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ABSTRACT

We present a study on the the applicability of hyperspectral images to evaluate color �lter array (CFA) design
and the performance of demosaicking algorithms. The aim is to simulate a typical digital still camera processing
pipe-line and to compare two di�erent scenarios: evaluate the performance of demosaicking algorithms applied
to raw camera RGB values before color rendering to sRGB, and evaluate the performance of demosaicking
algorithms applied on the �nal sRGB color rendered image. The second scenario is the most frequently used one
in literature because CFA design and algorithms are usually tested on a set of existing images that are already
rendered, such as the Kodak Photo CD set containing the well-knownlighthouse image.
We simulate the camera processing pipe-line with measured spectral sensitivity functions of a real camera.
Modeling a Bayer CFA, we select three linear demosaicking techniques in order to perform the tests. The
evaluation is done using CMSE, CPSNR, s-CIELAB and MSSIM metrics to compare demosaicking results. We
�nd that the performance, and especially the di�erence between demosaicking algorithms, is indeed signi�cant
depending if the mosaicking/demosaicking is applied to camera raw values as opposed to already rendered sRGB
images. We argue that evaluating the former gives a better indication howa CFA/demosaicking combination
will work in practice, and that it is in the interest of the community to create a hyperspectral image dataset
dedicated to that e�ect.

Keywords: color �lter array, CFA, digital still camera, spectral sensitivities , demosaicking, hyperspectral images

1. INTRODUCTION

Digital photography is a part of our daily life because many devices, such asdigital still and video cameras,
smartphones, webcams, etc., are available at a�ordable prices. The consumer electronic device industry has
mostly adopted single-sensor imaging, which captures the three spectral wave-bands red, green, and blue on a
single sensor. These cameras are more cost-e�ective and usually more compact than tri-sensor cameras, which
use three sensors for full-resolution red, green, and blue scene information. Spectral selectivity on a single sensor,
be it a charge-coupled device (CCD)1 or a complementary metal oxide semiconductor (CMOS)2 is achieved by
adding a color �lter array (CFA) 3{5 in front of the sensor, such as the most common Bayer �lter.6 The resulting
image from CFA acquisition is a gray-scale image with one single color at each pixel. To recover tri-component or
full-color at each pixel, the image needs to be processed with a color reconstruction algorithm calleddemosaicking.
Figure 1 gives an example of a Bayer CFA image (a) and its demosaicked result (b).

The design of color �lter arrays (CFA) and associated demosaicking algorithms is still an active research
topic, as the perfect spatial arrangement of the �lters and their spectral characteristics have a large in
uence
on image quality. Image demosaicking could be regarded as an interpolation problem that creates full-resolution
color images from CFA-based single-sensor images. In interpolation, the aimis to estimate the missing half
amount of green pixels (quincunx interpolation) and reconstruct the missing three quarters of the red and blue
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(a) (b)
Figure 1. Bayer CFA-based single-sensor imaging: (a) grayscale CFA image and (b) full-color image.

pixels (rectangular interpolation) as performed by bilinear and bicubic interpolations. However, this approach is
a simplistic view of the real demosaicking process because it doesnot take into account intra- and inter-channel
dependencies.

Demosaicking has been studied by many researchers, we have a rich literature with various methodologies in
the spatial or frequency domain, using image geometry, applying re�nement and postprocessing techniques, etc.
Many comprehensive comparisons and/or surveys have been published to date.7{10 Although all these e�orts
have resulted in very e�cient demosaicking algorithms, we claim that there is no appropriate image database
dedicated to these types of evaluations. Many authors used and continueto use a test set composed of KODAK
PhotoCD images to prove the e�ciency of their demosaicking algorithm and the quality of image reconstruction.
The frequency spectra of these images are very interesting, especially on the widely used lighthouse image, as they
allow to easily visualize reconstruction errors. However, the original PhotoCD images are slightly compressed
due to the Gaussian pyramid used in the encoding that allows extracting di�erent resolutions from the same PCD
�le. Additionally, they have been rendered to a limited color gamut, similar to the current sRGB color encoding
standard.11 The experiments are thus conducted by recreating the CFA structure from the �nal rendered image
without taking into account that the images have been preprocessed and that the color component information is
no longer original. Li et al.10 have shown that most existing demosaicking algorithms achieve good performance
on the Kodak data set but their performance degrades signi�cantly on another set they used (IMAX high-quality
images with varying-hue and high-saturation edges). Their study demonstrates that for testing CFA design and
demosaicking algorithms, there is a real need for new content that is adapted to the task.

