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ABSTRACT

We present a study on the the applicability of hyperspectral images o evaluate color Iter array (CFA) design
and the performance of demosaicking algorithms. The aim is to simulate aypical digital still camera processing
pipe-line and to compare two di erent scenarios: evaluate the perfomance of demosaicking algorithms applied
to raw camera RGB values before color rendering to sRGB, and evaluatehe performance of demosaicking
algorithms applied on the nal SRGB color rendered image. The second scemio is the most frequently used one
in literature because CFA design and algorithms are usually tested on aet of existing images that are already
rendered, such as the Kodak Photo CD set containing the well-knowrighthouse image.

We simulate the camera processing pipe-line with measured spieal sensitivity functions of a real camera.
Modeling a Bayer CFA, we select three linear demosaicking techgues in order to perform the tests. The
evaluation is done using CMSE, CPSNR, s-CIELAB and MSSIM metrics to conpare demosaicking results. We
nd that the performance, and especially the di erence between denosaicking algorithms, is indeed signi cant
depending if the mosaicking/demosaicking is applied to camera raw vales as opposed to already rendered sRGB
images. We argue that evaluating the former gives a better indication howa CFA/demosaicking combination
will work in practice, and that it is in the interest of the community to create a hyperspectral image dataset
dedicated to that e ect.

Keywords: color lter array, CFA, digital still camera, spectral sensitivities , demosaicking, hyperspectral images

1. INTRODUCTION

Digital photography is a part of our daily life because many devices, such asligital still and video cameras,
smartphones, webcams, etc., are available at a ordable prices. The coomer electronic device industry has
mostly adopted single-sensor imaging, which captures the three speaei wave-bands red, green, and blue on a
single sensor. These cameras are more cost-e ective and usually more qoaet than tri-sensor cameras, which
use three sensors for full-resolution red, green, and blue scendarmation. Spectral selectivity on a single sensor,
be it a charge-coupled device (CCD) or a complementary metal oxide semiconductor (CMOSJ is achieved by
adding a color Iter array (CFA) 3© in front of the sensor, such as the most common Bayer Iter® The resulting
image from CFA acquisition is a gray-scale image with one single color at eachel. To recover tri-component or
full-color at each pixel, the image needs to be processed with a coloeconstruction algorithm called demosaicking.
Figure 1 gives an example of a Bayer CFA image (a) and its demosaicked resyb).

The design of color lter arrays (CFA) and associated demosaicking algoritims is still an active research
topic, as the perfect spatial arrangement of the Iters and their spectal characteristics have a large in uence
on image quality. Image demosaicking could be regarded as an interpolation prédm that creates full-resolution
color images from CFA-based single-sensor images. In interpolation, the ains to estimate the missing half
amount of green pixels (quincunx interpolation) and reconstruct the mssing three quarters of the red and blue
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Figure 1. Bayer CFA-based single-sensor imaging: (a) grayscde CFA image and (b) full-color image.

pixels (rectangular interpolation) as performed by bilinear and bicubic interpolations. However, this approach is
a simplistic view of the real demosaicking process because it doast take into account intra- and inter-channel
dependencies.

Demosaicking has been studied by many researchers, we have a ridtefature with various methodologies in
the spatial or frequency domain, using image geometry, applying re nenent and postprocessing techniques, etc.
Many comprehensive comparisons and/or surveys have been published tate./{1° Although all these e orts
have resulted in very e cient demosaicking algorithms, we claim that there is no appropriate image database
dedicated to these types of evaluations. Many authors used and continue use a test set composed of KODAK
PhotoCD images to prove the e ciency of their demosaicking algorithm and the quality of image reconstruction.
The frequency spectra of these images are very interesting, espaity on the widely used lighthouse image, as they
allow to easily visualize reconstruction errors. However, the origial PhotoCD images are slightly compressed
due to the Gaussian pyramid used in the encoding that allows extradhg di erent resolutions from the same PCD
le. Additionally, they have been rendered to a limited color gamut, similar to the current SRGB color encoding
standard.'* The experiments are thus conducted by recreating the CFA structire from the nal rendered image
without taking into account that the images have been preprocessed ahthat the color component information is
no longer original. Li et al.1° have shown that most existing demosaicking algorithms achieve good permance
on the Kodak data set but their performance degrades signi cantly on anotler set they used (IMAX high-quality
images with varying-hue and high-saturation edges). Their study demontsates that for testing CFA design and
demosaicking algorithms, there is a real need for new content that is addpd to the task.

