R. Jones and E. Buhl, Basket-like interneurones in layer II of the entorhinal cortex exhibit a powerful NMDA-mediated synaptic excitation, Neuroscience Letters, vol.149, issue.1, pp.35-39, 1993.
DOI : 10.1016/0304-3940(93)90341-H

G. Buzsaki, L. Leung, and C. Vanderwolf, Cellular bases of hippocampal EEG in the behaving rat, Brain Research Reviews, vol.6, issue.2, pp.139-171, 1983.
DOI : 10.1016/0165-0173(83)90037-1

R. Traub, M. Whittington, I. Stanford, and J. Jefferys, A mechanism for generation of long-range synchronous fast oscillations in the cortex, Nature, vol.383, issue.6601, pp.621-624, 1996.
DOI : 10.1038/383621a0

J. Cardin, C. M. Meletis, K. Knoblich, U. Zhang, F. Deisseroth et al., Driving fast-spiking cells induces gamma rhythm and controls sensory responses, Nature, vol.34, issue.7247, pp.663-667, 2009.
DOI : 10.1038/nature08002

P. Fries, Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation, Annual Review of Neuroscience, vol.32, issue.1, pp.209-224, 2009.
DOI : 10.1146/annurev.neuro.051508.135603

V. Sohal, F. Zhang, O. Yizhar, and K. Deisseroth, Parvalbumin neurons and gamma rhythms enhance cortical circuit performance, Nature, vol.397, issue.7247, pp.698-702, 2009.
DOI : 10.1038/nature07991

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969859

P. Uhlhaas, C. Haenschel, D. Nikolic, and W. Singer, The Role of Oscillations and Synchrony in Cortical Networks and Their Putative Relevance for the Pathophysiology of Schizophrenia, Schizophrenia Bulletin, vol.34, issue.5, pp.927-943, 2008.
DOI : 10.1093/schbul/sbn062

D. Lewis, T. Hashimoto, and D. Volk, Cortical inhibitory neurons and schizophrenia, Nature Reviews Neuroscience, vol.17, issue.4, pp.312-324, 2005.
DOI : 10.1196/annals.1300.007

M. Cunningham, J. Hunt, S. Middleton, F. Lebeau, M. Gillies et al., Region-Specific Reduction in Entorhinal Gamma Oscillations and Parvalbumin-Immunoreactive Neurons in Animal Models of Psychiatric Illness, Journal of Neuroscience, vol.26, issue.10, pp.2767-2776, 2006.
DOI : 10.1523/JNEUROSCI.5054-05.2006

C. Kehrer, T. Dugladze, N. Maziashvili, A. Wojtowicz, D. Schmitz et al., Increased inhibitory input to CA1 pyramidal cells alters hippocampal gamma frequency oscillations in the MK-801 model of acute psychosis, Neurobiology of Disease, vol.25, issue.3, pp.545-552, 2007.
DOI : 10.1016/j.nbd.2006.10.015

S. Sagratella, A. Pezzola, P. Popoli, S. De-carolis, and A. , Different capability ofn-methyl-d-aspartate antagonists to elicit EEG and behavioural phencyclidine-like effects in rats, Psychopharmacology, vol.167, issue.suppl 1, pp.277-282, 1992.
DOI : 10.1007/BF02245874

J. Ma and L. Leung, Relation between hippocampal gamma waves and behavioral disturbances induced by phencyclidine and methamphetamine, Behav Brain Res Jun, vol.15, issue.11112, pp.1-11, 2000.

T. Hakami, N. Jones, E. Tolmacheva, J. Gaudias, J. Chaumont et al., NMDA Receptor Hypofunction Leads to Generalized and Persistent Aberrant ?? Oscillations Independent of Hyperlocomotion and the State of Consciousness, PLoS ONE, vol.65, issue.91, p.6755, 2009.
DOI : 10.1371/journal.pone.0006755.s003

URL : https://hal.archives-ouvertes.fr/inserm-00560002

R. Ehrlichman, M. Gandal, C. Maxwell, M. Lazarewicz, L. Finkel et al., N-methyl-d-aspartic acid receptor antagonist???induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia, Neuroscience, vol.158, issue.2, pp.705-712, 2009.
DOI : 10.1016/j.neuroscience.2008.10.031

D. Pinault, N-Methyl d-Aspartate Receptor Antagonists Ketamine and MK-801 Induce Wake-Related Aberrant ?? Oscillations in the Rat Neocortex, Biological Psychiatry, vol.63, issue.8, pp.730-735, 2008.
DOI : 10.1016/j.biopsych.2007.10.006

URL : https://hal.archives-ouvertes.fr/inserm-00238557

D. Javitt and S. Zukin, Recent advances in the phencyclidine model of schizophrenia, Am J Psychiatry, vol.148, issue.10, pp.1301-1308, 1991.