In this paper, we study the applicability of the hyperspectral image database proposed by Foster et al.12 for
demosaicking evaluations. This database is composed of eight hyperspectral images (see Figure 4). The idea
behind our experiments is to simulate as close as possible the in-camera processing steps of a digital camera.
Thus, we also use real measured spectral sensitivities of a camera in order to reproduce raw sensor response values.
The obtained results are compared with those obtained by mosaicking/demosaicking the rendered images, and
additionally with ground truth images obtained by using the 1931 CIE color matching functions (CMF) to sample
the hyperspectral data.

The remainder of this paper is organized as follows. Section 2 describes our experimental procedure in detail.
Section 3 summarizes how the hyperspectral database was obtained. Theselected demosaicking techniques
are brie
y discussed in Section 4. Metrics are an important part of evaluating demosaicking results and they
are presented in Section 5. Section 6 discusses the experimental results, and Section 7 ends the article with
conclusions and future work.



2. EXPERIMENTAL PROCEDURE

This study's experimental procedure is summarized in the synopsis of �gure 2. Our purpose is to provide an
answer to whether or not evaluating mosaicking/demosaicking algorithms directly on rendered images is correct
from an image quality point of view. As discussed above, most of the published research study demosaicking
algorithms on already rendered images, while in most digital cameras, demosaicking occurs in raw camera
RGB before color rendering. We thus simulate the relevant in-cameraprocessing steps of a digital camera,
from acquisition to rendering, and compare results obtained by applying demosaicking before and after sRGB
rendering. Our simulation is similar to the one of Alleysson et al.,13 who optimized camera spectral sensitivities
based on one given demosaicking algorithm.8 The di�erent steps of the synopsis of Figure 2 are described below.

Figure 2. Synopsis of the simulations used in the paper.

Instead of acquiring real scene information from a (real) sensor, we usean already existing hyperspectral
image data set that is described in Section 3. The images' raw sensor values are obtained by applying the well
known image formation model. We thus �rst multiply the re
ectance s pectra at each pixel with the spectrum of
the illuminant (i.e. D65 in our case), and then multiply the resul ting color signal with the spectral sensitivities.
We chose D65 as the illuminant to avoid having to white-balance the image, as it is the standard illuminant used
for sRGB encoding.11 However, as the spectral sensitivities were derived by measuring the quantum e�ciency of
a real digital camera (see Figure 3-a), we do apply a gain control to each channel to compensate for the di�erent
quantum e�ciencies of the red, green, and blue channels. At this stage, we have obtained an image in \camera
RGB" used in the following steps.

Image formation is an analog process, and we thus calculate in 
oating point upto now. In order to simulate
the analog to digital conversion, we perform a quantization to 12-bits per channel, which corresponds to the
common coding length nowadays. The quantized image is mosaicked according to the Bayer6 CFA and then
demosaicked with the algorithms described in Section 4.

In order to render the mosaicked/demosaicked images to sRGB, we �rst need to �nd the linear transform that
maps the pixel values from camera RGB to XYZ tristimulus values. We use a simple least squares �tting, but
there are much more sophisticated methods to obtain the matrix.15 Note that real camera sensitivities do not
ful�ll the Luther condition, in other words, they are not within a lin ear combination of the CIE color matching



(a) (b)
Figure 3. (a) Spectral sensitivity functions of the our digital camera and (b) the 1931 CIE Color matching functions. 14

functions. As such, any linear transform will not correctly map all camera RGB values to the corresponding
XYZs, and a residual error is obtained that will be re
ected in the results of our simulations to the ground truth
images.

