≥
K(.,x′j)−µ̂x′

j

σ̂x′
j

,

1 if
K(.,x′j)−µ̂x′

j

σ̂x′
j

≥1,

where µ̂x′j
is the empirical mean of similarities to x′j over

LS|X∪TS and σ̂x′j is the empirical unbiased estimate of the
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Figure 4. Left: a source sample. Right: a target sample with a 50◦ rotation.

standard deviation. However, depending on the considered
samples, K∗ does not always offer better (ε,γ,τ)-good guar-
antees than the Gaussian kernel. In the following, we only
indicate the similarity which obtains the best results. Prob-
lems favouring K∗ are indicated with a∗, as we will see they
correspond generally to harder DA tasks. We compare DASF
with a classical SVM learned only on the source domain,
the semi-supervised Transductive SVM [16] (TSVM) and
the DA method DASVM [10]. We use a classical Gaussian
kernel for these three methods to facilitate the comparison.
We use the SVM-light library [17] with parameters tuned
by cross-validation on the source data for SVM and TSVM.
DASVM is implemented with the LibSVM library [18].
Parameters of DASVM and DASF are tuned according to a
grid search. We also measure the behavior of a SF classifier
trained only on the source domain. For DASF and SF,
the landmarks are taken from the labeled source sample.
Following (1), we assess the distance d̂H∆H between the
marginal distributions by learning a SF classifier to separate
source from target samples, a small value indicates close
distributions while a larger value indicates a hard DA task.

A. Synthetic Toy Problem

As the source domain we consider a classical binary
problem with two intertwinning moons, each class corre-
sponding to one moon (Fig. 4). We then consider 8 different
target domains by rotating anticlockwise the source domain
according to 8 angles. The higher the angle is, the more
difficult the problem becomes. For each domain, we generate



Table I
THE RESULTS (AVERAGE ACCURACY) OBTAINED FOR THE TWO MOONS TOY PROBLEM.

ROTATION ANGLE 20◦ 30◦ 40◦ 50◦ 60◦∗ 70◦∗ 80◦∗ 90◦∗

SVM 89.68 75.99 68.84 60.00 47.18 26.12 19.22 17.2
±0.78 ±0.92 ±0.85 ±1.08 ±2.82 ±3.12 ±0.28 ±0.37

SV 18
±0.99

SF 92.4 81.81 72.55 57.85 43.93 39.2 35.93 36.73
±3.13 ±4.62 ±7.60 ±4.81 ±4.46 ±9.64 ±10.93 ±10.17

LAND. 24 22 20 20 20
±1.72 ±3.57 ±2.06 ±2.82 ±1.51

TSVM 100 78.98 74.66 70.91 64.72 21.28 18.92 17.49
±0.00 ±2.31 ±2.17 ±0.88 ±9.10 ±1.26 ±1.10 ±1.12

SV 28 37 37 37 38 35 37 36
±1.92 ±3.77 ±2.66 ±1.50 ±2.67 ±2.93 ±2.10 ±1.69

DASVM 100 78.41 71.63 66.59 61.57 25.34 21.07 18.06
±0 ±4.56 ±4.16 ±4.01 ±4.15 ±3.28 ±2.33 ±2.66

SV 20 20 26 28 29 34 38 23
±3.13 ±4.42 ±6.80 ±2.81 ±3.62 ±7.58 ±6.20 ±4.95

DASF 99.80 99.55 91.03 81.27 65.23 61.95 60.91 59.75
±0.40 ±1.19 ±3.30 ±4.36 ±6.36 ±4.88 ±2.24 ±2.11

LAND. 10 10 9 8 4 4 4 3
±2.32 ±1.59 ±2.21 ±3.27 ±0.99 ±2.16 ±1.84 ±1.06

d̂H∆H IN φR0 0.58 1.16 1.31 1.34 1.34 1.32 1.33 1.31
±0.04 ±0.04 ±0.04 ±0.04 ±0.03 ±0.03 ±0.03 ±0.05

d̂H∆H IN φRfinal 0.33 0.66 0.82 0.85 0.39 0.40 0.49 0.45

±0.12 ±0.11 ±0.13 ±0.11 ±0.15 ±0.05 ±0.12 ±0.09
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Figure 5. Two DASF executions. On the left with a 30◦ rotation, on the right with a 50◦ rotation. On the left y-axis is the error range, on the right y-axis
the divergence range. We provide the error rates of the classifiers hl built at each iteration on the source and target test samples, the divergence d̂H∆H
between the distributions, the joint error of the reverse classifier, the error on the target test sample of a SF classifier learning without DA as a baseline.