In this paper, we study the applicability of the hyperspectral image database proposed by Foster et at? for
demosaicking evaluations. This database is composed of eight hyperspeaitimages (see Figure 4). The idea
behind our experiments is to simulate as close as possible the in-cama processing steps of a digital camera.
Thus, we also use real measured spectral sensitivities of a cameraarder to reproduce raw sensor response values.
The obtained results are compared with those obtained by mosaicking/demaascking the rendered images, and
additionally with ground truth images obtained by using the 1931 CIE color matching functions (CMF) to sample
the hyperspectral data.

The remainder of this paper is organized as follows. Section 2 describ@ur experimental procedure in detail.
Section 3 summarizes how the hyperspectral database was obtained. Trselected demosaicking techniques
are brie y discussed in Section 4. Metrics are an important part of evaliating demosaicking results and they
are presented in Section 5. Section 6 discusses the experimentasults, and Section 7 ends the article with
conclusions and future work.



2. EXPERIMENTAL PROCEDURE

This study's experimental procedure is summarized in the synogis of gure 2. Our purpose is to provide an
answer to whether or not evaluating mosaicking/demosaicking algorithms diectly on rendered images is correct
from an image quality point of view. As discussed above, most of the publised research study demosaicking
algorithms on already rendered images, while in most digital cameras, demagking occurs in raw camera
RGB before color rendering. We thus simulate the relevant in-cameraprocessing steps of a digital camera,
from acquisition to rendering, and compare results obtained by applyiy demosaicking before and after SRGB
rendering. Our simulation is similar to the one of Alleysson et al.}® who optimized camera spectral sensitivities
based on one given demosaicking algorithri. The di erent steps of the synopsis of Figure 2 are described below.
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Figure 2. Synopsis of the simulations used in the paper.

Instead of acquiring real scene information from a (real) sensor, we usan already existing hyperspectral
image data set that is described in Section 3. The images' raw sensor vas are obtained by applying the well
known image formation model. We thus rst multiply the re ectance s pectra at each pixel with the spectrum of
the illuminant (i.e. D65 in our case), and then multiply the resulting color signal with the spectral sensitivities.
We chose D65 as the illuminant to avoid having to white-balance the inage, as it is the standard illuminant used
for sSRGB encoding?! However, as the spectral sensitivities were derived by measurinthe quantum e ciency of
a real digital camera (see Figure 3-a), we do apply a gain control to each chaehto compensate for the di erent
quantum e ciencies of the red, green, and blue channels. At this sage, we have obtained an image in \camera
RGB" used in the following steps.

Image formation is an analog process, and we thus calculate in oating point ugo now. In order to simulate
the analog to digital conversion, we perform a quantization to 12-bits per bannel, which corresponds to the
common coding length nowadays. The quantized image is mosaicked accondi to the Bayer® CFA and then
demosaicked with the algorithms described in Section 4.

In order to render the mosaicked/demosaicked images to sSRGB, we rst Bed to nd the linear transform that
maps the pixel values from camera RGB to XYZ tristimulus values. We u® a simple least squares tting, but
there are much more sophisticated methods to obtain the matrix}> Note that real camera sensitivities do not
ful Il the Luther condition, in other words, they are not within a lin ear combination of the CIE color matching
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Figure 3. (a) Spectral sensitivity functions of the our digital camera and (b) the 1931 CIE Color matching functions. **

functions. As such, any linear transform will not correctly map all camera RGB values to the corresponding
XYZs, and a residual error is obtained that will be re ected in the results of our simulations to the ground truth
images.