After camera RGB to XYZ conversion, the images are mapped to 8-bit sRGB using the method described in
the standard.11 We do not consider any additional rendering operations for preferred reproduction,16 as is the
case in more sophisticated digital cameras that apply image speci�c rendering. Such additional color rendering
operations will of course also in
uence the results, and could be considered in our simulation framework. However,
as such operations are highly image and preference dependent, we omitted them in this preliminary study

The steps described above representscenario 1 of the synopsis given in Figure 2. Omitting the mosaick-
ing/demosaicking step results in the "original" image, called O2, that we use for evaluation. For scenario 2,
we additionally mosaick/demosaick O2, analogue to the procedure followed in the demosaicking literature,i.e.
mosaicking/demosaicking an already rendered images (e.g., Kodak PhotoCD images). Scenario 3 illustrates
how we obtain the ground truth image, called O3, by simply applying the CIE color matching functions on the
hyperspectral data and then rendering to sRGB. We use the imageO3 to compare the demosaicking results of
scenario 1 and 2.

Note that our simulation does not include all in-camera processing, as the above mentioned white-balancing
and image speci�c color rendering, as well as linearization, 
are subtraction, noise removal and �ltering, sharp-
ening, and compression. While these are important steps that will alsoin
uence the demosaicking result, they
are highly camera and/or image dependent, which makes their inclusion into a simulation very challenging.

The evaluations of the our scenarios are performed using di�erent well-known metrics such as CMSE, CPSNR,
s-CIELAB and MSSIM for structural informations. These measures are described in Section 5.

3. HYPERSPECTRAL DATASET

For our simulations, we use the hyperspectral image database created by Foster et al.12 in 2004. For the capture of
these images, the authors used a high-spatial-resolution hyperspectral imaging system to acquire data from rural
and urban scenes in Portugal, namely a low-noise Peltier-cooled digital camera providing a spatial resolution of
1344� 1024 pixels (Hamamatsu, model C4742-95-12ER, Hamamatsu Photonics K.K., Japan) with afast tunable
liquid-crystal �lter (VariSpec, model VS-VIS2-10-HC-35-SQ, Cambridge Research & Instrumentation, Inc., MA)
mounted in front of the lens, together with an infrared blocking �lte r. Focal length was typically set to 75 mm
and aperture to f16 or f22 to achieve a large depth of focus. The line-spread function of the system was close to



Gaussian with standard deviation approx. 1.3 pixels at 550 nm. The intensity response at each pixel, recorded
with 12-bit precision, was linear over the entire dynamic range. The peak-transmission wavelength was varied
in 10-nm steps over 400-720 nm. This set is composed of 8 hyperspectral images, as shown rendered to sRGB in
Figure 4.

(S1) (S2) (S3) (S4)

(S5) (S6) (S7) (S8)

Figure 4. Rendered versions of the hyperspectral images used in our experiments.

4. DEMOSAICKING ALGORITHMS

As mentioned previously, there are many algorithms for single-sensor image demosaicking. Some of them are
sequential, i.e. color components are interpolated separately and the others exploit inter-channel correlation. In
this section, we only brie
y describe the methods we use, the reader is referred to the original papers for more
details. As this paper does not intend to compare demosaicking algorithms but only to evaluate the e�ect of
using hypespectral images with a camera simulation that includes a demosaicking step, the selected algorithms
are not intended to cover the whole state-of-the-art.

4.1 Bilinear Model

Bilinear interpolation is one of the simplest and most used algorithm performing a high-quality linear interpola-
tion. It interpolates a missing channel by taking the averages of the closest neighbors of the same channel. For
example, the green channel at a red or blue pixel can be estimated as shown by the following equation:

Ĝ(i; j ) =
1
4

[G(i � 1; j � 1) + G(i � 1; j + 1) + G(i + 1 ; j � 1) + G(i + 1 ; j + 1)] : (1)

Bilinear interpolation is perhaps the most trivial demosaicking algorithm. It completely ignores inter-channel
color correlation because each channel is estimated separately. This approach o�ers fast demosaicking but with
questionable quality, such as noticeable false colors and blur along edges.