300 instances (150 of each class). Moreover, to assess the
generalization ability of our approach, we evaluate each
algorithm on an independent test set of 1500 points drawn
from the target domain. Each DA problem is repeated 10
times. The average accuracy of each method is reported
on Tab. I. We also indicate the average number of support
vectors (SV) used by SVM, TSVM and DASVM, the
number of landmarks (LAND.) selected by SF and DASF
and an estimation of d̂H∆H in the initial φR0 -space and the
final φRfinal-space. We can make the following remarks.
• DASF outperforms in average the other methods. It is
significantly better for every task of angle greater than 20◦.

While the accuracy of TSVM and DASVM falls down from
60◦, DASF remains still competitive even when the difficulty
increases. In this case, the normalized K∗ is preferred.
• The landmark number is significantly lower than the SV
number, which confirms that DASF produces very sparse
models with good performances. The gain ratio is between
3 to 12. The DASF classifiers are also sparser than the SF
ones which use a L1-regularization too. Finally, they tend to
be sparser for difficult problems as suggested by Lemma 2.
• The distance between the domains is lower at the last
iteration - between 1 and 9 - showing our iterative approach
is effectively able to quickly move closer the distributions.



Table II
THE RESULTS ON THE PASCALVOC TEST TARGET DOMAINS ACCORDING TO THE F-MEASURE. AVG. IS THE AVERAGE RESULT.

CONCEPT BIRD BOAT BOTTLE∗ BUS CAR CAT CHAIR CYCLE COW DININGTABLE

SVM 0.18 0.29 0.01 0.16 0.28 0.23 0.24 0.10 0.15 0.15
SV 867 351 587 476 1096 882 1195 392 681 534
SF 0.18 0.27 0.11 0.12 0.34 0.20 0.21 0.10 0.11 0.10

LAND. 237 203 233 212 185 178 241 139 239 253
TSVM 0.14 0.14 0.11 0.16 0.37 0.14 0.22 0.13 0.12 0.13

SV 814 704 718 445 631 779 864 390 888 515
DASVM 0.16 0.22 0.11 0.14 0.37 0.20 0.23 0.14 0.11 0.15

SV 922 223 295 421 866 1011 1418 706 335 536

DASF 0.20 0.32 0.12 0.17 0.38 0.23 0.26 0.16 0.16 0.16
LAND. 50 184 78 94 51 378 229 192 203 372

CONC. DOG∗ HORSE MONITOR MOTORBIKE PERSON∗ PLANE PLANT SHEEP SOFA TRAIN

SVM 0.24 0.31 0.16 0.17 0.56 0.34 0.12 0.16 0.16 0.36
SV 436 761 698 670 951 428 428 261 631 510
SF 0.18 0.24 0.12 0.17 0.46 0.34 0.13 0.12 0.13 0.20

LAND. 200 247 203 243 226 178 236 128 224 202
TSVM 0.22 0.17 0.12 0.12 0.44 0.18 0.10 0.12 0.15 0.19

SV 704 828 861 861 1111 585 406 474 866 652
DASVM 0.22 0.23 0.12 0.14 0.55 0.30 0.12 0.13 0.17 0.28

SV 180 802 668 841 303 356 1434 246 486 407

DASF 0.25 0.32 0.16 0.18 0.58 0.35 0.15 0.20 0.18 0.42
LAND. 391 384 287 239 6 181 293 153 167 75

CONC. AVG.
SVM 0.22
SV 642
SF 0.19

LAND. 210
TSVM 0.17

SV 705
DASVM 0.20

SV 622

DASF 0.25
LAND. 200

As evoked before, DASF tends to build a small projection
space for hard problems, probably to have sufficiently close
domains, but this may imply a loss of expressiveness.
Fig. 5 shows two DASF executions on two DA problems.
For these cases, the d̂H∆H distance decreases significantly in
comparison with iteration 1. DASF stops when the empirical
joint error reaches a minimum after decreasing continuously.
Note that the final projection space found is not always the
one with the lowest d̂H∆H, this is because we need to find a
compromise between the minimization of d̂H∆H and the one
of the source error. Thanks to the iterative procedure, DASF
is then able to slightly autocorrect the space found when it
allows a better adaptation. For the 30◦ example, DASF finds
a null error classifier on the target test sample. For the more
difficult 50◦ example, DASF finds a classifier, performing
better than the SF classifier learned only on the source data.
Note that the source error increases, which is expected since
we aim at being performing on the target domain.