After camera RGB to XYZ conversion, the images are mapped to 8-bit SRGB usig the method described in
the standard.'! We do not consider any additional rendering operations for preferred rproduction,® as is the
case in more sophisticated digital cameras that apply image speci c rendéng. Such additional color rendering
operations will of course also in uence the results, and could be condéred in our simulation framework. However,
as such operations are highly image and preference dependent, we omdtéhem in this preliminary study

The steps described above represergcenario 1 of the synopsis given in Figure 2. Omitting the mosaick-
ing/demosaicking step results in the "original" image, called O2, that we use for evaluation. For scenario 2
we additionally mosaick/demosaick O2, analogue to the procedure followed in the demosaicking literaturei.e.
mosaicking/demosaicking an already rendered images (e.g., Kodak PhotoCD iages). Scenario 3 illustrates
how we obtain the ground truth image, called O3, by simply applying the CIE color matching functions on the
hyperspectral data and then rendering to sRGB. We use the imag@®3 to compare the demosaicking results of
scenario 1 and 2.

Note that our simulation does not include all in-camera processing, as th above mentioned white-balancing
and image speci c color rendering, as well as linearization, are subtracion, noise removal and ltering, sharp-
ening, and compression. While these are important steps that will alsan uence the demosaicking result, they
are highly camera and/or image dependent, which makes their inclusionnto a simulation very challenging.

The evaluations of the our scenarios are performed using di erent wélknown metrics such as CMSE, CPSNR,
s-CIELAB and MSSIM for structural informations. These measures are desribed in Section 5.

3. HYPERSPECTRAL DATASET

For our simulations, we use the hyperspectral image database created byBter et al.}? in 2004. For the capture of
these images, the authors used a high-spatial-resolution hyperspeeat imaging system to acquire data from rural
and urban scenes in Portugal, namely a low-noise Peltier-cooled digit camera providing a spatial resolution of
1344 1024 pixels (Hamamatsu, model C4742-95-12ER, Hamamatsu Photonics K.K., Japan) with fast tunable
liquid-crystal lter (VariSpec, model VS-VIS2-10-HC-35-SQ, Cambridge Research & Instrumentation, Inc., MA)
mounted in front of the lens, together with an infrared blocking Ite r. Focal length was typically set to 75 mm
and aperture to f16 or f22 to achieve a large depth of focus. The line-spad function of the system was close to



Gaussian with standard deviation approx. 1.3 pixels at 550 nm. The intengy response at each pixel, recorded
with 12-bit precision, was linear over the entire dynamic range. The gak-transmission wavelength was varied
in 10-nm steps over 400-720 nm. This set is composed of 8 hyperspectral imagas shown rendered to SRGB in
Figure 4.
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Figure 4. Rendered versions of the hyperspectral images used in ouexperiments.

4. DEMOSAICKING ALGORITHMS

As mentioned previously, there are many algorithms for single-sensor iage demosaicking. Some of them are
sequential, i.e. color components are interpolated separately and the bers exploit inter-channel correlation. In
this section, we only brie y describe the methods we use, the rader is referred to the original papers for more
details. As this paper does not intend to compare demosaicking algoriths but only to evaluate the e ect of
using hypespectral images with a camera simulation that includes a e@mosaicking step, the selected algorithms
are not intended to cover the whole state-of-the-art.