4.2 Alleysson et al.

Alleysson et al.8 showed that the spatial multiplexing of the red, green, and blue signal in a Bayer CFA
is equivalent to multiplexing the frequency of an achromatic "luma" component and two modulated chroma
components. In addition, the luminance and chrominance components are su�ciently isolated in the frequency
domain to consider the construction of demosaicking algorithms based on frequency analysis. The algorithm



separately extracts estimates of luminance and modulated chrominanceby �ltering the Bayer CFA mosaick
using two-dimensional �lters with appropriate bandwidths, and then converts the estimated luma and the two
demodulated chrominance values at each spatial location into RGB values.

4.3 Dubois et al.

Dubois17 de�ned a locally-adaptive luma-chroma demultiplexing algorithm th at exploits the redundancy of one
chrominance in the Bayer CFA mosaick by selecting, locally, the best estimate using the more decorrelated
component to the luma signal. The work in18 introduced a least-squares approach for optimal �lter design that
replaced the window �lter method used in the previous version. This new �lter design method produces lower
order �lters that achieved virtually identical demosaicking quali ty as the higher order �lters. We use the second
method in this paper.

5. EVALUATION METRICS

To perform analytical assessment of the de�ned scenarios, we need one orseveral quality measure to assess
di�erent types of artifacts. We selected the commonly used CMSE andCPSNR, s-CIELAB, which characterizes
the regions in the test image that are visually di�erent from the original image, and MSSIM that measures
di�erences in structural content. Recall that O2 and O3 are the "original" images without demosaicking, obtained
by either applying camera sensitivities or color matching functions, respectively. Thus, the metrics are applied
to evaluate the demosaicking results of: 1) Scenario 1 in comparison toO2; 2) Scenario 2 in comparison toO2;
3) Scenario 1 in comparison toO3; ad 4) Scenario 2 in comparison toO3. These metrics are brie
y described
below.

5.1 CMSE & CPSNR

In the demosaicking literature, it is very common to use the composite peak-signal-to-noise ratio (CPSNR) to
compare the reconstructed images to full color RGB images. We use equation 2 and 3 to calculate the CPSNR
of a demosaicked image compared to the original one. Here, I(i, j, k) is the pixel intensity at location (i, j) of the
k-th color component of the original image and I'(i, j, k) of the reconstructed image. M and N are the height
and the width of the frame.

CPSNR = 10log10
2552

CMSE
; (2)

where

CMSE =
1

3 � MN

3X

k=1

MX

i =1

NX

j =1

[I (i; jk ) � I 0(i; j; k )]2: (3)

5.2 s-CIELAB

s-CIELAB was proposed by Zhang and Wandell19 as a spatial extension to CIELAB to account for how spatial
pattern in
uences color appearance and color discrimination. The spatialextension is accomplished by perform-
ing a pre-processing on the CIELAB channels before applying the color di�erence formula. In our application, the
input image is �rst converted to an opponent encoding (one luminance and two chrominance color components).
Each component is spatially �ltered to mimick the spatial sensitivi ty of the human eye. The �nal �ltered images
are then transformed into XYZ so that the standard CIELAB color di�erence f ormula can be applied.

5.3 MSSIM

The Multiscale Structural Similarity Index (MS-SSIM) 20 attempts to model the physical properties of the HVS.
The MS-SSIM follows a top-down paradigm that �rst decomposes images into several scales and then measures
contrast and structure in each scale. In addition, the luminance of thelowest scale is also measured. Finally,
all the data is pooled into a single score. MS-SSIM has the advantage that it is computationally tractable while
still providing reasonable correlations to subjective measurements.



Camera rendered imageO2 BI1 AL1 DU1

CMFs rendered imageO3 BI2 AL2 DU2

Figure 5. Results for the scene S4 from the hyperspectral database. O2 and O3 are the "original" images rendered in
scenario 2 and scenario 3, respectively. BI1, AL1, and DU1 are Bilinear, Alleysson, and Dubois results for scenario 1,
respectively. BI2, AL2, and DU2 are Bilinear, Alleysson, and Dubo is results for scenario 2, respectively.