B. Image Classification

In this section, we evaluate DASF on PascalVOC’07 [19]
and TrecVid’07 [20] corpora. The goal is to identify visual
objects in images and videos. TrecVid corpus is constituted
of images extracted from videos and can be seen as an
image corpus. Visual features used for those experiments are
based on the prediction scores of 15 “intermediate” visual
concepts (ANIMAL, BUILDING, CAR, CARTOON, EXPLOSION-
FIRE, FLAG-US, GREENERY, MAPS, ROAD, SEA, SKIN FACE,
SKY, SNOW, SPORTS, STUDIO SETTING) which have been suc-
cessfully used in previous TrecVid evaluations. Each of those
intermediate concepts are detected using SVM classifiers

Figure 6. PascalVOC: The 6 landmarks selected for the concept PERSON,
the first 3 images are positive and the last 3 are negative.

from color moments and edge orientations on 260 blocs of
32 × 32 pixels (data dimension is 3900) according to [21].
We made two experiments.

First, the PascalVOC benchmark is constituted of a set
of 5000 training images, a set of 5000 test images and a
list of 20 concepts to identify. Training and test sets are in
fact relatively close (d̂H∆H ' 0.05) and a DA step is not
necessary. We rather propose to evaluate the DA capability
of our algorithm when the ratio +/− is different between
the source and target samples, leading to an harder DA task.
Our objective is not to provide a solution in such a situation
(specific methods exist [22]), but rather to evaluate if our
method can avoid negative transfer and improve the accuracy
over the test set. In general, the ratio between positive and
negative examples (ratio +/−) is less than 10% in this
dataset. For each concept, we generated a source sample
constituted of all the training positive data and the negatives
data are independently drawn such that the ratio +/− is
1
3 / 2

3 . We keep the original test set as the target sample. We
applied the 5 methods previously described for learning a
binary classifier for each concept. Due to the relatively small
ratio +/− in the target sample, we evaluate the performances
according to the well known F-measure. The results are



Table III
THE RESULTS OBTAINED ON THE TRECVID TARGET DOMAINS ACCORDING TO THE F-MEASURE. AVG. IS THE AVERAGE RESULT.

CONCEPT BOAT∗ BUS∗ CAR∗ MONITOR∗ PERSON∗ PLANE∗ AVG.
SVM 0.56 0.25 0.43 0.19 0.52 0.32 0.38
SV 351 476 1096 698 951 428 667
SF 0.49 0.46 0.50 0.34 0.45 0.54 0.46

LAND. 214 224 176 246 226 178 211
TSVM 0.56 0.48 0.52 0.37 0.46 0.61 0.50

SV 498 535 631 741 1024 259 615
DASVM 0.52 0.46 0.55 0.30 0.54 0.52 0.48

SV 202 222 627 523 274 450 383

DASF 0.57 0.49 0.55 0.42 0.57 0.66 0.54
LAND. 120 130 254 151 19 7 113

reported on Tab. II. First, TSVM and DASVM perform
badly, probably because of the difference between target and
source ratios +/− which cannot be estimated due to the lack
of information on the target sample. SVM performs often
better than the two previous ones which can be explained
by the similarity between the train and test data. DASF has
the best behavior in average. It always improves the results
of a SF classifier, avoiding negative transfer, and is the best
for 18 concepts. Moreover, it always outputs significantly
sparser models. As an illustration, we give on Fig. 6 the
landmarks selected for the concept PERSON.

In the last experiment, we selected the 6 common concepts
between TrecVid’07 and PascalVOC’07. For each concept,
we keep our PascalVOC training set as the source domain
and take, as the target domain, a TrecVid set of examples
with the same ratio +/− as the training set. d̂H∆H is about
1.4 justifying the high difference between the two corpora
and thus a potentially hard DA task. The results evaluated
with the F-measure are reported on Tab. III. DASF obtains
the best results in average and outputs again significantly
sparser models. Finally, for those hard tasks the normalized
similarity K∗ is always preferred, showing that DASF is
effectively able to deal with non-symmetric non-PSD good
similarities. K∗ has the interest of incorporating some target
information which seems useful for hard DA tasks.

VII. CONCLUSION

In this paper, we have proposed a novel domain adaptation
approach that takes advantage of the framework of Balcan et
al. [11], [12] allowing to deal with similarity functions po-
tentially non-PSD and non-symmetric. The method relies on
a regularization term that helps to build a projection space,
made of similarities to landmark points, by selecting those
both close to the source and target examples. The linear
formulation of the method enables the proposed algorithm
to output sparse models (even when the DA task is hard).
We have also studied the generalization ability of our method
according to the framework of robustness allowing us to take
into account our regularizers. Moreover, we have proposed
an effective iterative process to lighten the search of the

projection space by reweighting the similarities. We have
experimentally shown good adaptation abilities on various
tasks and our method always outputs sparser models which is
clearly an advantage for a large scale application perspective.