J. Coyle, G. Tsai, and D. Goff, Converging Evidence of NMDA Receptor Hypofunction in the Pathophysiology of Schizophrenia, Annals of the New York Academy of Sciences, vol.60, issue.8, pp.318-327, 2003.
DOI : 10.1196/annals.1300.020

J. Krystal, A. Anand, and B. Moghaddam, Effects of NMDA Receptor Antagonists: Implications for the Pathophysiology of Schizophrenia, Archives of General Psychiatry, vol.59, issue.7, pp.663-664, 2002.
DOI : 10.1001/archpsyc.59.7.663

A. Saykin, R. Gur, R. Gur, P. Mozley, L. Mozley et al., Neuropsychological Function in Schizophrenia, Archives of General Psychiatry, vol.48, issue.7, pp.618-624, 1991.
DOI : 10.1001/archpsyc.1991.01810310036007

R. Cho, R. Konecky, and C. Carter, Impairments in frontal cortical ?? synchrony and cognitive control in schizophrenia, Proceedings of the National Academy of Sciences, vol.103, issue.52, pp.19878-19883, 2006.
DOI : 10.1073/pnas.0609440103

J. Kwon, O. Donnell, B. Wallenstein, G. Greene, R. Hirayasu et al., Gamma Frequency???Range Abnormalities to Auditory Stimulation in Schizophrenia, Archives of General Psychiatry, vol.56, issue.11, pp.1001-1005, 1999.
DOI : 10.1001/archpsyc.56.11.1001

J. Del-rio, L. De-lecea, I. Ferrer, and E. Soriano, The development of parvalbumin-immunoreactivity in the neocortex of the mouse, Developmental Brain Research, vol.81, issue.2, pp.247-259, 1994.
DOI : 10.1016/0165-3806(94)90311-5

P. Fries, D. Nikolic, and W. Singer, The gamma cycle, Trends in Neurosciences, vol.30, issue.7, pp.309-316, 2007.
DOI : 10.1016/j.tins.2007.05.005

M. Bartos, I. Vida, and J. P. , Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks, Nature Reviews Neuroscience, vol.17, issue.1, pp.45-56, 2007.
DOI : 10.1111/j.1460-9568.1994.tb00994.x

M. Andermann, J. Ritt, M. Neimark, and C. Moore, Neural Correlates of Vibrissa Resonance, Neuron, vol.42, issue.3, pp.451-463, 2004.
DOI : 10.1016/S0896-6273(04)00198-9

H. Swadlow, Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties, J Neurophysiol, vol.62, issue.1, pp.288-308, 1989.

M. Andermann and C. Moore, A somatotopic map of vibrissa motion direction within a barrel column, Nature Neuroscience, vol.23, issue.4, pp.543-551, 2006.
DOI : 10.1038/nn1671

D. Javitt, P. Doneshka, I. Zylberman, W. Ritter, H. Vaughan et al., Impairment of early cortical processing in schizophrenia: An event-related potential confirmation study, Biological Psychiatry, vol.33, issue.7, pp.513-519, 1993.
DOI : 10.1016/0006-3223(93)90005-X

D. Vierling-claassen, P. Siekmeier, S. Stufflebeam, and N. Kopell, Modeling GABA Alterations in Schizophrenia: A Link Between Impaired Inhibition and Altered Gamma and Beta Range Auditory Entrainment, Journal of Neurophysiology, vol.99, issue.5, pp.2656-2671, 2008.
DOI : 10.1152/jn.00870.2007

D. Braff and M. Geyer, Sensorimotor Gating and Schizophrenia, Archives of General Psychiatry, vol.47, issue.2, pp.181-188, 1990.
DOI : 10.1001/archpsyc.1990.01810140081011

B. Turetsky, M. Calkins, G. Light, A. Olincy, A. Radant et al., Neurophysiological Endophenotypes of Schizophrenia: The Viability of Selected Candidate Measures, Schizophrenia Bulletin, vol.33, issue.1, pp.69-94, 2007.
DOI : 10.1093/schbul/sbl060

R. Morris, E. Anderson, G. Lynch, and M. Baudry, Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5, Nature, vol.68, issue.6056, pp.774-776, 1986.
DOI : 10.1038/319774a0

K. Nakazawa, M. Quirk, R. Chitwood, M. Watanabe, M. Yeckel et al., Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall, Science, vol.297, issue.5579, pp.211-218, 2002.
DOI : 10.1126/science.1071795