6. RESULTS AND DISCUSSION

Here, we evaluate the results of the scenarios described in Section 2and illustrated in Figure 2. Recall that
scenario 1 is the simulation of a camera pipe-line (demosaicking before sRGB rendering). In scenario 2, we
perform demosaicking after color rendering (as done in the literature). The mosaicking/demosaicking step
corresponds to creating mosaicks according to the Bayer CFA6 before applying the three di�erent demosaicking
algorithms. For scenario 3, we generate a ground truth image obtained by applying the CIE color matching
functions to the hyperspectral data and rendering directly to sRGB.

Camera rendered imageO2 BI1 AL1 DU1

CMFs rendered imageO3 BI2 AL2 DU2

Figure 6. A zoom on part of scene S4. O2 and O3 are the \original" images rendered in scenario 2 and scenario 3,
respectively. BI1, AL1, and DU1 are Bilinear, Alleysson, and Dub ois results for scenario 1, respectively. BI2, AL2, and
DU2 are Bilinear, Alleysson, and Dubois results for scenario 2, respectively.



Camera rendered imageO2 BI1 AL1 DU1

CMFs rendered imageO3 BI2 AL2 DU2

Figure 7. Results for the scene S7 from the hyperspectral database. O2 and O3 are the \original" images rendered in
scenario 2 and scenario 3, respectively. BI1, AL1, and DU1 are Bilinear, Alleysson, and Dubois results for scenario 1,
respectively. BI2, AL2, and DU2 are Bilinear, Alleysson, and Dubo is results for scenario 2, respectively.

Camera rendered imageO2 BI1 AL1 DU1

CMFs rendered imageO3 BI2 AL2 DU2

Figure 8. A zoom on part of scene S7. O2 and O3 are the \original" images rendered in scenario 2 and scenario 3,
respectively. BI1, AL1, and DU1 are Bilinear, Alleysson, and Dub ois results for scenario 1, respectively. BI2, AL2, and
DU2 are Bilinear, Alleysson, and Dubois results for scenario 2, respectively.



For each scene S*, except S5, we executed the three scenarios, thus obtaining the originals of scenario 2 and
3 (OS�

2 and OS�
3 ) and the results of the selected demosaicking algorithms for scenario1 and 2 (BI 1S� , AL 1S� ,

DU 1S� , BI 2S� , AL 2S� and DU 2S� ). Scene S5 was rejected from the experiments because it doesn'tcontain the
same number of spectral bands than the 7 others. Figures 5 and 7 show theresults obtained with all scenarios
for scene S4 and S7. We can notice that the rendered images are close to those given by Foster et al. (see Figure
4) except for a color di�erence because they manually edited the pictures. It is di�cult to visually evaluate
the di�erence between the results except for bilinear interpolation. The latter gives very di�erent results when
applied in scenario 1 or 2.

In order to better perceive the artifacts generated, we zoom into parts of scenes S4 (Fig. 6) and S7 (Fig.
8). We note some demosaicking artifacts around the pistil of the 
ower in S4 and around the window in S7.
Also, there seems to be more artifacts in the images from scenario 2 than in those from scenario 1, especially
around the windows. However, that result is not corroborated by the objective metric s-CIELAB in Table 1 and
2, which is supposed to predict visual di�erences.

Table 1. Evaluation of scenario 1 (BI1, AL1, DU1) and scenario 2 ( BI2, AL2, DU2) demosaicking results in comparison
to the original image obtained in scenario 2 (O2) using CMSE, CPSNR, s-CIELAB and MSSIM. BI1, AL1, and DU1
are Bilinear, Alleysson, and Dubois results for scenario 1, respectively. BI2, AL2, and DU2 are Bilinear, Alleysson, and
Dubois results for scenario 2, respectively.