As a future work, we intend to extend DASF to allow the
use of a small labeled target sample to help a better pro-
jection space construction, potentially augmented as in [23].
Another goal would be to exploit multimodality [24].

ACKNOWLEDGMENT

This work was supported in part by the french project
VideoSense ANR-09-CORD-026 of the ANR in part by
the IST Programme of the European Community, under the
PASCAL2 Network of Excellence, IST-2007-216886.

REFERENCES

[1] S. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22,
no. 10, pp. 1345–1359, 2010.

[2] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and
N. Lawrence, Dataset Shift in Machine Learning. MIT Press,
2009.

[3] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira,
and J. Vaughan, “A theory of learning from different do-
mains,” Machine Learning Journal, vol. 79, no. 1-2, pp. 151–
175, 2010.

[4] A. Bergamo and L. Torresani, “Exploiting weakly-labeled
web images to improve object classification: a domain adap-
tation approach,” in Proceedings of NIPS, 2010.
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APPENDIX

A. Proof of Lemma 2
Proof: Recall F (.) refers to (4). First, for any α,

let (b) =
∑

(xs,xt)∈CST

‖(tφR(xs)− tφR(xt)) diag(α)‖1

(b) =
∑

(xs,xt)∈CST

du∑
j=1

∣∣αj (K(xs,x
′
j)−K(xt,x

′
j)
)∣∣

(b) =

du∑
j=1

|αj |
 ∑

(xs,xt)∈CST

|K(xs,x
′
j)−K(xt,x

′
j)|


(b) ≥

du∑
j=1

[
|αj | max

(xs,xt)∈CST
|K(xs,x

′
j)−K(xt,x

′
j)|
]
.

From Hypothesis (5) BR > 0, thus (b) ≥ ‖α‖1BR. Then,

‖α∗‖1(λ+βBR)+
1

dl

dl∑
i=1

1−
du∑
j=1

α∗jK(xi,x
′
j)


+

≤F (α∗).

Since α∗ is optimal, we have F (α∗)≤F (0)=1, with 0 the
null vector. Then, we obtain directly, ‖α∗‖1≤

1

βBR + λ
.

B. Proof of Theorem 4
Proof: Let (X,ρ) a compact metric space. Then, with

η>0 and by definition of covering number, we can partition
X in Mη (finite) subsets, s.t. for x1,x2 belonging to the same
subset ρ(x1,x2)≤η. With Y divided in 2 subsets

{
{−1},{+1}

}
and following [14], we partition X×Y in 2Mη subsets such
that points in the same subset are of the same class. Given
K a continuous similarity in its first argument, a training set
LS={(xi,yi)}dli=1, a landmark set R={x′j}

du
j=1, λ>0, β>0

and a set CST , let α∗ be the optimal solution of (4). For any
s1=(x1,y1)∈LS, any s2=(x2,y2) s.t. s1, s2 belong to the
same subset, thus y1 =y2 and ρ(x1,x2)≤η then,

let (a)=
∣∣L (g, (x1, y))− L (g, (x2, y))

∣∣
(a)=

∣∣∣∣∣[1−y1

du∑
j=1

α∗jK(x1,x
′
j)
]

+
−
[
1−y1

du∑
j=1

α∗jK(x2,x
′
j)
]

+

∣∣∣∣∣.
By 1-lipschitz property of the hinge loss, the successive
application of Holder inequality and Lemma 2, we have,

(a)≤‖α∗‖1‖tφR(x1)− tφR(x2)‖∞

(a)≤‖α∗‖1 max
xa,xb∼DS
ρ(xa,xb)≤η

{
‖tφR(xa)−tφR(xb)‖∞

}
≤ Nη
βBR+λ

,

with Nη= max
xa,xb∼DS
ρ(xa,xb)≤η

{
‖tφ(xa)R − tφ(xb)

R‖∞
}

which is finite

by continuity of K in its first argument and definition of
covering number. Then, the algorithm associated to (4) is(
Mη,

Nη
βBR+λ

)
robust. Since the upper bound of hinge loss[

1−y
∑du

j=1 αjK(.,x′j)
]
+

is 1, we directly derive the bound of
Theorem 3 from Theorem 2.