4.1 Bilinear Model

Bilinear interpolation is one of the simplest and most used algorithm peforming a high-quality linear interpola-
tion. It interpolates a missing channel by taking the averages of the bsest neighbors of the same channel. For
example, the green channel at a red or blue pixel can be estimated as sk by the following equation:

G(irj) = %[G(i Li D+GGH Lj+D+ G(i+1;) 1)+ G(i+1;j+1): 1)

Bilinear interpolation is perhaps the most trivial demosaicking algorithm. It completely ignores inter-channel
color correlation because each channel is estimated separately. This afgach o ers fast demosaicking but with
questionable quality, such as noticeable false colors and blur along edges

4.2 Alleysson et al.

Alleysson et al.® showed that the spatial multiplexing of the red, green, and blue sigal in a Bayer CFA
is equivalent to multiplexing the frequency of an achromatic "luma" component and two modulated chroma
components. In addition, the luminance and chrominance components areusciently isolated in the frequency

domain to consider the construction of demosaicking algorithms based on équency analysis. The algorithm



separately extracts estimates of luminance and modulated chrominancey Itering the Bayer CFA mosaick
using two-dimensional Iters with appropriate bandwidths, and then converts the estimated luma and the two
demodulated chrominance values at each spatial location into RGB values

4.3 Dubois et al.

Dubois!’ de ned a locally-adaptive luma-chroma demultiplexing algorithm th at exploits the redundancy of one
chrominance in the Bayer CFA mosaick by selecting, locally, the besestimate using the more decorrelated
component to the luma signal. The work in'® introduced a least-squares approach for optimal Iter design that
replaced the window Iter method used in the previous version. This new Iter design method produces lower
order lters that achieved virtually identical demosaicking quali ty as the higher order Iters. We use the second
method in this paper.

5. EVALUATION METRICS

To perform analytical assessment of the de ned scenarios, we need one several quality measure to assess
di erent types of artifacts. We selected the commonly used CMSE andCPSNR, s-CIELAB, which characterizes
the regions in the test image that are visually di erent from the original image, and MSSIM that measures
di erences in structural content. Recall that O, and O3 are the "original" images without demosaicking, obtained
by either applying camera sensitivities or color matching functiors, respectively. Thus, the metrics are applied
to evaluate the demosaicking results of: 1) Scenario 1 in comparison t@,; 2) Scenario 2 in comparison toOy;
3) Scenario 1 in comparison toO3; ad 4) Scenario 2 in comparison t0O3. These metrics are brie y described
below.

5.1 CMSE & CPSNR

In the demosaicking literature, it is very common to use the composi¢ peak-signal-to-noise ratio (CPSNR) to
compare the reconstructed images to full color RGB images. We use equati 2 and 3 to calculate the CPSNR
of a demosaicked image compared to the original one. Here, I(i, j, k) is theigel intensity at location (i, j) of the

k-th color component of the original image and I'(i, j, k) of the reconstructed image. M and N are the height

and the width of the frame.
255

CPSNRzlologmm; ()
where
1 X3 N o o 5
CMSE = 3TN o NSO (IR ) 3)
k=1 i=1 j=1
5.2 s-CIELAB

s-CIELAB was proposed by Zhang and Wandeft® as a spatial extension to CIELAB to account for how spatial
pattern in uences color appearance and color discrimination. The spatialextension is accomplished by perform-
ing a pre-processing on the CIELAB channels before applying the cotali erence formula. In our application, the
input image is rst converted to an opponent encoding (one luminance ad two chrominance color components).
Each component is spatially Itered to mimick the spatial sensitivity of the human eye. The nal Itered images
are then transformed into XYZ so that the standard CIELAB color di erence f ormula can be applied.

5.3 MSSIM

The Multiscale Structural Similarity Index (MS-SSIM) 20 attempts to model the physical properties of the HVS.
The MS-SSIM follows a top-down paradigm that rst decomposes images irh several scales and then measures
contrast and structure in each scale. In addition, the luminance of thelowest scale is also measured. Finally,
all the data is pooled into a single score. MS-SSIM has the advantage that is computationally tractable while
still providing reasonable correlations to subjective measuremes.
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Figure 5. Results for the scene S4 from the hyperspectral database. O, and O3 are the "original" images rendered in
scenario 2 and scenario 3, respectively. Bl1, AL1, and DUl are Bilinear, Alleysson, and Dubois results for scenario 1,
respectively. BI2, AL2, and DU2 are Bilinear, Alleysson, and Dubo is results for scenario 2, respectively.