Scene Measure BI1 AL1 DU1 BI2 AL2 DU2
S1 CMSE 121,22 31,07 37,47 21,68 23,79 27,03

CPSNR 27,30 33,21 32,39 34,77 34,37 33,81
s-CIELAB 6,18 2,84 2,69 0,83 1,45 1,43

MSSIM 0,9827 0,9880 0,9853 0,9934 0,9890 0,9862
S2 CMSE 233,98 54,06 73,76 28,17 46,76 56,61

CPSNR 24,44 30,80 29,45 33,63 31,43 30,60
s-CIELAB 13,74 4,36 5,20 1,47 2,42 2,48

MSSIM 0,9787 0,9851 0,9799 0,9935 0,9871 0,9837
S3 CMSE 63,45 47,28 53,54 13,68 20,76 25,13

CPSNR 30,11 31,38 30,84 36,77 34,96 34,13
s-CIELAB 4,15 2,28 2,77 0,84 1,33 1,36

MSSIM 0,9864 0,9700 0,9686 0,9930 0,9877 0,9853
S4 CMSE 265,60 19,68 26,38 8,34 11,06 12,54

CPSNR 23,89 35,19 33,92 38,92 37,69 37,15
s-CIELAB 18,97 1,83 2,01 0,52 0,70 0,77

MSSIM 0,9787 0,9809 0,9741 0,9921 0,9872 0,9846
S6 CMSE 187,91 17,31 17,70 13,15 8,12 10,19

CPSNR 25,39 35,75 35,65 36,94 39,04 38,05
s-CIELAB 12,25 3,55 3,70 0,77 0,79 0,91

MSSIM 0,9904 0,9960 0,9951 0,9961 0,9962 0,9947
S7 CMSE 28,53 12,31 13,64 15,05 9,39 10,95

CPSNR 33,58 37,23 36,78 36,36 38,40 37,74
s-CIELAB 3,31 1,91 1,76 0,78 0,82 0,93

MSSIM 0,9927 0,9957 0,9940 0,9953 0,9961 0,9949
S8 CMSE 16,09 3,56 3,94 10,68 4,09 3,70

CPSNR 36,07 42,62 42,18 37,84 42,01 42,45
s-CIELAB 1,64 0,53 0,63 0,53 0,44 0,45

MSSIM 0,9940 0,9974 0,9969 0,9962 0,9975 0,9969

Average CMSE 130,97 26,47 32,35 15,82 17,71 20,88
CPSNR 28,68 35,17 34,46 36,46 36,84 36,28

s-CIELAB 8,61 2,47 2,68 0,82 1,14 1,19
MSSIM 0,9862 0,9876 0,9848 0,9942 0,9915 0,9895

For the quantitative evaluation, we used the metrics described in section 5, i.e. CMSE, CPSNR, s-CIELAB
and MSSIM. These metrics have been calculated between demosaicked images of scenario 1 and 2 (BI 1S� , AL 1S� ,
DU 1S� , BI 2S� , AL 2S� and DU 2S� ) and the camera rendered imageOS�

2 (see Table 1) and the CMF rendered
image OS�

3 (see Table 2), respectively. By applying all these di�erent metrics, we evaluate di�erent types of
artifacts. The CMSE and CPSNR focus on color signal di�erences, s-CIELABaims at detecting perceived
errors, and MSSIM evaluates the structural content of the image.

The �rst remark that concerns both tables is that the results are highly dependent on image content, arguing
that a large image data set should be available as an analysis based on average performance might not be
meaningful. Additionally, these results also argue for a common image data set to evaluate di�erent algorithms,



such as is available with the Kodak images. However, both tables clearlyshow that there is a di�erence between
scenario 1 and scenario 2 with regards to performance. In general, the more realistic camera processing, as
simulated with scenario 1, results in worse performance then the usually applied scenario 2. This is similar to
what was found by Li et al.10 when applying mosaicking/demosaicking to IMAX images. This argues for a more
realistic simulation to evaluate such algorithms.

Among the selected techniques, bilinear interpolation is the worstfor scenario 1 and with the highest di�erence
(up to a CPSNR of 14 dB for S4, for instance). Alleysson et al.'s techniqueis performing better than Dubois for
all the images, but with a higher di�erence in scenario 1. Thus, the di�erence in performance of algorithms is
better evaluated with a simulation that is closer to a real camera pipe-line as opposed to what is currently done
(i.e. scenario 2).