6. RESULTS AND DISCUSSION

Here, we evaluate the results of the scenarios described in Sectionadd illustrated in Figure 2. Recall that
scenario 1 is the simulation of a camera pipe-line (demosaicking bafe sRGB rendering). In scenario 2, we
perform demosaicking after color rendering (as done in the literature The mosaicking/demosaicking step
corresponds to creating mosaicks according to the Bayer CFAbefore applying the three di erent demosaicking
algorithms. For scenario 3, we generate a ground truth image obtained by apping the CIE color matching
functions to the hyperspectral data and rendering directly to sRGB.

BIl
BI2

Camera rendered imageD,
Figure 6. A zoom on part of scene S4. O, and Oz are the \original" images rendered in scenario 2 and scenario 3,

respectively. Bl1, AL1, and DUL1 are Bilinear, Alleysson, and Dub ois results for scenario 1, respectively. Bl2, AL2, and

DU2 are Bilinear, Alleysson, and Dubois results for scenario 2, respectively.
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Figure 7. Results for the scene S7 from the hyperspectral database. O, and O3 are the \original" images rendered in
scenario 2 and scenario 3, respectively. Bl1, AL1, and DUl are Bilinear, Alleysson, and Dubois results for scenario 1,
respectively. BI2, AL2, and DU2 are Bilinear, Alleysson, and Dubo is results for scenario 2, respectively.
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Figure 8. A zoom on part of scene S7. O, and O3 are the \original" images rendered in scenario 2 and scenario 3,

respectively. Bl1, AL1, and DUL1 are Bilinear, Alleysson, and Dub ois results for scenario 1, respectively. Bl2, AL2, and
DU2 are Bilinear, Alleysson, and Dubois results for scenario 2, respectively.



For each scene S*, except S5, we executed the three scenarios, thusashing the originals of scenario 2 and
3 (03 and O% ) and the results of the selected demosaicking algorithms for scenarib and 2 B1 15 , AL 1S ,
DU1S ,BI 25 ,AL25 and DU25 ). Scene S5 was rejected from the experiments because it doesatintain the
same number of spectral bands than the 7 others. Figures 5 and 7 show thiesults obtained with all scenarios
for scene S4 and S7. We can notice that the rendered images are close to te@sven by Foster et al. (see Figure
4) except for a color dierence because they manually edited the piaires. It is dicult to visually evaluate
the di erence between the results except for bilinear interpohtion. The latter gives very di erent results when
applied in scenario 1 or 2.

In order to better perceive the artifacts generated, we zoom into prts of scenes S4 (Fig. 6) and S7 (Fig.
8). We note some demosaicking artifacts around the pistil of the ower inS4 and around the window in S7.
Also, there seems to be more artifacts in the images from scenario 2 tham ithose from scenario 1, especially
around the windows. However, that result is not corroborated by the objetive metric s-CIELAB in Table 1 and
2, which is supposed to predict visual di erences.

Table 1. Evaluation of scenario 1 (BI1, AL1, DU1) and scenario 2 ( BI2, AL2, DU2) demosaicking results in comparison
to the original image obtained in scenario 2 (O.) using CMSE, CPSNR, s-CIELAB and MSSIM. BI1, AL1, and DU1

are Bilinear, Alleysson, and Dubois results for scenario 1, respectvely. BI2, AL2, and DU2 are Bilinear, Alleysson, and
Dubois results for scenario 2, respectively.

Scene Measure BI1 AL1 DU1 BI2 AL2 DU2
S1 CMSE 121,22 31,07 37,47 21,68 23,79 27,03
CPSNR 27,30 33,21 32,39 34,77 34,37 33,81
s-CIELAB 6,18 2,84 2,69 0,83 1,45 1,43
MSSIM 0,9827 0,9880 | 0,9853 0,9934 | 0,9890 0,9862
S2 CMSE 233,98 54,06 73,76 28,17 46,76 56,61
CPSNR 24,44 30,80 29,45 33,63 31,43 30,60
s-CIELAB 13,74 4,36 5,20 1,47 2,42 2,48
MSSIM 0,9787 0,9851 | 0,9799 0,9935 0,9871 0,9837
S3 CMSE 63,45 47,28 53,54 13,68 20,76 25,13
CPSNR 30,11 31,38 30,84 36,77 34,96 34,13
s-CIELAB 4,15 2,28 2,77 0,84 1,33 1,36
MSSIM 0,9864 | 0,9700 | 0,9686 0,9930 0,9877 0,9853
S4 CMSE 265,60 19,68 26,38 8,34 11,06 12,54
CPSNR 23,89 35,19 33,92 38,92 37,69 37,15
s-CIELAB 18,97 1,83 2,01 0,52 0,70 0,77
MSSIM 0,9787 0,9809 | 0,9741 0,9921 0,9872 0,9846
S6 CMSE 187,91 17,31 17,70 13,15 8,12 10,19
CPSNR 25,39 35,75 35,65 36,94 39,04 38,05
s-CIELAB 12,25 3,55 3,70 0,77 0,79 0,91
MSSIM 0,9904 | 0,9960 | 0,9951 0,9961 0,9962 0,9947
S7 CMSE 28,53 12,31 13,64 15,05 9,39 10,95
CPSNR 33,58 37,23 36,78 36,36 38,40 37,74
s-CIELAB 3,31 1,91 1,76 0,78 0,82 0,93
MSSIM 0,9927 0,9957 | 0,9940 0,9953 0,9961 0,9949
S8 CMSE 16,09 3,56 3,94 10,68 4,09 3,70
CPSNR 36,07 42,62 42,18 37,84 42,01 42,45
s-CIELAB 1,64 0,53 0,63 0,53 0,44 0,45
MSSIM 0,9940 0,9974 | 0,9969 0,9962 0,9975 0,9969
Average CMSE 130,97 26,47 32,35 15,82 17,71 20,88
CPSNR 28,68 35,17 34,46 36,46 36,84 36,28
s-CIELAB 8,61 2,47 2,68 0,82 1,14 1,19
MSSIM 0,9862 0,9876 | 0,9848 0,9942 0,9915 0,9895

For the quantitative evaluation, we used the metrics described in sction 5, i.e. CMSE, CPSNR, s-CIELAB
and MSSIM. These metrics have been calculated between demosaickienages of scenario 1 and 281 15 , AL 1S ,
DU1S ,BI 25 , AL25 and DU2S ) and the camera rendered imageD5 (see Table 1) and the CMF rendered
image O (see Table 2), respectively. By applying all these di erent metics, we evaluate di erent types of
artifacts. The CMSE and CPSNR focus on color signal dierences, s-CIELABaims at detecting perceived
errors, and MSSIM evaluates the structural content of the image.

The rst remark that concerns both tables is that the results are highly dependent on image content, arguing
that a large image data set should be available as an analysis based on average fpemance might not be
meaningful. Additionally, these results also argue for a common image dataet to evaluate di erent algorithms,



such as is available with the Kodak images. However, both tables clearlghow that there is a di erence between
scenario 1 and scenario 2 with regards to performance. In general, the are realistic camera processing, as
simulated with scenario 1, results in worse performance then the uglly applied scenario 2. This is similar to
what was found by Li et al.’® when applying mosaicking/demosaicking to IMAX images. This argues for a moe
realistic simulation to evaluate such algorithms.

Among the selected techniques, bilinear interpolation is the worsfor scenario 1 and with the highest di erence
(up to a CPSNR of 14 dB for S4, for instance). Alleysson et al.'s techniqués performing better than Dubois for
all the images, but with a higher di erence in scenario 1. Thus, the derence in performance of algorithms is
better evaluated with a simulation that is closer to a real camera pipeline as opposed to what is currently done
(i.e. scenario 2).