As expected, all errors are much higher when comparing the performanceto the CMF rendered imageOS�
3 (see

Table 2). When only evaluating the in
uence of mosaicking/demosaicking, thus assuming the other processing
parameters remain the same, it is thus probably more appropriate to useOS�

2 as the ground truth to compare
with. Table 3 evaluates the di�erence betweenOS�

2 and OS�
3 , using the same metrics, for all 7 scenes. Note that

the di�erence can be very high as for the case of S2 and S4. Additionally, itis more di�cult to discriminate the
demosaicking techniques between scenario 1 and scenario 2, the di�erence is smaller. Thus, comparing with the
ground truth images tends to compress the di�erence between the demosaicking algorithms, which in the case
of this study is coherent with the visual results of �gure 5 and 7. It may be suitable to compare the output of a
simulated camera pipe-line like scenario 1 with the original image of scenario 3 to get a better visual judgment.
This can be con�rmed with a psychophysical experiment.

Table 2. Evaluation of scenario1 (BI1, AL1, DU1) and scenario2 ( BI2, AL2, DU2) demosaicking results in comparison
to the original image obtained in scenario 3 (O3) using CMSE, CPSNR, s-CIELAB and MSSIM. BI1, AL1, and DU1
are Bilinear, Alleysson, and Dubois results for scenario 1, respectively. BI2, AL2, and DU2 are Bilinear, Alleysson, and
Dubois results for scenario 2, respectively.

Scene Measure BI1 AL1 DU1 BI2 AL2 DU2
S1 CMSE 95,66 54,57 65,82 50,37 50,74 55,50

CPSNR 28,32 30,76 29,95 31,11 31,08 30,69
s-CIELAB 4,49 4,54 5,10 4,96 5,25 5,19

MSSIM 0,9809 0,9838 0,9795 0,9873 0,9837 0,9795
S2 CMSE 192,27 147,69 234,82 170,85 187,84 199,40

CPSNR 25,29 26,44 24,42 25,80 25,39 25,13
s-CIELAB 14,64 8,00 10,04 10,18 10,43 10,50

MSSIM 0,9711 0,9738 0,9658 0,9820 0,9756 0,9701
S3 CMSE 44,27 70,95 66,52 45,04 49,25 55,45

CPSNR 31,67 29,62 29,90 31,59 31,21 30,69
s-CIELAB 4,76 3,51 3,83 2,48 2,74 2,78

MSSIM 0,9830 0,9708 0,9680 0,9872 0,9848 0,9815
S4 CMSE 231,89 152,93 174,89 132,15 136,93 137,82

CPSNR 24,48 26,29 25,70 26,92 26,77 26,74
s-CIELAB 13,98 5,24 7,71 6,10 6,08 6,13

MSSIM 0,9407 0,9341 0,9294 0,9508 0,9443 0,9420
S6 CMSE 183,47 25,15 30,62 25,80 21,56 24,16

CPSNR 25,50 34,13 33,27 34,01 34,79 34,30
s-CIELAB 10,84 3,23 5,26 3,25 3,13 3,17

MSSIM 0,9891 0,9934 0,9918 0,9929 0,9927 0,9907
S7 CMSE 56,23 40,46 39,63 37,27 32,23 33,38

CPSNR 30,63 32,06 32,15 32,42 33,05 32,90
s-CIELAB 4,76 3,64 3,38 2,91 2,91 2,94

MSSIM 0,9874 0,9902 0,9884 0,9901 0,9906 0,9890
S8 CMSE 19,04 7,78 9,92 16,13 9,17 9,12

CPSNR 35,33 39,22 38,17 36,05 38,51 38,53
s-CIELAB 2,70 1,78 2,17 1,87 1,88 1,90

MSSIM 0,9923 0,9960 0,9954 0,9943 0,9960 0,9952

Average CMSE 117,55 71,36 88,89 68,23 69,67 73,55
CPSNR 28,75 31,22 30,51 31,13 31,54 31,28

s-CIELAB 8,03 4,28 5,36 4,54 4,63 4,66
MSSIM 0,9778 0,9774 0,9740 0,9835 0,9811 0,9783

Table 4 shows the average correlation between the four metrics used in our evaluation, for the seven scenes
and the measures listed in Table 1 and Table 2. We can thus evaluate whether the metrics give consistent



Table 3. Evaluation of the di�erence between O2 (original image obtained from scenario 2) and O3 (original image obtained
form scenario 3).