As expected, all errors are much higher when comparing the performande the CMF rendered imageO$ (see
Table 2). When only evaluating the in uence of mosaicking/demosaicking, thus assuming the other processing
parameters remain the same, it is thus probably more appropriate to us€5 as the ground truth to compare
with. Table 3 evaluates the di erence betweenO3 and OF , using the same metrics, for all 7 scenes. Note that
the di erence can be very high as for the case of S2 and S4. Additionally, its more di cult to discriminate the
demosaicking techniques between scenario 1 and scenario 2, the dience is smaller. Thus, comparing with the
ground truth images tends to compress the di erence between the daosaicking algorithms, which in the case
of this study is coherent with the visual results of gure 5 and 7. It may be suitable to compare the output of a
simulated camera pipe-line like scenario 1 with the original image of@enario 3 to get a better visual judgment.
This can be con rmed with a psychophysical experiment.

Table 2. Evaluation of scenariol (Bl1, AL1, DU1) and scenario2 ( BI2, AL2, DU2) demosaicking results in comparison
to the original image obtained in scenario 3 (O3) using CMSE, CPSNR, s-CIELAB and MSSIM. BI1, AL1, and DU1

are Bilinear, Alleysson, and Dubois results for scenario 1, respecively. BI2, AL2, and DU2 are Bilinear, Alleysson, and
Dubois results for scenario 2, respectively.

Scene Measure BI1 AL1 DU1 BI2 AL2 DU2
S1 CMSE 95,66 54,57 65,82 50,37 50,74 55,50
CPSNR 28,32 30,76 29,95 31,11 31,08 30,69
s-CIELAB 4,49 4,54 5,10 4,96 5,25 5,19
MSSIM 0,9809 0,9838 | 0,9795 0,9873 0,9837 0,9795
S2 CMSE 192,27 147,69 234,82 170,85 187,84 199,40
CPSNR 25,29 26,44 24,42 25,80 25,39 25,13
s-CIELAB 14,64 8,00 10,04 10,18 10,43 10,50
MSSIM 0,9711 0,9738 | 0,9658 0,9820 0,9756 0,9701
S3 CMSE 44,27 70,95 66,52 45,04 49,25 55,45
CPSNR 31,67 29,62 29,90 31,59 31,21 30,69
s-CIELAB 4,76 3,51 3,83 2,48 2,74 2,78
MSSIM 0,9830 0,9708 | 0,9680 0,9872 0,9848 0,9815
S4 CMSE 231,89 152,93 174,89 132,15 136,93 137,82
CPSNR 24,48 26,29 25,70 26,92 26,77 26,74
s-CIELAB 13,98 5,24 7,71 6,10 6,08 6,13
MSSIM 0,9407 0,9341 | 0,9294 0,9508 0,9443 0,9420
S6 CMSE 183,47 25,15 30,62 25,80 21,56 24,16
CPSNR 25,50 34,13 33,27 34,01 34,79 34,30
s-CIELAB 10,84 3,23 5,26 3,25 3,13 3,17
MSSIM 0,9891 0,9934 | 0,9918 0,9929 0,9927 0,9907
S7 CMSE 56,23 40,46 39,63 37,27 32,23 33,38
CPSNR 30,63 32,06 32,15 32,42 33,05 32,90
s-CIELAB 4,76 3,64 3,38 2,91 2,91 2,94
MSSIM 0,9874 | 0,9902 | 0,9884 0,9901 0,9906 0,9890
S8 CMSE 19,04 7,78 9,92 16,13 9,17 9,12
CPSNR 35,33 39,22 38,17 36,05 38,51 38,53
s-CIELAB 2,70 1,78 2,17 1,87 1,88 1,90
MSSIM 0,9923 0,9960 | 0,9954 0,9943 0,9960 0,9952
Average CMSE 117,55 71,36 88,89 68,23 69,67 73,55
CPSNR 28,75 31,22 30,51 31,13 31,54 31,28
s-CIELAB 8,03 4,28 5,36 4,54 4,63 4,66
MSSIM 0,9778 0,9774 | 0,9740 0,9835 0,9811 0,9783

Table 4 shows the average correlation between the four metrics used iour evaluation, for the seven scenes
and the measures listed in Table 1 and Table 2. We can thus evaluate whe#ln the metrics give consistent



Table 3. Evaluation of the di erence between O, (original image obtained from scenario 2) and O (original image obtained
form scenario 3).