Metrics S1 S2 S3 S4 S6 S7 S8 Average
CMSE 31,34 143,44 30,93 126,10 13,30 22,66 5,14 53,27

CPSNR 33,17 26,56 33,23 27,12 36,89 34,58 41,02 33,23
s-CIELAB 4,89 10,41 2,26 6,01 3,00 2,77 1,85 4,46

MSSIM 0,9931 0,9885 0,9945 0,9557 0,9964 0,9948 0,9983 0,9888

results. From the correlation of Table 1, the high values between CMSE and CPSNR are not surprising because
the computation of the second depends on the �rst. However, the high correlation between s-CIELAB and
CPSNR (0.96) and thus CMSE (0.98) was not expected, especially because these measures do not focus on the
same artifacts as stated before. Finally, the results of MSSIM are not highly correlated with the others because
it focuses mainly on the structure of the image. That being said, the correlation ratio is high enough to say
that all the metrics indicate similar performance. These observations do not hold for the results in Table 2. The
correlation between s-CIELAB and CPSNR (CMSE) decreases drastically with losses around 30%. It is also
lower for MSSIM but the decrease is less, around 7%. This again argues against using scenario 3 for comparison.

7. CONCLUSION

We studied the use of hyperspectral images for the purpose of single-sensor image demosaicking evaluation. We
designed an in-camera processing pipe-line to render the hyperspectral data to sRGB images. We could thus
evaluate the performance of demosaicking algorithms applied to raw camera RGB values (scenario 1), which is
closer to real camera design, and to compare with current evaluation practices that evaluate demosaicking on
already rendered images (scenario 2).

We demonstrated the usefulness of using scenario 1 by comparing three di�erent demosaicking algorithms
and evaluating the reconstruction results with four di�erent metr ics (CMSE, CPSNR, s-CIELAB, and MSSIM).
We found that in general, the demosaicking algorithms perform worse in scenario 1 than scenario 2. Additionally,
the di�erences between the algorithms are more evident in scenario1. We thus conclude that scenario 1, which is
closer to real in-camera processing, provides a more accurate evaluation of demosaicking than current practices,
which is to evaluate on already color rendered images. However, to implement scenario 1, we need a hyperspectral
image data set.

Even though Foster et al. did our community a service by creating the hyperspectral image database and
making it freely available, these images are not adapted for demosaickingevaluation purposes. This is partly
due to the low-pass behavior of the optics of the real camera used to capture the images, which �lters the
high frequencies that often create problems for demosaicking algorithms, but that facilitates visual judgement.
Additionally, there is not enough variation in scene content and chromaticity to be a representative sample of
the world.

In this contribution, we focused only on the evaluation of demosaickingalgorithms. The same framework
can of course also be applied to study joint color �lter array design/demosaicking. Thus, it is of bene�t to the
community to build a new hyperspectral database speci�c to this purpose by selecting scenes like the famous
"lighthouse" from Kodak PhotoCD, which has image characteristics that facilitate the visual interpretation of
the algorithms' performance.

Table 4. Correlation between evaluation metrics.

Correlation of Table 1 Correlation of Table 2
Metrics CMSE CPSNR s-CIELAB MSSIM CMSE CPSNR s-CIELAB MSSIM
CMSE 1 -0,983 0,961 -0,714 1 -0,989 0,645 -0,679
PSNR x 1 -0,980 0,807 x 1 -0,673 0,739

s-CIELAB x x 1 -0,781 x x 1 -0,603
MSSIM x x x 1 x x x 1
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