Metrics S1 S2 S3 S4 S6 S7 S8 Average
CMSE 31,34 143,44 30,93 126,10 13,30 22,66 5,14 53,27
CPSNR 33,17 26,56 33,23 27,12 36,89 34,58 41,02 33,23
s-CIELAB 4,89 10,41 2,26 6,01 3,00 2,77 1,85 4,46
MSSIM 0,9931 0,9885 0,9945 0,9557 0,9964 0,9948 0,9983 0,9888

results. From the correlation of Table 1, the high values between CMSE att CPSNR are not surprising because
the computation of the second depends on the rst. However, the high caelation between s-CIELAB and
CPSNR (0.96) and thus CMSE (0.98) was not expected, especially because gemeasures do not focus on the
same artifacts as stated before. Finally, the results of MSSIM are not tghly correlated with the others because
it focuses mainly on the structure of the image. That being said, the orrelation ratio is high enough to say
that all the metrics indicate similar performance. These observatios do not hold for the results in Table 2. The
correlation between s-CIELAB and CPSNR (CMSE) decreases drastically \th losses around 30%. It is also
lower for MSSIM but the decrease is less, around 7%. This again argues agatinsing scenario 3 for comparison.

7. CONCLUSION

We studied the use of hyperspectral images for the purpose of singlesor image demosaicking evaluation. We
designed an in-camera processing pipe-line to render the hypsyectral data to sSRGB images. We could thus
evaluate the performance of demosaicking algorithms applied to raw camarRGB values (scenario 1), which is
closer to real camera design, and to compare with current evaluation praices that evaluate demosaicking on
already rendered images (scenario 2).

We demonstrated the usefulness of using scenario 1 by comparing e di erent demosaicking algorithms
and evaluating the reconstruction results with four di erent metr ics (CMSE, CPSNR, s-CIELAB, and MSSIM).
We found that in general, the demosaicking algorithms perform worse in snario 1 than scenario 2. Additionally,
the di erences between the algorithms are more evident in scenarid. We thus conclude that scenario 1, which is
closer to real in-camera processing, provides a more accurate evalimt of demosaicking than current practices,
which is to evaluate on already color rendered images. However, to imeiment scenario 1, we need a hyperspectral
image data set.

Even though Foster et al. did our community a service by creating the lyperspectral image database and
making it freely available, these images are not adapted for demosaickingvaluation purposes. This is partly
due to the low-pass behavior of the optics of the real camera used to cape the images, which lters the
high frequencies that often create problems for demosaicking algoriths) but that facilitates visual judgement.
Additionally, there is not enough variation in scene content and chromatidty to be a representative sample of
the world.

In this contribution, we focused only on the evaluation of demosaickingalgorithms. The same framework
can of course also be applied to study joint color Iter array design/demosicking. Thus, it is of bene t to the
community to build a new hyperspectral database speci c to this pupose by selecting scenes like the famous
"lighthouse" from Kodak PhotoCD, which has image characteristics that facilitate the visual interpretation of
the algorithms' performance.

Table 4. Correlation between evaluation metrics.

Correlation of Table 1 Correlation of Table 2
Metrics CMSE CPSNR s-CIELAB MSSIM CMSE CPSNR s-CIELAB MSSIM
CMSE 1 -0,983 0,961 -0,714 1 -0,989 0,645 -0,679
PSNR X 1 -0,980 0,807 X 1 -0,673 0,739
s-CIELAB X X 1 -0,781 X X 1 -0,603
MSSIM X X X 1 X X X 1
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